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Algebraic properties of nonhomogeneous equations of magnetohydro-
dynamics in the presence of gravitational and Coriolis forces.
Examples of solutions — simple states

A. GRUNDLAND (WARSZAWA)

THE purPOSE of this paper is an algebraic analysis of M.H.D. equations and a physical inter-
pretation of some classes of solutions called simple states. An algebraisation of M.H.D. equa-
tions according to [6] is made. All considerations are made at a fixed point of a hodograph
space. Simple homogeneous and nonhomogeneous elements being the tangent mapping of
simple waves (for a basical homogeneous system) and simple states (for a nonhomogeneous
system) respectively were found. Then algebraic properties of simple homogeneous and nonho-
mogeneous elements are analysed. On this base, the dimension of a tensor space generated by
simple elements is determined. It allows to classify the type of M.H.D. equations. At the end
of the paper a physical interpretation of solutions is made.

Celem niniejszej pracy jest algebraiczna analiza rownan M.H.D. a nastgpnie interpretacja fi-
zyczna pewnych klas rozwigzan, zwanych stanami prostymi. Dokonuje si¢ algebraizacji rownan
M.H.D. zgodnie z praca [6]. Wszystkie rozwazania sa przeprowadzane w ustalonym punkcie
przestrzeni hodografu. Poszukuje si¢ elementéw prostych jednorodnych i niejednorodnych,
bedacych odwzorowaniami stycznymi odpowiednio — fal prostych (dla wyjsciowego uktadu
jednorodnego) i stanéw prostych (dla uktadu niejednorodnego). Z kolei analizuje si¢ wlasnosci
algebraiczne elementéw prostych jednorodnych i niejednorodnych. Na tej poddstawie wyzna-
cza si¢ wymiar przestrzeni tensorowej generowanej przez obliczone elementy proste, co pozwala
sklasyfikowac¢ typ réwnai M.H.D. Na koniec dokonuje si¢ pewnej analizy fizycznej otrzy-
manych rozwiazan.

Llemo aToit paGoTel ABNsercA anrebpaHuecKuil aHANIH3 YpaBHeHHH MArHEeTOTHIPOAHHAMHKH
a saTeM u3HUeCKaA HHTEPNPETALMA HEKOTOPAIX KJIACC PELIEHHH — TaK HAa3hIBAEMBIX MPOCTHIX
cocrosanmii. [IpousBogurcs anrebpansanuA ypaBHeHu M.r.A. corjiacHo pabore [6]. Bee pac-
CY)KJICHHA NPOBOAATCA B (DHKCHPOBAaHHOH TOYKe mpocTpaHcTBa ropmorpacda. HMcenemyerca
TpOCThIE OJHOPOAHbIE H HEOMHOPOJHBIE IJIEMEHTHI, ABJIIOIIHECST KacaTelbHbIMH 0TOGpa-
YKEHHFMH COOTBETCTBEHHO—IIPOCTRIX BOMNH (/1A MCXOQHOH OMHOPONHOH CHCTEMBI) H MPOCTHIX
COCTOAHMI (U/IA HEOMHOPOMHOM CHCTEMBI). 3areM aHATH3MPYETCA anrebpaHuecKue cBOIiCTBa
NPOCTBIX OJHOPOAHBLIX M HEOQHOPOAHBIX 3nemenToB. Ha aroli ocHoBe onpepensercs paamep
TEHCOPHOTO MPOCTPAHCTBA, ['CHEPHPOBAHHOrO BBEIYMCIEHHBIMH MPOCTHIMH 3JIEMEHTAMH, YTO
MO3BANIAET NPOH3BECTH KIaccHHKaIIo ypaBHeHH! M.r. 1. Ha KoHell MpoBOAUTCA HeKOTOPLIH
u3HYECKHA AHAMH3 MONMYUYECHHBIX pPELIeHHMH.

Notations

physical space,

hodograph space,

vector space of solutions of the homogeneous system,
hyperplane of solutions of the nonhomogeneous system,
linear subspace,

coordinates of J#,

characteristic vector from 3¢,

noncharacteristic vector from 3,
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x = (t,%) coordinates of &
A characteristic covector from &*,

Jé noncharacteristic covector from &*,

R,s Riemann invariants,
4= (10+Ef) velocity of wave and state regard to a moving media,
density of fluid,
pressure of fluid,
velocity of fluid,
gravitation field,
electric field,
magnetic field,
electric current,
electrical charge density,
electrical conductivity,
gravitational potential,
gravitational constant,
angular velocity of fluid,
direction of propagation of the state.

MR e a0 — Tmw e e

1. Basical equations

IN THIS paper we will deal with an analysis of nonhomogeneous equations of magneto-
hydrodynamics from the point of view of a generalised Riemmann invariants method
described in papers [1-7, 10-14]. After an algebraisation of those equations (Sec. 2) we
will consider whether they admit existence of Riemann invariants. Then we will con-
struct the simplest solutions i.e. simple states (Sec. 5).

We will consider the classical equations of magnetohydrodynamics describing a mo-
vement of a fluid conducting medium and placed in a magnetic field in a presence of gra-
vitational and Coriolis forces. We take into account a one-component nonviscous fluid
having a finite electrical and thermal conductivity. Under the above assumptions the in-
vestigated equations form a quasi-linear system. In the noninertial system they are of the
form:

g{g:’ +(W)ﬁ}+vp = jx H+dg—20w %,

00 v dp _.do _
TV =0,  Z—f5 =0,
(1.1) Ao ={4nko, where g = —Vp,
rot H = 4nj,  where j = o(E+9xH),
rotE=~a—hi, div H=0 div E = 4nyq,

ot

where the following notations have been introduced: o — density of fluid, p — pressure
of the fluid, g — gravitational field, ¥ — velocity of the fluid, E — electric field,” H — mag-
netic field, j — density of the electric current, @ — gravitational potential, w — angular
velocity of the fluid, ¢ — electrical charge density, ¢ — electrical conductivity, kK — gra-
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. i i - d
vitational constant. A substantial derivative will be denoted = §+{EV).

In order to get (1.1) we have coupled together:

electrodynamical equations,

gravitational field equations,
and hydrodynamical equations with the presence of gravitational and Coriolis forces.
We reduce the Poisson equation (1.1d) to the first order equations:
(1.2) rotg =0, divg = 4nke
to be able to apply the Riemann method [6, 7]. Consequently we obtain a system of 14
equations of the first order with respect to 14 unknown functions. The Eq. (1.1g) is a con-
sequence of Egs. (1.le, f) and the Eq. (1.1h) will be treated as an additional condition
for the distribution of the electrical charge density.

Following conservation laws correspond to (1.1):

the energy conservation law:

a ) (@ H| . | _[%? 1 = — G =

the momentum conservation law:
_ . A 1 (1 2, = = o
(1.4) -g—r (gw)+d1v!(p6+gv ®v)+ F = (‘"2-' éH>*~H® H)} = o(g— 02 x v).
Under our assumptions the heat transport equation is of the form:

iRy (rot H)?
(1.5 QT{ + (?JV)S} div(xVD)+ ——— TR
where S, U, W are entropy, internal energy and enthalpy of the fluid mass unit respectively
and x is thermal conductivity.

