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Algebraic properties of nonhomogeneous equations of magnetohydro
dynamics in the presence of gravitational and Coriolis forces. 
Examples of solutions -simple states 

A. GRUNDLAND (WARSZAWA) 

THE PURPOSE of this paper is an algebraic analysis of M.H.D. equations and a physical inter
pretation of some classes of solutions called simple states. An algebraisation of M.H.D. equa
tions according to [6] is made. All considerations are made at a fixed point of a hodograph 
space. Simple homogeneous and nonhomogeneous elements being the tangent mapping of 
simple waves (for a basical homogeneous system) and simple states (for a nonhomogeneous 
system) respectively were found. Then algebraic properties of simple homogeneous and nonho
mogeneous elements are analysed. On this base, the dimension of a tensor space generated by 
simple elements is determiaed. It allows to classify the type of M.H.D. equations. At the end 
of the paper a physical interpretation of solutions is made. 

Celem niniejszej pracy jest algebraiczna analiza r6wnan M.H.D. a nast~pnie int.erpretacja fi
zyczna pewnych klas rozwi'lZan, zwanych stanami prostymi. Dokonuje si~ algebraizacji r6wnan 
M.H.D. zgodnie z praat [6]. Wszystkie rozwaiania Sil przeprowadzane w ustalonym punkcie 
przestrzeni hodografu. Poszukuje si~ element6w prostych jednorodnych i niejednorodnych, 
~dilcych odwzorowaniami stycznymi odpowiednio- fal prostych (dla wyj§ciowego ukladu 
jednorodnego) i stan6w prostych (dla ukladu niejednorodnego). Z kolei analizuje si~ wlasnoSci 
algebraiczne element6w prostych jednorodnych i niejednorodnych. Na tej poddstawie wyzna
cza si~ wymiar przestrzeni tensorowej generowanej przez obliczone elementy proste, eo pozwala 
sklasyfikowac typ r6wnan M.H.D. Na koniec dokonuje si~ pewnej ana.lizy fizycznej otrzy
manych rozwi~n. 

Uemo 3TOH pa6oT&I HBJUieTCH anre6pllHllecKHii aHaJIH3 ypaaHeHHii MarHeTO~po,llHHaMHKH 
a 3aTeM $H3HtleCKaH HHTepnpeTa!lHH HeKOTOpbiX KJiacc pemeHHii - TaK Ha3&IaaeMbiX npOCTbiX 
COCTOmmH. llpOH3BO,lUITCH anre6paH~ ypaBHeHHH M.r.~. COrJiaCHO pa6oTe (6]. Bee pac
cy~eHHH npOBO~CH B $HKCHpOBaHHOH TOl.IKe npocrpaHCTBa ro~orpa$a. 11cCJie~yeTCH 
UpOCTbie O~OpO.ZVU,Ie H HeO~OpO~ble 3JieMeHTbi, HBJimO~HeCH KacaTe.JlbHbiMH OTOOpa
>HeHHHMH COO'tBeTCTBeHHo-npoCTbiX BOJIH ~JUI HCXO~OH O~OpOAHOH CHCTeMbl) H npOCTbiX 
COCTOmmH (~ HeO~OpO~OH CHCTeMbi). 3aTeM aHa.JIH3HpyeTCH anre6pllHlleCKHe CBOHCTBa 
npoCTbiX o]:(Hopo.zvn,IX H Heo~opo.zvn,IX 3JieMeHTOB. Ha 3TOH ocHoae onpe~eJUieTCH pa3Mep 
TeHCOpHOro npoCTpaHCTBa, teHepHpOBaHHOrO BbJ:liHCJieHHbiiDI npOCTbiMH 3JieMeHTaMH, liTO 
no3BaJUieT npoH3BeCTH KJiaccu<l>uKaumo ypaaHemrli M.r.~. Ha KOHeq npoao~cH mKoTOpbiH 
$H3HllecKun aHa.JIH3 nony'tleHHbiX pemeHHH. 

Notations 

8 physical space, 
.Yf' hodograph space, 
:IC vector space of solutions of the homogeneous system, 
!l' hyperplane of solutions of the nonhomogeneous system, 
Q linear subspace, 
u coordinates of .Yf', 
y characteristic vector from .Yt', 

y, y noncharacteiistic vector from .Yf', 
N· 
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X = (/, x) COOrdinates Of tf 
). characteristic covector from 8•, 
A. noncharacteristic covector from 8•, 

N 

R,s Riemann invariants, 
~ = Oo+vi) velocity of wave and state regard to a moving media, 

e density of fluid, 
p pressure of fluid, 
v velocity of fluid, 
g gravitation field, 
E electric field, 
ii magnetic field, 
; electric current, 
q electrical charge density, 
G electrical conductivity, 
q; gravitational potential, 
k gravitational constant, 
ti angular velocity of fluid, 
A direction of propagation of the state. 

1. Basical equations 

A. GRUNDLAND 

IN THIS paper we will deal with an analysis of nonhomogeneous equations of magneto
hydrodynamics from the point of view of a generalised Riemmann invariants method 
described in papers [1-7, 10-14]. After an algebraisation of those equations (Sec. 2) we 
will consider whether they admit existence of Riemann invariants. Then we will con
struct the simplest solutions i.e. simple states (Sec. 5). 

We will consider the classical equations of magnetohydr.odynamics describing a mo
vement of a fluid conducting medium and placed in a magnetic field in a presence of gra
vitational and Coriolis forces. We take into account a one;.component nonviscous fluid 
having a finite electrical and thermal conductivity. Under the above assumptions the in
vestigated equations form a quasi-linear system. In the noninertial system they are of the 
form: 

ej -~ +(VV)V}+ Vp = ]xii+lK-2eWxV, 

!.g_ + div (nv) = 0 dp -f de = o 
at ~ ' dt dt ' 

(1.1) L1<p =t4nke, where g = - V<p, 

rot H = 4nj, where I= (](E+vxii), 
- aii - -

rot E = -- div H = 0 div E = 4nq, 
at ' 

where the following notations have been introduced: e - density of fluid, p - pressure 
of the fluid, g- gravitational field, v - velocity of the fluid, E- electric field, · ii- mag
netic field, j .=_ density of the electric current, <p - gravitational potential, w - angular 
velocity of the fluid, q- electrical charge density, (]-electrical conductivity, k- gra-
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a a 
vitational constant. A substantial derivative will be denoted dt = at + (VV). 

In order to get (1.1) we have coupled together: 
electrodynamical equations, 
gravitational field equations, 

175 

and hydrodynamical equations with the presence of gravitational and Coriolis forces. 
We reduce the Poisson equation (1.1d) to the first order equations: 

(1.2) rotg = 0, div g = 4nke 

to be able to apply the Riemann method [6, 7]. Consequently we obtain a system of 14 
equations of the first order with respect to 14 unknown functions. The Eq. (1.1g) is a con
sequence of Eqs. (1,1e, f) and the Eq. (1.1h) will be treated as an additional condition 
for the distribution of the electrical charge density. 