2. Algebraic properties of nonhomogeneous M.H.D. equations

2.1. Simple elements

Basing on literature [1-7, 10-14] concerning the method of Riemann invariants
applied to differential equations we accept the following notations. A physical (Euclidean)
space & = &#* is a classical spacetime. Each point of & has coordinates (¢, X). The space
of unknown functions i.e. the hodograph space is denoted by 5# — #'#. Each point of #
has coordinates (g, p, g, ?, E, H). Points of the dual space &* we call covectors and use
for them a symbol A = (4o, A), where: 4 € %2. Points of the tangent space T are called
vectors and they are denoted as y = (y,, ¥, ¥4, 7> €, h) where: 0 = ¥,, P = ¥,, 8= 7,
2=7%,E<=¢, H = h. Simple elements for nonhomogeneous equations of magnetohydro-
dynamics (1.1) are defined by algebraic equations. These equations are of the form:

ed|A|7+y,A = jx H+og— 0@ x v,

8[Al+oy: 4 =0, 8|4 ~fy,8|4] =0,
@.1) Ve Il oy Y0l Al =f¥, 014

|
X
=20
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o
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where the followoing notations are introduced 2: = 2w  and
(2.2) OAl: = Ag+9- A

The function 8|A| has a physical meaning. It describes the (group) velocity of a distur-
bance propagation relative to the fluid.

When we use a language of simple elements then the conservation laws correspond-
ing to (2.1) and the equation of heat transport are as follows:

- |92 ko= Hh| _ = - =9
2.3) d]4] {—2-3!,+90-y} +Ao{Uy,+gu+ —4;[—}4'%" A{Wy,+ow}+oy- 4 {—2— + W}

1 == _
+4_‘.“!{H.ZXBHE

< Axh} =¥k = 08 D+j2071,

AT {@ry+e)+ 75 A+ 07 To+ o= (H - hA-H- 1) = 0G~0x7),

oT8[Aly, = %P, A+j20™Y,  AxP, =
where:
S=y, U=u, W=w, VIi=1a7

The system of Egs. (2.1) for the nonstationary case is a system of 15 equations. For the
stationary case it is a system of 16 equations as one has to consider in addition the Eq.
(2.1h). This equation in the former case was a linearly dependent one. In both cases (2.1)
is a system with 14 unknown functions. It is an algebraic system of linear nonhomogeneous
equations with respect to a vector y. According to the Kronecker-Capella theorem a non-
zero solution y of (2.1) exists if and only if the following equations are satisfied:

65&*1 = 8|7 = 0 — entropic velocity and the condition: jx H+0(g—2x%) = 0,

v = 0.
5::”3 = 8|4 = 0 — entropic velocity and the condition: j- (g—2x o) =0,
(2.4) v, %0,
84y = 0|2] = e|A| )/ f— acoustic velocity, where & = +1,
_ #0 . .
Omy = 04| = { £ ¢l ﬁ — sub-supersonic velocities.

According to (2.2) the Eqgs. (2.4a) and (2.4b) define nonhomogeneous entropic elements.
These elements correspond to the simple entropic states Ey, and Ey, respectively. The
Eq. (2.4c) determines a nonhomogeneous acoustic element which corresponds to the simple
acoustic state Ay. The Eq. (2.4d) defines a nonhomogeneous magnetohydrodynamic
element My. From the definition (2.2) it follows that the velocity of the entropic state Ey
relatively to the fluid is equal to zero. This state propagates together with the fluid and
not relatively to it. The velocity of the propagation of the acoustic state 4y relatively to the
medium is equal to the sound velocity: /f = }/dp/dp. But the magnetohydrodynamical
state My can propagate relatively to the medium with any speed except for the entropic
velocities dg, = 0 and the acoustic velocities 8, = &|4| )/ f. The conditions (2.4) determine
submanifolds in the hodograph space such that cones of nonhomogeneous simple ele-
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ments are defined on them. Vectors y are elements of subspaces tangent to those subma-
N

nifolds.

In the further course of our considerations we will deal with an analysis of the homo-
geneous system (2.1). We shall determine homogeneous simple elements which will enable
us later to construct some general classes of solutions. These solutions will be non-linear
superpositions of simple waves with the simple states [6, 7]. An analysis of the homoge-
neous system will also allow us to classify the type of the basic nonhomogeneous system,
That will be discussed in the Sec. 4.

The homogeneous system (2.1) has zero solutions with respect to h, ¥, Hence it can
be reduced to the following system:

08|27+ 4y, =0,
o014l +07 -2 =0,
(2.5) 750141 —f7,6|4] =0,
exa=0.

Because of an elliptical character of the homogeneous Poisson equations the gravita-
tional force is treated here as a nonconservative force. It is a formal procedure enforced
by the Riemann invariants method applied here (we recall that the Laplace equation has
no simple elements). The case of the magnetic field 4 is quite analogous. The system (2.5)
is a system of 8 equations with 8 unknown functions. It is a linear homogeneous system
with respect to the vector y. Consequently the nonzero solution y exists if and only if the
characteristic determinant of the system vanishes:

(2.6) SHAH(S2| A2 —f22) = 0.
The Eq. (2.6) has two kinds of solutions for the function 6|§.|. They are:

dr = 6|A| = 0 — entropic velocity,
2.7 . -
04 = 8|2 = e]A|Yf— acoustic velocity.
The Eq. (2.7a) defines homogeneous entropic elements which correspond to the simple
entropic waves E. The Eq. (2.7b) determines homogeneous acoustic elements correspond-
ing in turn to the simple acoustic waves A.

It is worthwhile to remark that the homogeneous equations (2.6) written in the language
of simple elements don’t allow the Alfvén waves which can be observed experimentally.
It is known that the Alfvén waves correspond to integral elements of the higher order [9].
More detailed physical interpretation of velocities, simple states and simple waves will
be given in the Sec. 5.

Simple homogeneous and nonhomogeneous elements will be presented explicite in the
following paragraphs of the Sec. 2. Afterwards their properties and relations between them
will be described. Finally a classification of the equations (2.1) based on an analysis of
these elements will be given.

Some denotations and definitions useful for further considerations will be introduced.
Simple elements will be denoted as follows: y®4 for the homogeneous system and ;@ ﬁ

12 Arch. Mech. Stos. nr 1/75
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for the nonhomogeneous system. Let C(y (1)) denote a cone of vectors from the hodograph
space fixed in a point u, = (¢, p, g, 0, E, H) € #. A bundle of cones will be introduced
as follows:

(28) C() =(C(y),=,#) where C(y)= uLst C(y(w)) and =:C(y)—> #

A bundle of cones of covectors C(A(x)) = &* can be introduced similarly
29 CA) = (C(;l). ﬁ,.?f’) where C() = L_i C(Z(u)) and #®:C(A) - #
ue

We will use different kinds of cones C («) as a will vary over E, 4, Ey,, ... etc. C¥(y(u))
is a map assigning to each vector y € C(y(u)) a system of k linearly independent covectors
A € C(A(u)). Similarly, C?(A()) is a map assigning to each covector 1€ C(i(v)) a sys-
tem of p linearly independent vectors y € C(y(«)). By Q; we will denote the linear space
generated by all homogeneous simple elements i.e. Q; = {y,®4*} and by £, we will
denote the hyperplane spanned by nonhomogeneous simple elements of the form:

2.10 L, = Sy, @ A here: s=1
(2.10) 1 g‘“K@N where g;#

Q,(2) and &Z,(«) will denote the space and hyperplane respectively generated by simple
elements of the type a(e.g., E, 4, Ey and so on).

Simple elements correspond to the previously introduced velocities (Egs. (2.4), (2.7)).
Those elements can be obtained from Eqgs. (2.1) or from (2.5). All considerations con-
cerning the simple elements will be made in a fixed point of the hodograph space i.e. for
fixed u, = (0, p,2,9, E, H).

2.2. The homogeneous entropic elements E

We obtain the following system of algebraic equations which defines simple homoge-
neous elements corresponding to entropic velocities E using the condition (2.7a) in the
equations (2.5):

=
[l
o

(2.11)  y,— arbitrary function, 7, =0, 7, =0, 7+ 4 =0, ex1 =0,

Solving the above system we obtain three kinds of solutions:

(212) YE, = (yw 0,6, ?; és 6}: AE; = (_5 ! Is —),

where 7+ 4 =0, ex 1 =0,

(2'13) YE, = (ye'! 0, 69 5” 6! (-))a ‘:'E, = (_E"ii; II)» i=1,2
i

where yx (A, x4,) =0, e =0
(2.14) 78, = (9,,0,0,0,0,0), Ag, = (—74, A).

Thus on the basis of (2.12) we confirm that the covector 1 is a vector lying in the plane
perpendicular to the vector ¥ and parallel to the vector e. It follows additionally from
the expression (2.12) that the cone of the covectors C(A(E,)) is generated by the vector
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(=@- A, %) and is a three-dimensional hyperplane including the zero of the space &*.
This hyperplane is inclined to the axis A, at an angle ¢ such that:

Y
Cosp = — -ITE_}?

and it crosses the plane 4, = 0 along the line perpendicular to the vector . It follows
from above considerations that if 2 decreases, then the cone C(A(El)) deflectes from the
axis 4, and if 9? increases — then the obtuseness of the cone decreases.

The cone of the characteristic vectors C(y(E,)) from the space T is determined by
conditions:

0

(2.15) y,— arbitrary function, y,=0, y,=0, »=fx1, é= ak, h

where B — arbitrary vector, a~— arbitrary function.

Characteristic vectors from the space T5# for the homogeneous system (2.5) have not
(as was previously mentioned) any components in the subspace (%, 7,). Thus for the fixed
2 C(y(E,)) is a four-dimensional hyperplane in the eight-dimensional space T5¢. In the
case (2.12) it can easily by checked that we have C'(y(E,)), because to each covector
A € C(A(E,)) corresponds one linearly independent vector y € C(y(E;)) (by the fact
that ¢||7). However we have C2(A(E,)) as well as C2(A(E,)) because there exist two li-
nearly independent characteristic covectors A € C(A(E,)) for the fixed vector y € C(y(Ey)).

We will investigate now the dimension of the tensor subspace generated by homoge-
neous simple entropic elements E,:Q,(E;) = {yg,®Ag,}. The part of the information
which says what part of the whole space of the integral simple elements does this subspace
constitute will be essential for us (see Sec. 4). The dimension of the space Q,(E)) is de-
termined only by elements of the form:

(2.16) (er 7,2 D®A, 74 =0
because the expressions:
@2.17) (er 75 ai) (—o- 7‘) = =0 {7 7> tbi)"q'i}’ v A=0

are linearly dependent on (2.16). The term (—o - A) determines the inclination of linear
subspaces only. It can easily be shown that dimension of the space generated by the ele-
ments of the form (2.16) is 17, thus: dim Q,(E,) = 17.

In the case (2.13) the homogeneous simple element E, is generated by the vectors:

(2'18) ¥= (ygs 0: 6: xilx‘IZ':ﬁsﬁ)s AI — (_‘5iis ii)) i= 1)2

where # is an arbitrary function.

The cones C(A(Ez)) are of the same form as in the case E,, and C(;u(Ez)) is a plane
generated by two linearly independent vectors: (1,0, 0,0,0,0), (0,0,0, 2, x 4,,0,0).
In that case we have C2(y(E,)) and C2(A(E,)) as well as C*(1(E,)) and

(2.19) dimQ,(E;) = 9.

Let us consider now the case (2.14). The cone C(A(E;)) is generated by the vectors
(=9 4, A), where 2 is an arbitrary vector. So C(A(E;)) s a three-dimensional linear space
generated by the vectors (—v;, e;6;;), i = 1,2, 3 where ¢; is an i-versor of the orthogonal
canonical base in the space %#°. In this case the cone of characteristic vectors C(y(Es))

12+
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from the space T is a line of the direction independent of the hodograph space point
u e #. As it follows from the expression (2.14) we have here C3(y(E;)) and C*(A(Es))
as well as C*(A(E;)). The dimension of the tensor space generated by homogeneous entro-
pic elements Ej is dimQ, (E;) = 3.
Moreover it holds the following relations between entropic elements:

(2200 C(y(Es)) =« C(¥(Ey) = C(y(E))) and C(A(Ey) = C(AE,)) = C(A(Es)).
Recapitulating the obtained results it can easily be stated, that the dimension of the
tensor space generated by all homogeneous entropic elements E is dim Q,(E) = 17.

2.3. The homogeneous acoustic elements A

Adjoining the condition (2.7b) in the equations (2.5) we obtain the following algebraic

equation system which defines homogeneous simple acoustic elements A:
oV f1A7+y,4 50,
(2.21) eV f1Aly,+e7- 4 =0,
Yo —fre =0, exi=0, 7 =0, h=0.

We obtain the following form of characteristic simple acoustic elements from the

equations (2.21):
- - T - e

(2.22) Va = (waywo, _sl/f%ﬁl_' e,0), ix=(eAyf-v-4,2),
where exA1 =0,¢e = + 1.

AlsP the characteristic vectors from the space 7¢ have no components in the sub-
space (h, 7,). )

It follows from the equations (2.22) that the covector 4 is parallel to the vector e. Also
it is obvious that the covector cone C(4(4)) is generated by the vectors (elAly/ f-o4, 3).
It follows from the covector form A that C(A(4)) is a three-dimensional cone in the four-
dimensional space. The intersection of that cone with the hyperplane: 1, = ¢|4| ]/ f—0-iA=
= const yields the ellipsoidal surface. It follows from the above considerations thatif ¢ > 0
and v+ A < 0 the generator of the cone is inclined to the cone axis at the minimal angle
and if ||z the obtuseness angle of the cone becomes maximal. Namely, we have two kinds
of cones: C(4(4*)) and C(A(47)) and the following relation holds:

C(AA") n C(MA7)) = C(A(ED).
The cone of the characteristic vectors C(y(4%)) from the space 7 is determined by

the condition (2.22) from which it follows that here — as in the above case — we have
two kinds of cones: C(y(4*)) and C(y(4™)) connected by the relation:

- {C(AM))nC(y(4N)} = C(¥(ED).
The cone C(y(4%)) is spanned on the vectors:

0~ VT 2 0,0) 0,0,7,0
(lufsog € 0 Iil,o,o ’ (OsOsO! 3 Iy )
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So it forms the two-dimensional hyperplane in the space T2 (for the fixed 1). In the
case of the homogeneous acoustic elements (2.22) it can be easily stated that we have
C'(y(4)) and C?(A(4)) as well as C2(A(A4)). The equations (2.21) do not allow any non-
planar simple acoustic waves A4 as in case of hydrodynamical equations [13-14]. It can
be shown that the dimension of tensor space generated by homogeneous elements ¥, ® 44
is equal to 17, so dim Q,(4) =

2.4. The nonhomogeneous simple entropic elements Ey

1t follows from (2.4a, b) for the basic system that we obtain two kinds of simple entro-
pic elements Ey,, Ey,. Using the condition (2.4a) in equations (2.1) we obtain the follow-
ing system of the algebraic equations which defines nonhomogeneous simple entropic
elements Ey:

VpA—jx H—og+002x% =0,

(2.23) y-4=0, Axy,=0, ¥, 2 =dnko,
Axh =4nj, Axe=—Aoh, h-%i=0,
and the condition
(2.29) JxH+0(E-8x%) =0, y,=0.
Solving the above system we obtain the following form of the elements Ey,:
?E,\,t={rw0, (;’:ii axj, Bx (@xj), aaxj+ (axﬁ)zlv Gy (Ex}*)Xf},

(2.25)
Aey, = {—0-Txj, axj}.
The vectors VEy, from the space To# for the nonhomogeneous system (2.23) must lay in

the subspace TIM; < T which is tangent to the submanifold M, defined by the
Kronecker-Capella theorem where:

(2.26) M, = {ue s :jx H+o@@—-2x0) = 0}.