Following conservation laws correspond to (1.1): 
the energy conservation law: 

(1.3) ! {e( v2~ +u} + ! } +div{efi(v; + w} + ;,. E 0 if-,.vr} = eV·C 

the momentum conservation law: 

(1.4) ;
1 

(eil)+div{(pd+eV 0 V)+ 4~ ( ~ Jii>-ii 0 ii)} = e(i-D x V). 

Under our assumptions the heat transport equation is of the form: 

{
as } . (rotii)2 

(1.5) eT at+ (VV)S = d1v(;eVT)+ 
16

n 2a , 

where S, U, Ware entropy, internal energy and enthalpy of the fluid mass unit respectively 
and ;e is thermal conductivity. 

2. Algebraic properties of nonhomogeneous M.H.D. equations 

2.1. Simple elements 

Basing on literature [1-7, 10--14] concerning the method of Riemann invariants 
applied to differential equations we accept the following notations. A physical (Euclidean) 
space tff = 9f4 is a classical spacetime. Each point of tff has coordinates (t, x). The space 
of unknown functions i.e. the hodograph space is denoted by Jt7 c 9f14

• Each point of Jt7 
has coordinates (e, p, g, v, E, ii). Points of the dual space 8* we call covectors and use 
for them a symbol A = (.A0 , l), where: I e 9f3 • Points of the tangent space TJI' are called 
vectors and they are denoted as y = (yp, f'p, y9, y, e, h) where:(!~ yP, p ~ f'p, g ~ y9 
V ~ y' E ~ e, jj ~ h. Simple elements for nonhomogeneous equations of magnetohydro
dynamics (1.1) are defined by algebraic equations. These equations are of the form: 

(2.1) 

e~lilr+rpi =}xii+eg-e!Jxv, 
rp~fll+er·1 = o, rp~lil-/rpt51Il = o, 
1xy9 = 0, 

fxh = 4n[, 

y9 ·1 = 4nke, 

Ixe = -.A0 h-, h·f =0, 
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176 A. GR.UNDLAND 

where the followoing notations are introduced Q: = 2w and 

(2.2) 

The function t5fll has a physical meaning. It describes the (group) velocity of a distur
bance propagation relative to the fluid. 

When we use a language of simple elements then the conservation laws correspond
ing to (2.1) and the equation of heat transport are as folJows: 

(2.3) ~lii { ~· r,+eV·r} + Ao{ur,+eu+ :: }+v ·1{wr,+ew} +eji · i { v; + w} 
1-- --- - -+ 
4
n {H· ).xe-E· ).xh}-xy".;, =rig· v+j2

G-
1

, 

- - - 1 - -- - -- -
t51J.I {vrp+er} + ypJ.+er · J.v + 

4
n (H ·hi.-H· )Jz) = e(g-D x v), 

eTt5fll i's = "Yt. I+ p(]-l' I X Yr = 0. 

where: 

The system of Eqs. (2.1) for the nonstationary case is a system of 15 equations. For the 
stationary case it is a system of 16 equations as one has to consider in addition the Eq. 
(2.1h). This e.quation in the former case was a linearly dependent one. In both cases (2.1) 
is a system with 14 unknown functions. It is an algebraic system of linear nonhomogeneous 
equations with respect. to a vector y. According to the Kronecker-Capella theorem a non
zero solution y of (2.1) exists if and only if the following equations are satisfied: 

3 EN 
1 

= 31 I1 = 0 -en tropic velocity and the condition: J x H + e(i- .Q x v) = 0, 

y, = 0. 

t5EN
2 

= t51Il = 0- entropic velocity and the condition: J· (g-iJ x v) = 0, 

(2.4) y, =I= 0, 

t5AN = dill =ell! Yf- acoustic velocity, where e = ± 1, 

- {=I= 0 
t5MN = 611.1 = =I= eiXI v7- sub-supersonic velocities. 

According to (2.2) the Eqs. (2.4a) and (2.4b) define nonhomogeneous entropic elements. 
These elements correspond to the simple entropic states EN, and EN

1 
respectively. The 

Eq. (2.4c) determines a nonhomogeneous acoustic element which corresponds to the simple 
acoustic state AN. The Eq. (2.4d) defines a nonhomogeneous magneto hydrodynamic 
element MN. From the definition (2.2) it follows that the velocity of the entropic state EN 
relatively to the fluid is equal to zero. This state propagates together with the fluid and 
not relatively to it. The velocity of the propagation of the acoustic state AN relatively to the 
medium is equal to the sound velocity: vl =V dpfde. But the magnetohydrodynamical 
state MN can propagate relatively to the medium with any speed except for the entropic 
velocities t5EN = 0 and the acoustic velocities t5AN =ell! vl The conditions (2.4) determine 
submanifolds in the hodograph space such that cones of nonhomogeneous simple ele-
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ALGEBRAIC PROPERTIES OF NONHOMOGENEOUS EQUATIONS OF MAGNETOHYDRODYNAMICS 177 

ments are defined on them. Vectors y are elements of subspaces tangent to those subma
N 

nifolds. 
In the further course of our considerations we will deal with an analysis of the homo

geneous system (2.1). We shall determine homogeneous simple elements which will enable 
us later to construct some general classes of solutions. These solutions will be non-'linear 
superpositions of simple waves with the simple states [6, 7]. An analysis of the homoge
neous system will also allow us to classify the type of the basic nonhomogeneous system. 
That will be discussed in the Sec. 4. 

The homogeneous system (2.1) has zero solutions with respect to h, y,. Hence it can 
be reduced to the following system: 

(2.5) 

e~llrr+ iyp = 0, 

,p~lll +er ·'1 = o, 
YP~Ill-fyp~fil = 0, 

ex I= o. 
Because of an elliptical character of the homogeneous Poisson equations the gravita

tional force is treated here as a nonconservative force. It is a formal procedure enforced 
by the Riemann invariants method applied here (we recall that the Laplace equation has 
no simple elements). The case of the magnetic field his quite analogous. The system (2.5) 
is a system of 8 equations with 8 unknown functions. It is a linear homogeneous system 
with respect to the vector y. Consequently the nonzero solution y exists if and only if the 
characteristic determinant of the system vanishes: 

- - -
(2.6) b41AI4(b21A.I2-J.P) = 0. 

The Eq. (2.6) has two kinds of solutions for the function ~111. They are: 

~E = biAI = 0- entropic velocity, 
(2.7) 

bA = biAI = elll tiT-:- acoustic velocity. 

The Eq. (2.7a) defines homogeneous entropic elements which correspond to the simple 
entropic waves E. The Eq. (2.7b) determines homogeneous acoustic elements correspond
ing in turn to the simple acoustic waves A. 

It is worthwhile to remark that the homogeneous equations (2.6) written in the language 
of simple elements don't allow the Alfven waves which ean be observed experimentally. 
It is known that the Alfven waves correspond to integral elements of the higher order [9]. 
More detailed physical interpretation of velocities, simple states and simple waves will 
be given in the Sec. 5. 

Simple homogeneous and nonhomogeneous elements will be presented explicite in the 
following paragraphs of the Sec. 2. Afterwards their properties and relations between them 
will be described. Finally a classification of the equations (2.1) based on an analysis of 
these elements will be given. 