It follows from the system (2.23) that the covector A is a vector laying in the plane per-
pendicular to the vector 7 and parallel to the vector »,. As it is easy to see from the ex-
pression (2.25) the cone of covectors C(A(Ey,)) constitutes a plane in the four-dimensional
space including the zero of the space &*. This plane is inclined to the axis 4, at an angle ¢

such that:
?—)2
== ]/II%-}'

and intersects the plane 1, = 0 along the line perpendicular to the vector v. It follows
from the above that if > decreases then the generator of the cone C(A(Ey,)) deflectes
from the axis 4, and if 92 increases then the obtuseness angle of the cone decreases.
Considering the expressions (2.25) for nonhomogeneous simple elements together with
the expression (2.12) for the homogeneous simple elements Ey, we can state that the
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covector ?-sm is a characteristic covector. Therefore according to considerations in pa-
per [7] the vector yg, can be represented as the sum of the characteristic vector yg, and

noncharacteristic vector 5’53\:" namely:

Ye i i 0 i
0 0
0 4n koaxj
(227)  Vey, = yg,| +rs,., = - |+—== x .
R | - Yo Bx@Ex) | @x))? 0 _
aaxj —0-AXjj
- | —@xj)xj_

This form of Yy, becomes important when we construct solutions for (2.23). It leads
to the weaken conditions of the integrability, see [7]. Consequently it leads to solutions
containing arbitrary functions. For the fixed 2, the cone of vectors C(y(EyY) is a four-
dimensional hyperplane spanned by the vectors:

1,0,0,0,0,0),

(0,0,0,%, x @xj),0,0),

(0,0,0,2,x (@x}),0,0),

(©,0,0,0,%xj,0),
where e, are versors satisfying (¢;, axj» =0, i = 1,2 in T5¥. It can be easily checked

that yg, and yEN are orthogonal {yg,, yEN) = 0. Thus the hyperplane C(y(Ey,)) is
shifted from the zero of the coordinate system by the segment:

7ey,| = @x )z ———I(=ke@xj), T+ Exjj, @x)*]).

The form of VEn, given by (2.27) shows that the formulae (2.25) induces C*(A(Ey,)) as

well as C:"‘(ii(ﬁ}..rl ) and C*(y(Ey,)). It follows from the character of the Poisson equa-
tion (2.23) we have accepted here. In consequence it excludes some kind of solutions(*).
To end with the case of Ey, we will derive dimension of the hyperplane %, (Ey,) =
= {ygNl®}.le} generated by nonhomogeneous simple entropic elements Ey,. This

dimension is determined only by elements of the form:

(2.28) Ven, ®@x))
because the expressions:
(2.29) Vey (-0 xj) = —9; {vey, (@ X )i}

are linearly dependent on (2.28). The term {—v-&x j} determines an inclination of the
linear subspace only. It can be easily shown that the dimension of the hyperplane %, (Ey,)
generated by elements (2.25) is:

(2.30) dim%, (Ey,) = 12.

(*) We exclude here the solutions describing nonplanar simple wave propagating in the nonhomoge-
neous medium with anisotropy in direction of the noncharacteristic covector A. These remarks concern
N

also cases of simple elements we are going to consider later on.



ALGEBRAIC PROPERTIES OF NONHOMOGENEOUS EQUATIONS OF MAGNETOHYDRODYNAMICS 183

Let us also notice that (2.25) and (2.12) yield:

(231) dim%,(Ey,) = dile(El A _)+dim2’1(énl),
A=axj
where
QI(EI LN A ._) o {?El o _®AEN1}$ gl(ENJ L {?ENII@J'EN‘}'
g Y

As the cone C(7(Ey,)) is a line in the space T5# with a directional vector:
0,0, kg@xj,0,— 5-&xjj,jx @xj)), so dim%,(Ey,)=3.
Therefore dimQ, (£,

I-;x}) =9.

The Eqgs. (2.1) together with the condition (2.4b) gives us a system of algebraic equa-
tions defining nonhomogeneous simple entropic elements Ejy,:

YpA—jx H—0g+02xT =0,
(2.32) 7:4=0, h-2=0, Aixy,=0
Vo' A =4mko, Axh=4nj, Axe= —Ayh,
and the condition:
(2.33) j-@-82x%) =0.
When we solve the above system we obtain the following form of elements Ey,:
= 1 z
Ve
4mkp —

2

z
(2.34) VEy, = axy :

—4m _ -
7 xrxJ

hey, = (-%°5,D
where notation: ¥ = jx E+g(§ —Qx®) is introduced. The Kronecker-Capella condition:
(2.35) M, = {ueH:j -3 =0}

defines the subspace T9R, of vectors VEp,"

From (2.32) it follows that 7 is orthogonal to ¥ and is parallel to 7,. The cone of co-
vectors C(A(Ey,)) is a line in the four-dimensional space with a directional vector:
{“E “T E} .
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This line contains the zero of the space &*. It is inclined to the axis 4, at an angle ¢
such that:

Izl
tgq’ = ——%'—2 i

In the stationary case i.e. when ¥ - ¥ = 0 the angle ¢ becomes equal to zr/2. But when the

covector A doesn’t depend on the point of the physical space i.e. when ¥ = 0 then the
angle g is equal to zero. (2.34) shows the covector g, is a characteristic covector. Con-

sequently the vector VEy, Can be represented in the form:

0

- 8 1
4mkp _
Nz

(2.36) VEy, = VE,HVEy, = + 0

=|

:.Ez
—4n _ -
7 ™

The cone of tangent vectors C(y(Ey,)) is defined by the expression (2.36). Hence it is a
four-dimensional hyperplane in the fourteen-dimensional space T3¢ spanned by vectors:

ol x c1o0F

1,0,0,0,0,0),
0,0,0,2,%x7%,0,0),
0,0,0,2,x%,0,0),
(0,0,0,0,7%,0),

where ¢, are versors such that: (e, > =0, i =1,2. It can be easily checked that
Vg, ?snz) = 0. Therefore the hyperplane C(y(Ey,)) is shifted from the zero of the coor-

dinate system by the segment:

. dnko _ —A4nv- 7~ —4m _ T)'
= 1! = L] — ) = X
7y, | ‘( N |

The form of yz, given by (2.36) shows that the formulae (2.34) induces C*(A(Ey,)) as

well as C*(A(Ex,)) and C* (v (Ex,))
The dimension of the hyperplane %, (Ey,) = {7EN,® J'En,} generated by nonhomo-
geneous simple entropic elements Ey, is determined only by the elements of the form:

@37) Ver,®F-
It is so because expressions

ven, (=72} = —uf{yey, 1}
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are linearly dependent on (2.37). The term {—o:%} determines an inclination of the
linear subspace only. It can be easily shown that the dimension of the hyperplane
generated by the elements (2.34) is:

(2.38) dim &,(Ey,) = 5.

Let us mention that (2.34) and (2.12) yield:

dim &, (Ey,) = dile(El’I=£)+dim & (),
Wiz
where

Ql(El I=;®1£Nz}’ 'gl(E.-Nz) = {?ENJ'@AEN,'}'

2

) = {751

A=z
[ 179

As the cone C(p(Ey,)) is a line in the space 7 with a directional vector:

(0,1,4::?:92 5 —4nv- - —4m - _

=3 » Vy -iz Js =3 }Xx
so dim %, (Ey,) = 1. Therefore dile(E,‘I ) =4.
-
M2

2.5. The nonhomogeneous simple acoustic element Ay .

Including the condition (2.32) in Egs. (2.1) we obtain the following system of algebraic
equations defining nonhomogeneous simple acoustic elements Ay:

elAle VI7+ysA—jx H-o@—-2x7%) =0,
el Viyo+ey- 4 =0,
(2.39) elAl Y frs—fel AV Frp = 0,
AP, =0, 7, A =4nko,
Axh=4nj, Axeé=—Ah, h-A=0.
A solution of (2.39) yields the following form of elements Ay:

ko - _ 1 T
2.40 =9 Py — ’ 1 B ’
( ) Yay (7.0 I Uxf)zjx % b ]/f[}xﬂ =Sy, ixx),aixy+
da(e Vfljx7l-0-jx7) - 4n - - )
¥ T | JX X.f)

(Gx2)? 4 (jx7)? Y

My = VIjx T =0 JxT7% D,
where y,, a — arbitrary functions. We have introduced here a notation ¥: = {jx H+
+0(g—92xv)}. It follows from (2.39) that the covector 4 is parallel to the vector 7q- The
cone of covectors C(A(4y)) is a two-dimensional cone in the four-dimensional space.
An intersection of this cone with the hyperplane 1, = ¢|4| J/f—o - A = const gives us an
elipsoidal surface. When ¢ > 0 and - jx7 > 0 then a generator of the cone is inclined
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to the axis of the cone at the minimal angle. At the second hand when jx || then this
angle becomes maximal. As in the case of homogeneous acoustic elements A we have
here two kinds of cones: C(A(4x)) and C(A(4y)). They are related by: C(A(4})) n
n C(A(Ay)) = C(A(En,))- As before the covector A, is a characteristic covector. This
enables us to present the vector y,, in the form:

= 5 N
B - 0
e dmkp ~
fyﬂ Ux_)z ><x
0 X
QA1) yay =vatiay= eyf Yo Ve Jx z I 0 Vf1ix7l
¢ ljx3l an(e VT x T -5 x7) =
a]xx (JTX E)z J
0
B A 4z
————jX (jX7)
(Gx2)? 8

The cone of tangent vectors C(y(4%)) in T is described by conditions (2.40). We have
here also two kinds of cones C(y(4%)) and C(y(45)). They are related by:

hm {C(?(A )) N C(?(AN))} = C(‘)’(Ew,))

It follows from (2.41) that for the fixed 2 the cones C(y(4%)) are spanned by the vectors:
(158=MEE 55)

&0l jx %l
0,0,0,0,jx%,0)
‘Consequently they are two-dimensional hyperplanes fixed at the points:
(0 W 1 TP N8 4==(€l/f|'1><xlzv Py 4= jx(x7 j)
G eyilixa’ (x7) (%)

It can be easily checked that (y4, 74,> = 0. So the hyperplane C(y(4y)) is shifted from
the zero of the coordinate system by the segment:

o 4ﬂ:kg x 4n(e }/flfx =T-jx7)- 4n - -

I?4I=‘( = o o ==———=J% ([ % %)
" NGx x)’ "eo V/fix7l Gx7? (%2>

The form of y,, given by (2.41) shows that the formulae (2.40) induces C2(A(4y)) as well

as C*(A(4y)) and C'(y(4x)). The dimension of the hyperplane £;(Ax) generated by
nonhomogeneous elements (2.40) is

2.42) dim%,(4y) = 15.
Let us notice that (2.40) and (2.22) yields
dim%, (dy) = dile(A|I=fx;)+dim$1(ZN),
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where

0.(4; S®hy), Ly =

As the cone C(7(4y)) is a line in T:# with a directional vector:

( dako = o X An(eVflixH~jxD)s
0,0, ——— x: IFlivwT

(p«.‘)2 eoVflixzl’ (j x %)
so dim &, (4y) = 5. Hence dim Ql(AJ'I-FxE) = 10.

P )— {7,4‘1 T

A=jxyx

2.6. Nonhomogeneous simple magnetohydrodynamic element My

{;’An® AJN’} ¥

“ (;x‘)“’

Equations (2.1) together with the condition (2.4d) yield the following system of alge-

braic equations:

(2.43)

gé‘f+y,i—}x H+0o(2x3-8) =0

Vp0+oy 4 =0 Yp0—fOy, =0,
AxP, =0, J+A=4nko, 2Axh =4nj,
Axé=—Ah, h-2=0, j=o(E+oxH).

This system defines a nonhomogeneous simple magnetohydrodynamic element My.
This element My is of the form:

(244)

where

Z=JjxH+0@—-0x%), &= +1,

| % axj
8 —f(@ xj)?
—fE-axj
8% —f(@ x j)?

fake xxj, =
o I S N P L}
X j

S i -3
08 [" ¥ —fG x;)=”"]
ag X j+

?MN

457'10_‘:
Gxj?’

x )2(' xJ)%j |

_{# 0
~ | #elaxjlyYf.

It follows from (2.43) that the covector 2 is parallel to the vector 7,. From the expres-
sion (2.44) for the covector A we see that

C(A(My)) = 6*—(P  S)
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where P is a plane in &* generated by the vector (—%- ax, & %) and including the zero
of &* (see 2.3—Ey,); S —is a two-dimensional cone with an eliptical base. This cone is
generated by the vector (e }/f]jx 7| —%-jxF,jx7) in &*(see 2.4—Ay).
Thus C(A(My)) is an open set and consequently the simple element My is also an
open set in the space T5¢.
For the fixed covector 2 a cone of noncharacteristic vectors C(p(My)) is a line in 7#
with the directional vector (0,0, 0,0, x xj, 0). This line contains a point:
A 7 axj '
8 —faxj)
8 —f@ xj)*

4nkp P xf

@xj)*

(2.45)

= X j = ':}
A 4 —————aX
I, {x e e
4n o 7
@xj)?
—4n WT
— (& xj) %
Gy |
The nonhomogeneous simple element My is really a noncharacteristic element. It follows
from (2.44), (2.12) and (2.22). The form of given by (2.44) Shows that the formulae (2.45)
induces C'(A(My)) as well as C*(4(My)) and C'(y(My)). Thus there exists a one-to-one
correspondence between Au, and yuy, (A, = Yu,)- It can be shown that the dimension
of hyperplane £ ,(My) generated by elements y,® Ay, is equal:

(2.46) dim%, (My) = 16.