Some denotations and definitions useful for further considerations will be introduced. 
Simple elements will be denoted as follows: y® A. for the homogeneous system and y® A. 

N N 
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178 A. GRUNDLAND 

for the nonhomogeneous system. Let C(y(u)) denote a cone of vectors from the hodograph 

space fixed in a point u0 = (e, p, g, v, E, ii) e ~. A bundle of cones will be introduced 
as follows: 

(2.8) C(y) = (C(y), n, ~) where C(y) = U C(y(u)) and :n: :C(y) ~ Jt7 
ue .K 

A bundle of cones of covectors C(A(u)) c 8* can be introduced similarly 

(2.9) C(A) = (C(A), n, Jt7) where C(A) = U C(A(u)) and ii: C(A) ~ £ 
ue If' 

We will use different kinds of cones C (a) as IX will vary over E, A, EN
1

, ... etc. Ck(y(u)) 
is a map assigning to each vector y e C(y(u)) a system of k linearly independent covectors 
A e C(A(u)). Similarly, CP(A(u)) is a map assigning to each covector A e C(A(u)) a sys
tem of p linearly independent vectors ye C(y(u) ). By Q1 we will denote the linear space 
generated by all homogeneous simple elements i.e. Q1 = {yk®il.k} and by !l' 1 we will 
denote the hyperplane spanned by nonhomogeneous simple elements of the form: 

m m 

(2.10) !l'1 = I; ft
5
Ys ® ;ts where: 

s=l N N 
~ fts = 1 
S=l 

Q 1 (a) and !l' 1 (IX) will denote the space and hyperplane respectively generated by simple 
elements of the type a( e.g., E, A, EN and so on). 

Simple elements correspond to the previously introduced velocities (Eqs. (2.4), (2.7)). 
Those elements can be obtained from Eqs. (2.1) or from (2.5). All considerations con
cerning the simple elements will be made in a fixed point of the hodograph space i.e. for 
fixed uo = (e, p, g, v, E, H). 

2.2. The homogeneous entropic elements E 

We obtain the following system of algebraic equations which defines simple homoge
neous elements corresponding to entropic velocities E using the condition (2.7a) in the 
equations {2.5): 

(2.11) Ye- arbitrary function, f'p = 0, :y, = 0, y. I= 0, ex i = '0, h = 0. 

Solving the above system we obtain three kinds of solutions: 

(2.12) YE 1 =(ye, 0, 0, y, e, 0), ii.Ei = ( -v · ~' i), 
where y · i = 0, eX i = 0, 

(2.13) YE2 = (y", 0, 0, y, 0, 0), i = 1, 2 

(2.14) 

Thus on the basis of (2.12) we confirm that the covector it is a vector lying in the plane 
perpendicular to the vector r and parallel to the vector e. It follows additionally from 
the expression (2.12) that the cone of the covectors C(il.{£1)) is generated by the vector 
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ALGEBRAIC PROPERTIES OF NONHOMOGENEOUS EQUATIONS OF MAGNETOHYDRODYNAMICS 179 

(-v · I, · .f) and is a three-dimensional hyperplane including the zero of the space 4*. 
This hyperplane is inclined to the axis Ao at an angle ffJ such that: 

COS<p =-V l~V2 
and it crosses the plane A0 = 0 along the line perpendicular to the vector v. It follows 
from above considerations that if v2 decreases, then the cone C(A(E1)) defiectes from the 
axis Ao and if v2 increases- then the obtuseness of the cone decreases. 

The cone of the characteristic vectors C{y(E1}) from the space T£? is determined by 
conditions: 

(2.15) y(!- arbitrary function, YP = 0, y, = 0, y = p X I, e = (Xi, h = 0 

where p- arbitrary vector, (X'-- arbitrary function. 
Characteristic vectors from the space T£? for the homogeneous system (2.5) have not 

(as was previously mentioned) any components in the subspace (h, y,). Thus for the fixed 
1, C(y(E1)) is a four-dimensional hyperplane in the eight-dimensional space T£?. In the 
case (2.12) it can easily by checked that we have C1(y(E1) ), because to each covector 
A E C{A.(E1)) corresponds one linearly independent vector y E C(y(E1)) (by the fact 
that e!IX). However we have C2 (A(E1)) as well as C2 (X(E1)) because there exist two li
nearly independent characteristic covectors A E C(A(E1)) for the fixed vector yE C(y(E1) ). 

We will investigate now the dimension of the tensor subspace generated by homoge
neous simple entropic elements E1 :Q1 (E1 ) = {yE1®AE1}. The part of the information 
which says what part of the whole space of the integral simple elements does this subspace 
constitute will be essential for us (see Sec. 4). The dimension of the space Q1 (E1) is de
termined only by elements of the form: 

(2.16) 

because the expressions: 

(2.17) 

are linearly dependent on (2.16). The term ( -v · I) determines the inclination of linear 
subspaces only. It can easily be shown that dimension of the space generated by the ele
ments of the form (2.16} is 17, thus: dim Q1 (E1) = 17. 

In the case (2.13) the homogeneous simple element E2 is generated by the vectors: 

(2.18) y = (y(!, 0, 0, xil X i2, 0, 0), Ai = ( -vij, ij), i = 1, 2 

where " is an arbitrary function. 
The cones C(A(E2)) are of the same form as in the case E 1 , and C(y(E2)) is a plane 

generated by two linearly independent vectors: (1' 0, 0, 0, 0, 0), (0, 0, 0, xl X Iz, 6, 0). 
In that case we have C2 (y(E2)) and C2 (A.(E2)) as well as C2 (i(E2 )) and 

(2.19) dimQ1 (E2 ) = 9. 

Let us consider now the case (2.14). The cone C(A.(E3)) is generated by the vectors 
( -v · i, i), where ~is an arbitrary vector. So C(A.(E3)) is a three-dimensional linear space 
generated by the vectors ( -vh e1 ~iJ), i = 1, 2, 3 where ei is an i-versor of the orthogonal 
canonical base in the space PA 3 • In this case the cone of characteristic vectors C{y(EJ)) 

12* 
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180 A. GRUNDLAND 

from the space TJI' is a line of the direction independent of the hodograph space point 
u e J/'. As it follows from the expression (2.14) we have here C3 (y(E3)) and C1 (A.(£3)) 

as well as C1 (i(£3) ). The dimension of the tensor space generated by homogeneous entro
pic elements E3 is dimQ1 (£3) = 3. 

Moreover it holds the following relations between en tropic elements: 

(2.20) C(y(£3)) c C(y(£2}) c C{y(£1)) and C{l(E1)) = C{l(£2)) c C(l(£3)). 

Recapitulating the obtained results it can easily be stated, that the dimension of the 
tensor space generated by all homogeneous entropic elements E is dim Q1 (£) = 17. 

2.3. The homogeneous acoostic elements A 

Adjoining the condition (2.7b) in the equations (2.5) we obtain the following algebraic 
equation system which defines homogeneous simple acoustic elements A: 

eevliilr+r,I =: o, 
(2.21) e ti71IIr(!+er ·I= o, 

r, -fr (! = o, ex I = o, r, = o, lr = o. 
We obtain the following form of characteristic simple acoustic elements from the 

equations (2.21): 

(2.22) J'A = (y,,fy,, 0, -q/7 ~ 1;,. e, o). AA= (slilllf -V ·l,1), 

Where eX i = 0, E = ± 1. 
Also the characteristic vectors from the space TJI' have no components in the sub

space (h, y,). 
It follows from the equations (2.22) that the covector I is parallel to the vector e. Also 

it is obviou~ that the covector cone C(l(A)) is generated by the vectors (ellly7-vX, I). 
It follows from the covector form l that C(l(A)) is a three-dimensional cone in the four
dimensional space. The intersection of that cone with the hyperplane: l 0 = ell I ,17-v · "I = 
= const yields the ellipsoidal surface. It follows from the above considerations that if e > 0 
and v · i < 0 the generator of the cone is inclined to the cone axis a't the minimal angle 
and if illv the obtuseness angle of the cone becomes maximal. Namely, we have two kinds 
of cones: C(l(A+)) and C{l(A-)) and the following relation holds: 

C(l(A+)) n C(l(A-)) = C(l(£1) ) . 

The cone of the characteristic vectors C{y(A8
)) from the space TJI' is determined by 

the condition {2.22) from which it follows that here - as in the above case - we have 
two kinds of cones: C{y(A+)) and C(y(A-)) connected by the relation: 

lim { C(y(A+)) nC(y(A-) )} . c C(y(£1) ) . 

l-.4> 

The cone C(y(A8
)) is spanned on the vectors: 

( 1 ./, o. -• Y[ 
1
i
1 
, o, o). (o, o, o. O,l, 0). 
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ALGEBRAIC PROPERTIES OF NONHOMOGENEOUS EQUATIONS OF MAGNETOHYDRODYNAMICS 181 

So it forms the two-dimensional hyperplane in the space T£ (for the fixed A). In the 
case of the homogeneous acoustic elements (2.22) it can be easily stated that we have 
C1 (y(A)) and C2 O<A)) as well as C2 

( A(A) ). The equations (2.21) do not allow any non
planar simple acoustic waves A as in case of hydrodynamical equations [13-14]. It can 
be shown that the dimension of tensor space generated by homogeneous elements y A ®AA 
is equal to 17, so dim Q1 (A) = 17. 

2.4. The nonhomogeneous simple entropic elements EN 

It follows from (2.4a, b) for the basic system t.l;lat we obtain two kinds of simple entro
pic elements EN 

1
, EN

2
• Using the condition (2.4a) in equations (2.1) we obtain the follow

ing system of the algebraic equations which defines nonhomogeneous simple entropic 
elements EN

1
: 

(2.23) 

ypi-Jx il-rig+eiixv = o, 
y · 1 = 0, 1xr g = o, r g • 1 = 4nke, 

1xh=4n}, lxe=-A0 h, h·i=O, 
and the condition 

(2.24) }xH+e(g-!JxV) = 0, YP = 0. 

Solving the above system we obtain the following form of the elements EN1: 

{ 
4nke _ --: - ;- _ :- 4nA0 -: - 4n _ --: -=-} 

YEN= yP,O,--_-rxXJ,{JX@XJ),arxxJ+-( .)2 ],--_-(rxXJ)XJ 
(2.25) 1 (a. xj)2 rx XJ ~ xj)2 ' 

AEN
1 

= { -v ·a. xf, a.x]}. 

The vectors YEN
1 

from the space T£ for the nonhomogeneous system (2.23) must lay in 
the subspace T9Jl1 c . T£ which is tangent to the submanifold 9Jl1 defined by the 
Kronecker-Capella theorem where: 

(2.26) lsm1 = {u eYe :]x ii+e(g-Qx v) = 0}. 

It follows from the system (2.23) that the covector I is a vector laying in the plane per
pendicular to the vector y and parallel to the vector yg. As it is easy to see from the ex
pression (2.25) the cone of covectors C(A(EN

1
)) constitutes a plane in the four-dimensional 

space including the zero of the space G*. This plane is inclined to the axis A0 at an angle q; 
such that: 

cos<p = -V 1:2v2 

and intersects the plane Ao = 0 along the line perpendicular to the vector v. It follows 
from the above that if v2 decreases then the generator of the cone C(A(EN1)) deftectes 
from the axis Ao and if v2 increases then the obtuseness angle of the cone decreases. 

Considering the expressions (2.25) for nonhom:ogeneous simple elements together with 
the expression (2.12) for the homogeneous simple elements ENi we can state that the 
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182 A. GRUNDLAND 

covector A.EN
1 

is a characteristic covector. Therefore according to considerations in pa
per [7] the vector 'YEN can be represented as the sum of the characteristic vector 'YE1 and 

1 

noncharacteristic vector YEN,, namely: 

(2.27) 

')'p 

0 

'YENa ='YE, I_ - -+YENa = 0 + 4n_ 
I A = ot xj 7f X (a X]) @. X j)2 

aaxj 

0 

0 
0 

kea x} 
0 

-v·axj j 
-(a.xj)x}_ 

This form of 'YEN• b~comes important when we construct solutions for (2.23). It leads 
to the weaken conditions of the integrability, see [7]. Consequently it leads to solutions 
containing arbitrary functions. For the fixed 1, the cone of vectors C(y(EN~)) is a four
dimensional hyperplane spanned by the vectors: 

(1' 0, 0, 0, 0, 0), 
(0, o, o, e1 x (a. xj), o, 0), 

(0, o, o, e2 x (a. x}), o, 0), 

(0, o, 0, o, axj~ 0), 
where e, are versors satisfying (et. a. x]) = 0, i = 1, 2 in T:K. It can be easily checked 
that 'YE1 and YEN

1 
are orthogonal (YE,, YEN) = 0. Thus the hyperplane C(y(EN1)) is 

shifted from the zero of the coordinate system by the segment: 

IYEN I = -
4
n I( -ke(a. xj), v ·a. x}f, (a. xj) x})l. 

1 (a. xj)2 

The form of 'YEN given by (2.27) shows that the formulae (2.25) induces C4 {A.(EN1)) as 
- s 

well as C4 (A.(EN
1
)) and C1 (y(EN,) ). It follows from the character of the Poisson equa-

tion (2.23) we have accepted here. In consequence it excludes some kind of solutions(!). 
To end with the case of EN, we will derive dimension of the hyperplane !l'1 (EN 1) = 
= {'YEN

1 
®AEN.} generated by nonhomogeneous simple entropic elements EN1 • This 

dimension is determined only by elements of the form: 

(2.28) 

because the expressions: 

(2.29) 

are linearly dependent on (2.28). The term {-v · a x ]} determines an inclination of the 
linear subspace only. It can be easily shown that the dimension of the hyperplane !l'1 (EN

1
) 

generated by elements (2.25) is: 

(2.30) 

(1) We exclude here the solutions describing nonplana.r simple wave propagating in the nonhomoge
neous medium with anisotropy in direction of the noncharacteristic covector A. These remarks concern 

N 
also cases of simple elements . we are going to consider later on. 
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Let us also notice that (2.25) and (2.12) yield: 

(2.31) dim~1 (EN1) = dimQ1(E11- __ )+dim~l(EN1), 
A= a.x} 

IDlt 

where 

As the cone C(y(EN
1
)) is a line in the space T£ with a directional vector: 

(0, 0, keax], 0,- v · ax]j~Jx @x])), so dim~1 (EN1) = 3. 