3. Topology of simple homogeneous and nonhomogeneous elements

In this chapter we are going to present relations between simple integral elements. The
knowledge of boundary translations between these elements is helpful in a construction of
some classes of solutions. They describe an interaction of simple waves and simple states
in terms of Riemann invariants. In fact, let us suppose for a moment that integrability
conditions imply the existence of boundary translations. Then one of the solutions degen-
erates to another one and there is no sense to look for any interactions, between them.
Topologically it means that the cones of simple elements in the space & x ¢ have a non-

empty intersection.

3.1. Relations between homogeneous simple elements

In our description of relations between homogeneous simple elements we will use
a theorem given in [16].
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THEOREM 1. Let o, f numerate simple elements. Suppose that some limitations on ele-
ments of the matrix A imply 8, — 83. Then under the same limitations the tensor space

Q,(®) is a tensor subspace of Q,(f).
Theorem 1 together with (2.22) and (2.12) yield corollary:

(3.1) A=0¢:f=0.
Proof. If f =0 then C(y(4)) are generated by vectors y =(9,,0,0,0,a 1,0)

and C(A(4)) by A = (—9- 4, A) respectively. Thus (3.3) yields the entropic elements E,
of the form:

(3.2) (%,,0,0,7,a4,0) ®(—7 1, A) where 7+ 4 = 0.
One can easily observe that
dile(A|f=n) =9 < dimQ,(E,) and Ql(Aif=o) < 0,(E))

So the acoustic elements become entropic when the velocity of the sound approaches zero.
Q.E.D.

3.2. Relations between nonhomogeneous simple elements

Let 0|4 be eigenvalues of nonhomogeneous simple elements. We have |4 = 0 for
entropic elements and 8|4| = &|4] J/f for acoustic ones respectively. Consequently covec-
tors A are characteristic. It follows from the form of nonhomogeneous simple entropic
elements Ey, and Ejy, that there is no boundary translation between them. In fact, the
component of Ey, in the direction y, is different from zero while the component of Ej;
vanishes. The second reason follows from the fact that the Kronecker-Capella condition
for the element Ey, doesn’t hold i.e. lim Ey, doesn’t exist. Therefore we have two com-

%0
plementary kinds of entropic elements in the case. Acoustic elements 4y don’t pass into
Ey, because the Kronecker-Capella condition ¥ = 0 doesn’t hold for the element Ay.
There is also no boundary translation between acoustic elements Ay and entropic ones
of the type Ey,. It follows from the fact that the condition f — 0 leads to y, = 0. Con-
sequently we get here a contradiciton with the form of the element Ey, (asy, # 0). There
is no boundary translation between simple elements My and other integral elements. In fact,
elements M, are noncharacteristic while other elements have characteristic covectors A.

3.3. Relations between simple homogeneous and nonhomogeneous elements

Boundary translations from simple homogeneous elements to nonhomogeneous ones
can be reduced to shifts of subspace Q,(a) on the noncharacteristic vector p,. The shift
operator can be defined as follows:

(33) P A"QR* - R"®A*such that N\ Pa(e®7) = (e+20)®7 € R"®R*

eQred"' @
We shall consider a field of homogeneous simple elements on submanifolds determined
by the Kronecker-Capella condition in the hodograph space. We shall denote it as follows:

(€X)) 0:(@lm: = {yW@A(u) € Q;(x):u € M A y(u) € T, M}
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Boundary translations from simple homogeneous elements to nonhomogeneous elements
are possible in the following cases:

Py, (MmO, (EDln,) = 21 (Ex),

A—sax j

P;gNz(]ij_l.(_El)lmz) = Z,(Ey,),

A=y
75, (imQ,() = 2,(4n),
=] Xy

PFEN (]im_Qt_(Alim) = Z,(Ey,).
: A—o % j
=0

There is no boundary translation between simple elements 4 and Ey, as well as between
E, and Ay. Obviously there is no translation from simple homogeneous elements to non-
homogeneous elements My. It is so because My are noncharacteristic.

Therefore relations between simple elements can be described in a form of the diagram:

e
E
N TN
At Ey = EN2

\M;‘/

— denotes boundary translation, +—j#—= denotes absence of boundary translation.

(3.5)

4. Classification of the basic equations of magnetohydrodynamics

We are going to deal with a classification of the basic equations from the point of view
of simple integral elements. The principles of this classification were presented in the works
[6, 7, 10]. This classification applied to the homogeneous part of Egs. (2.5) gives us an in-
formation about hyperbolicity of the basic system as well as about the wave or non-wave
character of solutions. When we know the type of the nonhomogeneous system we can
decide if simple integral elements span the whole space of integral elements (this means
simple elements give us the whole set of solutions).

4.1. The space Q,
From the preceding algebraic analysis of the basic system (2.1) it follows that the
characteristic polynomial (2.6) has three different eigenvalues:
ég = 0 with the multiplicity four,
@1 dat = +1AVS
ba— = -1V f
Those eigenvalues correspond to eigenvectors which generate a six-dimensional space.
Hence they do not span the whole hodograph space #'4. In other words — this system
is not quite hyperbolic. Let O, be a tensor space generated by all homogeneous simple
elements. Its dimension is determined only by the expression:

4.2) (Ve 74} ® X = Q.

I

with the multiplicity two.

Il
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Indeed, the space spanned by tensors:

4.3) {?E; ® ZOE;: Y4 ® AOA} =2
is linearly dependent to the space Q,(# < Q,). It follows from (4.2) that
4.4 dimQ, = 21.

Dimension of the space & (x,, u,) of homogeneous integral elements is equal
4.5) dimXt (x,, ug) = 42.

This proves our previous conclusion. The system (1.1) has integral elements which are not
linear combinations of homogeneous simple elements. That means (1.1) is a mixed type
system.

4.2, The hyperplane &,

Dimension of the hyperplane %, generated by all nonhomogeneous simple elements
is equal

(4.6) dim2, =dim{u'ye, ® Apy +u’yey @ Agy +4Vay ® Auytuyuy ® Auyl}s

4
where D u® = 1.
s=1
This dimension is determined by a linear space generated by tensors:
@7 a{(1— @+ +u"))rvky, ® Ay +u*Vey ® My +uPViy ® Moy +ptyhey ® ey}

where coefficients ', i = 1, 2, 3 are arbitrary. If we put successively 4’ = 1 for i = j and
#=0foris# j(j=1,2,3)in (4.2) then we get a system of equations:

@8) @ Vey, ® Moy, = 0> ayViy, ® Ay, =0
' Yy @ Moy =0, ayyiey ® Mgy =0

Thus the dimension of the hyperplane %, (x,, 4,) generated by nonhomogeneous simple
elements for the system (2.1) is equal:

4.9) dim.#, = 37.

Dimension of the hyperplane #(x,,u,) of nonhomogeneous integral elements is
dim & = dimx" = 42. Thus the system (2.1) has integral elements which are not linear
combinations of nonhomogeneous simple integral elements. In other words nonhomoge-
neous simple elements do not span the whole space of integral elements. So the system is
not of the type %, .

Finally it is worthwile to consider a structure of the hyperplane %, . It contains two
disconnected hyperplanes

(4.10) [Z1(En) v L1(En,) 0 Z1(AN)] 0 L1 (My) = 0.