Therefore dimQ1(E1/- - --) = 9. 
A= «XJ 

IDlt 

183 

The Eqs. (2.1) together with the condition (2.4b) gives us a system of algebraic equa
tions defining nonhomogeneous simple entropic elements EN,: 

yp1-]x ii-eg+elixv = o, 
(2.32) f ·). = 0, h ·). = 0, 1 X )19 = 0 

y g • .I = 4nke' 1 X h = 4nj' I X e = - Ao h' 

and the condition: 

(2.33) J· (g-Dxv) = o. 
When we solve the above system we obtain the following form of elements EN,: 

(2.34) 

/'p 

4nkex2 x 
/'EN

2 
= axx 

_ 4nv · x--: 
ax-~J 

X 

-4n -
~xxi 

X 

).EN, = (-X. v, i) 

where notation: X = j X H + efi -li X v) is introduced. The Kronecker-Capella condition: 

(2.35) 9Jl2 = {u e£:]· X= 0} 

defines the SUbspace 1'9Jl2 Of VeCtOrS /'EN
2 

• 

From (2.32) it follows that 1 is orthogonal to y and is parallel to y,. The cone of eo
vectors C(l(EN,)) is a line in the four-dimensional space with a directional vector: 
{ -v · x, x}. 
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This line contains the zero of the space 8*. It is inclined to the axis A.0 at an angle p 
such that: 

tgcp = lxl 
v·x · 

In the stationary case i.e. when v · x = 0 the angle p becomes equal to n/2. But when the 

covector A. doesn't depend on the point of the physical space i.e. when x = 0 then the 
angle pis equal to zero. (2.34) shows the covector J.EN

2 
is a characteristic covector. Con-

sequently the vector 'YEN
2 

can be represented in the form: 

(2.36) 'YEN:~, =.'YEt+ YENl = 
0 

axx 
et.x 
0 

+ 0 

-47&V. X-; 
x2 J 

-4n _ -; 
~XXJ 

- X . 

The cone of tangent vectors C(y(EN
2
)) is defined by the expression (2.36). Hence it is a 

four-dimensional hyperplane in the fourteen-dimensional space T£' spanned by vectors: 

(1, 0, 0, 0, 0, 0), 

(O, o, o, e1 x x, o, o), 
(O, o, o, e2 x x, o, O), 

(0, 0, 0, 0, x, 0), 

where e1 are versors such that: (e, i> = 0, i = 1, 2. It can be easily checked that 
(YEt' YEN

2
) = 0. Therefore the hyperplane C(y(E...,2)) is shifted from the zero of the coor-

dinate system by the segment: 

_ j( 4nke _ -4nv · z-; -4n _ -;)j1 

I'YEN21 = 1, j2 x, x2 ], x2 X X] 

The form of 'YEN
2 

given by (2.36) shows that the formulae (2.34) induces C4 {J.(EN2)) as 

well as C4 (~(EN2)) and C1 (y (EN
2

) ). 

The dimension ofthehyperplane !l'1 (EN2) = {'YEN
2
®AEN) generated by nonhomo-

geneous simple en tropic elements EN
2 

is determined only by the elements of the form: 

(2.37) 

It is so because expressions 
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are linearly dependent on (2.37). The term. { -v · x} determines an inclination of the 
linear subspace only. It can be easily shown that the dimension of the hyperplane 
generated by the elements (2.34) is: 

(2.38) dim !l' 1 (EN
2

) = 5. 

Let us mention that (2.34) and (2.12) yield: 

dim !l' 1 (EN2 ) = dimQ 1(Etlf=x)+dim !l't(EN2), 

lm2 

where 

Qt(Etli=x) = {YE•Ii=x®.AEN)' fi'tCEN2 ) = {jiEN2 ®AEN)· 
IDl2 IDl2 

As the cone C(y(EN
2
)) is a line in the space TJf with a directional vector: 

( 
4nke ~ - -4nv ·X-=- -4n-:- -) 

0, l,~x,O, -~-2-J,~JXX 
X X X 

so dim !l'1 CEN,) = 1. Therefore dimQ 1{Etl- -) = 4. 
A=X 
IDll 

2.5. The nonhomogeneous simple acoustic element AN. 

Including the condition (2.32) in Eqs. (2.1) we obtain the following system of algebraic 
equations defining nonhomogeneous simple acoustic elements AN: 

ellle l<fY+Yi I-]x ii-e(g-Q x V) = o, 
e(II yfyp+er ·I = o, 

(2.39) e(ll vlrp-feiiiv'lrp = 0, 

I x y g = o, y g • I = 4nke, 

). X h = 4nj~ I X e = - Ao h, h. I = 0. 

A solution of (2.39) yields the following form of elements AN: 

( !: 4nke -=- _ 1 r:; !: -:- _) -:- --
YAN = rp, rp, c-=- -;;;\2]X x, ~ ~~, . -, \x- )'p]xx ,aJxx+ 

J X XJ ee Jl' 1 X X 
(2.40) 

4n(e vJIJ xxl-v · Jxx)-:- 4n -:- (j-:- ";;;\) + j,----]X XXJ 
{jx x)2 (jx X)2 

.A.AN = (e)IJiixxl-v·]xx,}xX), 

where yP, a- arbitrary functions. We have introduced here a notation x: = {]x ii + 
+e(i-Q x v)}. It follows from (2.39) that the covector I is parallel to the vector Yg· The 
cone of covectors C(A(AN)) is a two-dimensional cone in the four-dimensional space. · 
An intersection of this cone with the hyperplane .A0 = e!II yJ-v · I = const gives us an 
elipsoidal surface. When e > 0 and v ·I x x > 0 then a generator of the cone is inclined 
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to the axis of the cone at the minimal angle. At the second hand when j X xllv then this 
angle becomes maximal. As in the case of homogeneous acoustic elements A we have 
here two kinds of cones: C(A.(A~)) and C(A.(AN)). They are related by: C(A.(A~)) n 
n C(A.(AN)) c C{A.(EN

1
) ). As before the covector A.AN is a characteristic covector. This 

enables us to present the vector y AN in the form: 

(2.41) /'.AN=yA+YAN= -eyf/'p j_x~ + 
· e ljx xl 
ajxx 

0 
0 

4nke 7 _ 

(jxX)2 JX X 

X 

ee JI/Jixxl 
4n(eJI'ltJxxl-v ·Fxx)-:-

Uxx)2 ' 
4n =- (j:- _) 

<Ixx)2 ,x x x 

The cone of tangent vectors C(y(A1v)) in TJf' is described by conditions (2.40). We have 
here also two kinds of cones C{y(A~)) and C(y(A~) ). They are related by: 

lim {C{y(A~)) n C(y(AN))} c C(y(ENJ) 
/-+0 

It follows from (2.41) that for the fixed 1 the cones C{y(A~)) are spanned by the vectors: 

( 1 f o - yJjx x o o) 
' ' ' - ' ' ee/jx xl 

(0, 0, 0, o,jx x, 0) 
Consequently they are two-dimensional hyperplanes fixed at the points: 

( 0 0 4nke ;- - X 4n( e yJ/ I X xl-V . J X x) -:- 4n 7 u-:- ";;;\) 
, ,----JXX, .. ! _, ], ----]X XXJ 

(jx V 2 ee rffix xl (jx X) 2 
- (jx X) 2 

It can be easily checked that (y A, ji AN) = 0. So the hyperplane C(y(AN)) is shifted from 

the zero of the coordinate system by the segment: 

1
- I -I ( 4nke ;- - X 4n( e vll J X xl-V . J X X) -:- 4n ;- (j:- ';;;\)I /'AN - -=--:::-JXX, .. ! ' -],----]X XXJ 

(jx x>2 ee r !fix xl Ux x)2 (jx X> 2 

The form of y AN given by (2.41) shows that the formulae (2.40) induces C2 (A.(AN)) as well 

as C2 (1(AN)) and C1(y(AN)). The dimension of the hyperplane !t'1 (AN) generated by 
nonhomogeneous elements (2.40) is 

{2.42) 

Let us notice that (2.40) and (2.22) yields 

dimZt(AN) = dimQ1(AI- :- -)+dim9'1 (AN), 
,A=}X% 
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where 

As the cone C('y(AN)) is a line in T£ with a directional vector: 

( 
4:rcke 7" - X 4:rc( e J/lt J X xl-V. J X x) -:- ~-; -; ) 

0, 0, {]x X)2 J X X' 8(! J/f/jx XI ' (j X X)2 ], (fxj,)2 J X u X X) 

so dim .. ~\(AN) = 5. Hence dim Q1{AI_ -:- -) = 10. 
!A =JXX 

2.6. Nonhomogeneous simple magnetohydrodynamic element M N 

Equations (2.1) together with the condition (2.4d) yield the following system of alge
braic equations: 

(2.43) 

e~y+yp~-}xii+e(lixv-g) = o, 
Yp~+eY" ·X= o, YP~-f~y'J = o, 
~ x y, = 0, y, · I = 4nke, ). x h = 4n], 

~ X e = - Ao h' h . ;: = 0' J = a(E +V X H). 
This system defines a nonhomogeneous simple magneto hydrodynamic element M N. 

This element M N is of the form: 

(2.44) 

where 

x · ocxj 
~2-f("i. x])2 

-fi · ocx] 
~2-f(i. X j)2 

4:rcke _ :
--_-ocx1, 
(i. xj)2 

_t_[x+ fi. ocx] ix]J 
(!~ ~z.-f(i. xj)z 

- --; 4:rc).o -:-
aoc XJ+ r;; .)2 1 \oc X] 

-4:rc - -
--_- (i. xj) xj 
~xj)2 

{
:;6 0 x =jxH+eCg-!Jxv), e = ±1, ~- - .ri 

- :;6 eli xj! yf. 

It follows from (2.43) that the covector l is parallel to the vector y,. From the expres
sion (2.44) for the covector ). we see that 
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where Pis a plane in 8• generated by the vector ( -v. ;x xJ, ~ x}) and including the zero 
of 8* (see 2.3- EN 1); S- is a two-dimensional cone with an eliptical base. This cone is 
generated by the vector (eyJtJxxl-v·]xx,]xX) in 8*(see 2.4-AN). 

Thus C(A(M.v)) is an open set and consequently the simple element MN is also an 
open set in the space TJe~ 

For the fixed covector i a cone of noncharacteristic vectors C(y(MN)) is a line in T£ 
with the directional vector (0, 0, 0, 0, ~ x ], 0). This · line contains a point: 

(2.45) 

X. rx xj 

~2-f(ixj)2 

-fi·~x] 
~2-f(OC xj)2 

4nke _ -: 
--_-rxXJ 
(0Cxj)2 

1 ~- X· i x] _ -:} 
(}~ X+ ~2-f(oc Xj)2 (1. X] 

4nA0 -: 
----] 
~xj)2 

-4n - -

(
- ~)2 (i xj) xj 
rx X] 

The nonhomogeneous simple element M N is really a noncharacteristic element. It follows 
from (2.44), (2.12) and (2.22). The form of given by (2.44)""shows that the formulae (2.45) 
induces C1 (A(MN)) as well as C1 (~(MN)) and C1 {y(MN) ). Thus there exists a one-to-one 
correspondence between A~t~N and 'YMN' (AMN ~ 'YMN). It can be shown that the dimension 
of hyperplane !l' 1 (M N) generated by elements /'M N® AM N is equal: 

(2.46) dim!l'1 (MN) = 16. 

3. Topology of simple homogeneous and nonhomogeneous elements 

In this chapter we are going to present relations between simple integral elements. The 
knowledge of boundary translations between these elements is helpful in a construction of 
some classes of solutions. They describe an interaction of simple waves and simple states 
in terms of Riemann invariants. In fact, let us suppose for a moment that integrability 
conditions imply the existence of boundary translations. Then one of the solutions degen
erates to another one and there is no sense to look for any interactions, between them. 
Topologically it means that the cones of simple elements in the space 8 x Je have a non
empty intersection. 

3.1. Relations between homogeneous simple elements 

In our description of relations between homogeneous simple elements we will use 
a theorem given in [16]. 
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THEOREM 1. Let a, {3 numerate simple elements. Suppose that some limitations on ele
ments of the matrix A imply ~« -+ ~fl. Then under the same limitations the tensor space 
Q 1 (a) is a tensor subspace of Q 1 ({3). 

Theorem 1 together with (2.22) and (2.12) yield corollary: 

(3.1) ~A = 0 ~ f = 0. 

Proof. If f = 0 then C(y(A)) are generated by vectors y = (yp, 0, 0, 0, a A., 0) 

and C(A(A)). by A = (-v·l, X) respectively. Thus (3.3) yields the entropic elements E 1 

of the form: 

(3.2) (yp, 0, 0, y, a~, 0) ®(-vI, I) where y ·l = 0. 

One can easily observe that 

dimQ1(AJ1= 0) = 9 < dimQ 1(E1) and Q1(Ai1=0) c Qt(E1) 

So the acoustic elements become en tropic when the velocity of the sound approaches zero. 
Q.E.D. 

3.2. Relations between nonhomogeneous simple elements 

Let ~1~1 be eigenvalues of nonhomogeneous simple elements. We have ~1I1 = 0 for 
entropic elements and ~1~1 = elll ~IJ for acoustic ones respectively. Consequently covec
tors A are characteristic. It follows from the form of nonhomogeneous simple entropic 
elements EN, and ENl that there is no boundary translation between them. In fact, the 
component of EN, in the direction i'P is different from zero while the component of EN; 
vanishes. The second reason follo~s from the fact that the Kronecker-Capella condition 
for the element EN

3 
doesn't hold i.e. lim EN

2 
doesn't exist. Therefore we have two com-

x-...o 
plementary kinds of entropic elements in the case. Acoustic elements AN don't pass into 
EN

1 
because the Kronecker~Capella condition x = 0 doesn't hold for the element AN. 