Of course it is related to the fact that the nonhomogeneous simple entropic elements Ey,,
Ey, and acoustic Ay correspond to characteristic surfaces, while the complementary
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nonhomogeneous simple element My is noncharacteristic. Using (4.10) it is easy to com-
pute the dimension of the hyperplane generated by nonhomogeneous simple elements which
have characteristic covectors 4;

@411)  dim{Z,(Ey)U Z1(Ex,) U Z1(4y) } = dim &, © dimZ,(My) = 19.

Solutions constructed from elements of this hyperplane will be contained in the area of
hyperbolicity(?) of the nonhomogeneous system (2.1) while the solution constructed from
elements My will be contained within the ellipticity area.

5. Examples of solutions — simple states

Now, we shall present the simplest solutions of the basic equation system (1.1). These
solutions are induced in some way by nonhomogeneous simple elements Ey, Ay, My.
The method we use here was also presented in [6, 7]. According to the terminology intro-
duced there the simplest solutions of the nonhomogeneous system will be called simple
states. Let us recall that solutions of a homogeneous system are called simple waves and
they correspond to waves in the physical sense. However simple states don’t describe wave
phenomena sometimes. It happens when covector A corresponding to a nonhomogeneous
simple element is noncharacteristic one. The covector A can be treated as an analogue of
a wave vector (o, k) determining the velocity and direction of state propagation in the
case of a simple wave. Our involutivity conditions yield that covectors 4 are independent

N
i >

AN

Fig. 1. The examples of the flow of the fluid described by simple states.

(*) According to J. HADAMARD [8] -characteristic surface is a surface on which the characteristic
determinant of the system vanishes. The elipticity area is the complement of the characteristic surface.
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from the Riemann invariant. Therefore they have a constant direction in the physical
space. When those conditions are satisfied we can present our solution in the form u =
= u(s), where s is a Riemann invariant: s = 4,x* = ¢,#+4- X (here 4 is a direction
of the state propagation). This implies the-principal properties of simple states. They are
one-dimensional solutions in the physical space &2 which are constant on a family of pa-
rallel planes. They can propagate with a constant velocity (v = Ao/[2] = const = ¢,)
in the direction perpendicular to them. Those solutions are functions of the class C* and
they describe flows of the laminar type. Examples are illustrated on the Fig. la-c. In
many cases a profile of the state is not uniquely determined by the obtained solution. There
exists here some arbitrareness connected with a freedom of choice of some functions and
constants. The above remarks concern all simple states. The more detailed properties
of them will be discussed later.

5.1. Simple entropic states Ey

There exist two nonhomogeneous simple entropic elements Ey,, Ey.. So if integrability
conditions [6] are satisfied we obtain two kinds of entropic simple states. The entropic
state Ey, corresponding to the simple element (2.25) is of the form:

S . : ;—.:, = '., g = A_ §,
0 =G Pomcomt B =04
— 1 fz,x4 - ms @k oo o
(5.1) o(s) = — i +k}—c1A, E(s) = = A+ciA+kx A,
H(s) = @(s)x A+c, A j(s) = :“
where

|4l =1,e =‘E+clﬁxi+ciﬁxi}, R-4#0,, k-A=0,
2

- - o —~ —dnac,
B-A=0,a(8)4=0,p=—-, = 1,
a(s) n 5. 3 e=+
fcosgo(s)ds
a(s) = e-LJe| | [ sing(s)ds
. 0
_ (@)%, x4 4 1 [= - —__E_,-Q)
E(S) = 87‘0’0%&;’,' 5 % ka A —4?!6 .

The function ¢(s) is described by the differential — integral equation:

0

(5.2) _dmoke} @, | 1 %wW @ ﬁ-‘i(é-a,.xjci‘).. -

QA e-a,xA ¢ 4no 8nrocs €-a, 7

13 Arch. Mech. Stos. nr 1/75
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The simple state Ey, differs from the state Ey  in the expressions for the pressure p(s) and
in a function &(s):

p(s) = s+po,
(5.3) 5. 735.= v 4 2 e D
B 2 A E A 1+(E’-’)-i(gxk-,4-“°* “Q)
gc; €, 8n c; 4no

Moreover — unlike for the state Ey, — we do not have here any restriction on the func-
tion @(s) which is an arbitrary one.

Let us notice that solutions are not defined when 2+ 4 = 0. This excludes the direc-
tion of propagation of the state Ey perpendicular to the direction £. The most char-
acteristic properties of entropic states Ey are connected with the Kronecker-Capella con-
dition (2.4ab). In this case the condition (2.4ab) is equivalent to the fact that the opera-
tor d/dt vanishes everywhere. It means that the particular physical quantities are changing
in the moving fluid element and consequently that the planes of constancy of the solution
are stationary relative to the medium. Thus the state propagates together with the fluid
and not relatively to it. The second important consequence of the condition (2.4ab) is that
in the Euler equation (1.1) the inertion forces are equal to zero. Thus the forces acting on
the fluid element are in balance. Hence we get the fluid elements move without accelera-
tions in the case of entropic simple states. The momentum of the system is conserved:

LI N EP R
(5.4) 7 (9@+le=(2pé+gv®v)+—2n(2 H*0-H®H | = 0.

Observe the expression for the tensor of the magnetohydrodynamics momentum stream
differs in this case from the tensor of the momentum stream in the equation (5.4) in
expressions:

I 1S o oo
Vp+a~(—f VH -—(HV)H).

From the condition d/dt = 0 it follows directly that the circulation of the velocity along
the closed fluid contour stays unchanged in time (hence the Kelvin theorem is identicaly
satisfied in our case). From rot ©(s)# 0 it follows that the solution (5.1) allows the vortex
of the fluid. We have div ©(s) = 0 for each entropic state. It means that the considerated
fluid is noncompressionable in spite of the density changes from point to point. In other
words the density distribution is arbitrary but constant in a given fluid element.

The magnetic force Fy acting here on the fluid element will be of the form:

M=\ 2

The first term in the expression (5.5) affects perpendicularly the fluid element

(.5) ;W {—@"—chza,,x,i}.

2
(as it is of the form (VLHE— —(HV) H,)) . Hence it can only compress or stretch the fluid.

It gives a contribution to the pressure. The second term(which is of the form: (H,V)H;
i # j) yields that the fluid element is under the action of torsion forces. They crook its tra-
jectory. However it is possible to conserve the constant direction A of disturbance propa-
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gation in the physical space. In fact, it follows from our earlier considerations that the
Coriolis force compensates the torsional contribution of the magnetic force.

It follows from the expression (5.1) that the oscillation planes of the magnetic field H
and electric field E are orthogonal. So the entropic states Ey have a character similar to
that of plane waves in electrodynamics.

From (5.1) we can deduce that the currents }"are always contained in the plane of con-

stancy of the solution (i.e. they are perpendicular to 4). Moreover the length of the vector ||
is a constant one. Consequently we have the constant dissipation for Joule heat in our
system:
-132 . (&.3)2
(5-6) M T
The heat transport equation (1.5) together with (5.6) yield the determination of the tempe-
rature distribution form in the concerned area:

T = Ax*+(24Ac t+D,)x+c (Ac,t*+ D, 1)+ D,
where A, D, D, are arbitrary constants.
Using the known thermodynamical relations it is easy to check that in the case of Ey

states the entropy is a function (arbitrary) of the temperature only: S = S(T). The internal
energy and enthalpy for the state Ey, is of the form:

= const.