There is also no boundary translation between acoustic elements AN and entropic ones 
of the type EN2· It follows from the fact that the condition f-+ 0 leads to i'P = 0. Con
sequently we get here a contradiciton with the form of the element EN,_ (as i'P =I= 0). There 
is no boundary translation between simple elements M N and other integral elements. In fact, 
elements M N are noncharacteristic while other elements have characteristic covectors A. 

3.3. Relations between simple homogeneous and nonhomogeneous elements 

Boundary translations from simple homogeneous elements to nonhomogeneous ones 
can be reduced to shifts of subspace Q1(a) on the noncharacteristic vector Ya· The shift 
operator can be defined as follows: 

(3.3) P11 :Bl"®9tk-+ 9t"®8l1such that /\ P01(e®r) = (e+a)®-r e &l"®Blk 
e ® T e W' ® £fk 

We shall consider a field of homogeneous simple elements on submanifolds determined 
by the Kronecker-Capella condition in the hodograph space. We shall denote it as follows: 

(3.4) Ql(cx)lg: = {y(u)®A(u) e Q1(a):u e 9Jl 1\ y(u) e Tuc:m} 
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Boundary translations from simple homogeneous elements to nonhomogeneous elements 
are possible in the following cases: 

(3.5) 

Py·E (limQ1 (E1)1m 1) = !l' 1 (EN.), 
Nt i~ix J 

P;,E (limQ1 (E1)Im2) = !l' 1 (EN2 ), 
N2 - -

A.--..x 

PjA (1imQ1(A)) = !l'1(AN), 
N - - -

A.--..jxx 

P;E (limQ1(A)Im1) = !l'1 (EN,). 
Nt i--..i x} 

t~o 

There is no boundary translation between simple elements A and EN 1 as well as between 
E1 and AN. Obviously there is no translation from simple homogeneous elements to non
homogeneous elements M N. It is so because M N are noncharacteristic. 

Therefore relations between simple elements can be described in a form of the diagram: 

____. denotes boundary translation, • Y • denotes absence of boundary translation. 

4. Classification of the basic equations of magnetohydrodynamics 

We are going to deal with a classification of the basic equations from the point of view 
of simple integral elements. The principles of this classification were presented in the works 
[6, 7, 10]. This classification applied to the homogeneous part of Eqs. (2.5) gives us an in
formation about hyperbolicity of the basic system as well as about the wave or non-wave 
character of solutions. When we know the type of the nonhomogeneous system we can 
decide if simple integral elements span the whole space of integral elements (this means 
simple elements give us the whole set of solutions). 

4.1. The space Q1 

From the preceding algebraic analysis of the basic system (2.1) it follows that the 
characteristic polynomial (2.6) has three different eigenvalues: 

(JE = 0 with the multiplicity four, 

IJA.+ = +11i -v:rl _ - with the multiplicity two. 
IJA.- = -IA.I Y f 

(4.1) 

Those eigenvalues correspond to eigenvectors which generate a six-dimensional space. 
Hence they do not span the whole hodograph space £'14. In other words- this system 
is not quite hyperbolic. Let Q 1 be a tensor space generated by all homogeneous simple 
elements. Its dimension is determined only by the expression: 

(4.2) {YE,, YA} ® r = Ql. 
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Indeed, the space spanned by tensors: 

(4.3) {YE1 ® AoE1, YA ® Ao.t} = 9 

is linearly dependent to the space Q 1 ([JJ c Q 1). It follows from ( 4.2) that 

(4.4) dimQ 1 = 21. 

Dimension of the space Jr(x0 , u0 ) of homogeneous integral elements is equal 

(4.5) dim.)( (x0 , u0 ) = 42. 

This proves our previous conclusion. The system (1.1) has integral elements which are not 
linear combinations of homogeneous simple elements. That means (1.1) is a mixed type 
system. 

4.2. The hyperplaoe !£1 

Dimension of the hyperplane !l' 1 generated by all nonhomogeneous simple elements 
is equal 

(4.6) dim!£1 = dim{,u1yEN1 ® AEN
1 
+,u2yEN

2 
® AE.'V

2 
+,u3yAN ® A.tN+,U4YMN ® AMN}, 

4 

where }; ,us = 1. 
S=l 

This dimension is determined by a linear space generated by tensors: 

(4.7) aiJ{(1- (,u2 + ,u3 + ,u4) )ykNt ® ;.~N~ + ,u2ykNz ® ;.~Nz +,u3y~N ® ;.~N+ ,u4ykN ® AitN} 

where coefficients ,ui, i = 1, 2, 3 are arbitrary. If we put successively ,ui = 1 fot i = j and 
,ui = 0 fori =I= j(j = 1, 2, 3) in (4.2) then we get a system of equations: 

(4.8) 
01JY~N1 ® A~N1 = O, 0 iJYkNz ® ).~Nz = 0 

aljy~N ® A~N = 0, aliyitN ® AitN = 0 

Thus the dimension of the hyperplane !l' 1 (x0 , u0 ) generated by nonhomogeneous simple 
elements for the system (2.1) is equal: 

(4.9) dim!£ 1 = 37. 

Dimension of the hyperplane .P(x0 , u0 ) of nonhomogeneous integral elements is 
dim !l' = dim£ = 42. Thus the system (2.1) has integral elements which are not linear 
combinations of nonhomogeneous simple integral elements. In other words nonhomoge
neous simple elements do not span the whole space of integral elements. So the system is 
not of the type !l' 1 • 

Finally it is worth wile to consider a structure of the hyperplane !l' 1 • It contains two 
disconnected hyperplanes 

(4.10) 

Of course it is related to the fact that the nonhomogeneous simple en tropic elements EN1 , 

EN2 and acoustic AN correspond to characteristic surfaces, while the complementary 
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nonhomogeneous simple element MN is noncharacteristic. Using (4.10) it is easy to com
pute the dimension of the hyperplane generated by nonhomogeneous simple elements which 
have characteristic covectors A.; 

(4.11) 

Solutions constructed from elements of this hyperplane will be contained in the area of 
hyperbolicity(l) of tlie nonhomogeneous system (2.1) while the solution constructed from 
elements M N will be contained within the ellipticity area. 

5. Examples of solutions - simple states 

Now, we shall present the simplest solutions of the basic equation system (1.1). These 
solutions are induced in some way by nonhomogeneous simple elements EN, AN, MN. 
The method we use here was also presented in [6, 7]. According to the terminology intro
duced there the simplest solutions of the nonhomogeneous system will be called simple 
states. Let us recall that solutions of a homogeneous system are called simple waves and 
they correspond to waves in the physical sense. However simple states don't describe wave 
phenomena sometimes. It happens when covector A corresponding to a nonhomogeneous 
simple element is noncharacteristic one. The covector A can be treated as an analogue of 
a wave vector (w, k) determining the velocity and direction of state propagation in the 
case of a simple wave. Our involutivity conditions yield that covectors A. are independent 

b 

c 

Fig. l. The examples of the flow of the fluid described by simple states. 