(5.7) U=S(T)-T= as -{;P.
oH RN
T =~ T

so that H = H(T)— enthalpy depends on the temperature only. In the case of the state Ey,
we have respectively:

U = S(T)- T—-+fp do+U,,
(5.8)

H =S(T)—T——+fdp

If we substitute the expression (5.8) into the equation of energy conservation (1.4)
then we See that the gravitation doesn’t influence the fluid movement. However the density
change implies the movement causes the changes of the gravitational field.

We shall show now the relations between hydrodynamic and electordynamic pheno-
mena. The following relation on the kinetic energy can be deduced from (1.1):

(5.9) ik 0 E) = -div{gf_f—i}——ﬁ- Vp+9- {Fy+F,+F.}
ot \* 2 2 s
where

Fy =jxH, F, =0z, F.=—p0xv.
Consequently the change of the kinetic energy of the fluid in a given volume is caused
by the work done by the pressure forces and the sum of the forces: magnetic Fy,, gravita-

13*
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tional F, and Coriolis F, and of course by the energy outflow from the area under consid-

eration. In the case of entropic states Ey the kinetic energy is conserved. In fact: Vp,

Fu, F,, F, are compensated. However no dissipative effect occurs. Only the kinetic energy

stream influences the change of the kinetic energy in the investigated fluid element.
The change of magnetic energy in time can be expressed as follows:

(5.10) i(—’f) - cradiy (ExH}—0"Y2—v-jx H.
ot \ 8n 4x

The first term describes the energy stream (i.e. the Poynting vector). The second term
describes the velocity of magnetic energy changes into the Joule heat and the third term —
work of the medium against magnetic field forces. When we substitute (5.1) into (5.10)
we get that the changes of electromagnetic energy are dependent on kinetic phenomena.
Consequently it follows that the fluid movement influences the change of the magnetic
field. However electromagnetic phenomena do not influence kinetic phenomena.

5.2. Simple acoustic state Ay

The simple acoustic state Ay corresponding to simple elements (2.24) is of the form:
0o =const, P, =fo,, g =(cs+D)A,

5.11 _ = A = _ = omg
1D o(s) =54, +A;, E(s) =sB,+B,, H@p) =sexA+c,A, j=

where
|4 =1, B,A=0, A4,-4=0, & A=0.

This state differs from the previously described ones first of all in the fact that the planes
of the constancy of the solutions dislocate relatively to the medium with the constant ve-
locity of sound.

Moreover the direction of the state A4 propagation is distinguished in the space &.

In fact, it has to be orthogonal to @ as well as to the sum of magnetic and Coriolis forces.
It is a characetristic fact for the acoustic state Ay that the density g,, pressure p, and

current j remain constant. The solution allows also a fluid vortex (rot (s) # 0). However
the velocity circulation along an arbitrary closed contour is not conserved. The magnetic
force acting on medium is of the form (5.5) — just as in the previously described case.
The contribution causing the torsion of the fluid element is compensated by the inertion
and the Coriolis forces (this yields the constant direction of state propagation is conserved).
Directions of the magnetic and the electric field are orthogonal like in the case of entro-
pic states. We have g, = const, p, = const, consequently entropy is only the temperature
function: S = S(T). Likewise in entropic states dissipation for the Joule heat is

constant (j = const.) Therefore the heat transport equation is of the form:

as oT

Qorﬁw = xAT-i-mnSt.

(5.12)
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The temperature distribution in the investigated area depends on the adopted model of
entropy changes. It can be easily checked that the internal energy and enthalpy of the
acoustic state depend on the temperature only.

.13) U=ng +U,, H= fin-—+H0

When we substitute (5.13a, 5.13b) into the energy conservation equation (1.4) then we get
that the gravitation influences the fluid movement but there is no inverse influence. When
we substitute (5.11) in the expression on the kinetic energy change we can easily see the
changes of the magnetic field influence the quantity of kinetic energy changes (an expres-
sion 7 - Fy, # 0 is the coupling term here). Moreover an analysis of the expression on the
magnetic energy change (5.10) for the case Ay shows that this change is influenced by
kinetic phenomena (the coupling term: ¥ - jx H # 0). So we have here a feedback of ki-
netic and magnetic phenomena.

5.3. Simple magnetohydrodynamic state My

The simple state My corresponding to the simple elements (2.40) is of the form:

_ Qo — fo
= %nks * P = dmks TPo

2(s) = é(s)4+B,

st Ll o T o o :
‘I)(S) =-(-:-2-{(st4‘1— ma,,xz“_k} +(6—€1)A,
(5.14)

E(s) = = { 43550* E,,}-Ex AA+ca+kxA,
H(s) = a(s)x A+c, A, j(s) ==
where

|4l =1, B-A=0, k-A4=0,

z o . 0O — - - .
E(s) = {905.s+k( 2) +f(%3) }+-‘—=°"= Q—é&'-Q—ka-A}
with conditions '
(5.15) 0< |8 <yf or |[8>)f satisfied.

Moreover we have a system of three equations with respect to three functions:

(5.16) {-g;-(é,,gu+k(_)")+fo( )} ——w‘ém Q+Qxk-A+ E%f}=%’,

& {5& xA+a,axA-.ﬁ‘i} - {kc,a,xj
C3 4ng ’

Q. :a", —(6—cl)ng_]}.

"3’[ —(69 Aa—(Oxk-Qxk- A4) -

This is an involutive system (hence it has solutions).



198 A. GRUNDLAND

Likewise in the case of the acoustic state Ay the planes of constancy of the solutions
propagate relatively to the medium. It is characteristic however that their propagation
velocity is strictly determined and according to the function d(s) it can have various sub
or supersonic values (5.15). The direction A of propagation of the state My is orthogonal
to the current j. Fluid vortexes are possible. The velocity circulation on the closed contour
is not conserved here. The magnetic field has a form similar to one in the case of entropic
and acoustic states. Its torsioning action is compensated by the inertion and Coriolis for-
ces. As before entropy is only a temperature function so the equation of the heat transport
is of the form:

oS oT

-172 _
(5.17 TﬁT n +xAT+0712 =0,

The internal energy and enthalpy are expressed as follows:

U = S(T)- :ra +flno+U,,
(5.18)
as
H = S(I)~T-22 +fing + H,.

If we substitute (5.18a, 5.18b) in the Eq. (1.4) we get that the fluid movement influences
changes of the gravitational field as well as the gravitational field influences the change
of fluid velocity. An analysis of the expression on kinetic and magnetic energy changes
shows that the kinetic and magnetic phenomena are mutually coupled. Expressions
Fy-9#0,9-jxH # 0 are the coupling term here.

Let us notice that the propagation velocity of the state is equal to group velocity for
entropic states Ey and acoustic states Ay:

5.19) v =20

; p S
\ ¥
Hence we have no dispersion phenomena here. On the other hand the magnetohydrody-
namic state My has a noncountable velocity spectrum 4 (5.15.). This yields v, # v,,. There-
fore we have dispersion medium here.

[t—"gr] = fvilo]

6. Final remarks

Finally let us notice that particular states differ at least in one vector coordinate.
In fact, it follows from the correspondence between the covector 4 and the wave vector
(c1, A). Consequently, when various states propagate in the medium in the same direction
then their velocities differ. On the other hand when they propagate with the same velocity
then the directions are different.

The simple states we have just described form a basis for searching for wider classes
of solutions of M.H.D. equations. These solutions are nonlinear superposition of simple
waves and simple states. An interaction of this type can be of interest from the physical
point of view thus they will be an object of consideration in our subsequent papers.
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