(2) According to J. HADAMARD [8] ·characteristic surface is a surface on which the characteristic 
determinant of the system vanishes. The elipticity area is the complement of the characteristic surface. 
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from the Riemann invariant. Therefore they have a constant direction in the physical 
space. When those conditions are satisfied we can present our solution in the form u = 

= u(s), where s is a Riemann invariant: s = .A.,x" = c1 t+A-· x (here A is a direction 
of the state propagation). This implies the· principal properties of simple states. They are 
one-dimensional solutions in the physical space 8 3 which are constant on a family of pa
rallel planes. They can propagate with a constant velocity (v1 = .A.0 /fll = const = c1) 

in the direction perpendicular to them. Those solutions are functions of the class C1 and 
they describe flows of the laminar type. Examples are illustrated on the Fig. la-c. In 
many cases a profile of the state is not uniquely determined by the obtained solution. There 
exists here some arbitrareness connected with a freedom of choice of some functions and 
constants. The above remarks concern all simple states. The more detailed properties 
of them will be discussed later. 

5.1. Simple entropic states EN 

There exist two nonhomogeneous simple entropic elements EN 1, ENl· So if integrability 
conditions [6] are satisfied we obtain two kinds of entropic simple states. The entropic 
state EN 

1 
corresponding to the simple element (2.25) is of the form: 

(5.1) 

where 

() 
aCi e · a·s 

(! s = =--=- ---' -=, p0 = const, 
!J·Ae·<i,.~xA 

_ -1 {a.~xA -} -v(s) =- -
4
·-- +k -c1 A, 

c2 na 
- i·k - - - -
E(s) =- --A+c1A+kxA, 

c2 

;-() IX.s JS=-'-
4n 

!AI = 1, e = {B+c,DxA+ c~ !.lxk}. .Q ·A# o, k ·A= o, 

B ·A = 0, Ci(s) ·A= 0, 'YJ = - 4nac2 

!J·A 

( 
f COSqJ(s)ds) 

OC(s) = •11<1 f sin~(s)ds 

e = ±1, 

{;;l) e· a xA-ti· A- 1 (- - - oc . D) 
~(s) = '\A. ·" ·" -- !Jxk ·A--·-"- . 

8nac~ot~~ · e c2 4na 

The function qJ(s) is described by the differential- integral equation: 

(5.2) 

13 Arch. Mcch. Stos. or 1175 · 
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The simple state EN
2 

differs from the state EN 
1 
in the expressions for the pressure p(s) and 

in a function Hs): 

p(s) = s+po, 
(5.3) 

~(s) = Q. A e . OC,s X A (1 + (a2
),s)- ___!__ (ti X k. A- i ,s . Q) 

ud e · oc,s 8n c2 4nu 

Moreover- unlike for the state EN
1

- we do not have here any restriction on the func
tion qJ{s) which is an arbitrary one. 

Let us notice that solutions are not defined when Q · A = 0. This excludes the direc
tion of propagation of the state EN perpendicular to the direction !J. The most char
acteristic properties of entropic states EN are connected with the Kronecker-Capella con
dition (2.4ab ). In this case the condition (2.4ab) is equivalent to the fact that the opera
tor dfdt vanishes everywhere. It means that the particular physical quantities are changing 
in the moving fluid element and consequently that the planes of constancy of the solution 
are stationary relative to the medium. Thus the state propagates together with the fluid 
and not relatively to it. The second important consequence of the condition (2.4ab) is that 
in the Euler equation {1.1) the inertion forces are equal to zero. Thus the forces acting on 
the fluid element are in balance. Hence we get the fluid elements move without accelera
tions in the case of en tropic simple states. The momentum of the system is conserved: 

(5.4) :
1 

(eV)+div{(2pd+eV®V)+ -! ( ~ iN-ii®ii)} = o. 

Observe the expression for the tensor of the magneto hydrodynamics momentum stream 
differs in this case from the tensor of the momentum stream in the equation (5.4) in 
expressions: 

1 (1 - - -) Vp+ 
4

n T VH2 -(HV)H . 

From the condition dfdt = 0 it follows directly that the circulation of the velocity along 
the closed fluid contour stays unchanged in time (hence the Kelvin theorem is identicaly 
satisfied in our case). From rot v(s)=F 0 it follows that the solution (5.1) allows the vortex 
of the fluid. We have div v(s) = 0 for each entropic state. It means that the considerated 
fluid is noncompressionable in spite of the density changes from point to point. In other 
words the density distribution is arbitrary but constant in a given fluid element. 

The magnetic force FM acting here on the fluid element witl be of the form: 

(5.5) - 1 { (i
2

) - -} 
FM= 4n -TA+c2i,.,xA . 

The first term in the expression (5.5) affects perpendicularly the fluid element 

(as it is of the form {V ~2 

- (H1 V) H 1)} • Hence it can only compress or stretch the fluid. 

It gives a contribution to the pressure. The second term(which is of the form: (H, V)H1 
i =F j) yields that the fluid element is under the action of torsion forces. They crook its tra
jectory. However it is possible to conserve the constant direction A of disturbance propa-
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gation in the physical space. In fact, it follows from our earlier considerations that the 
Coriolis force compensates the torsional contribution of the magnetic force. 

It follows from the expression (5.1) that the oscillation planes of the magnetic field ii 
and electric field E are orthogonal. So the entropic states EN have a character similar to 
that of plane waves in electrodynamics. 

From (5.1) we can deduce that the currents J are always contained in the plane of con
stancy of the solution (i.e. they are perpendicular to A). Moreover the length of the vector IJi 
is a constant one. Consequently we have the constant dissipation for Joule heat in our 
system: 

(5.6) CJ- 1 ] 2 = (~.s)
2 

= const. 
16nCJ 

The heat transport equation (1.5) together with (5.6) yield the determination of the tempe
rature distribution form in the concerned area: 

T = Ax2 +(2Ac1 t+D1)x+c1(Ac 1 t 2 +D1 t)+D2 

where A, D 1 , D 2 are arbitrary constants. 
Using the known thermodynamical relations it is easy to check that in the case of EN 

states the entropy is a function (arbitrary) of the temperature only: S = S(T). The internal 
energy and enthalpy for the state EN, is of the form: 

(5.7) U = S(T)-T oS- Po 
ar e · 

oH o2 S 
oT = -T oT2 

so that H = H(T)- enthalpy depends on the temperature only. In the case of the state ENl 
we have respectively: 

as JP U= S(T)-T oT + ?de+U0 , 

(5.8) 

-os J dp H = S(T)-Taf+ e+Ho. 

If we substitute the expression (5.8) into the equation of. energy conservation (1.4) 
then we ~ee that the gravitation doesn't influence the fluid movement. However the density 
change implies the movement causes the changes of the gravitational field. 

We shall show now the relations between hydrodynamic and electordynamic pheno
mena. The following relation <?n the kinetic energy can be deduced from (1.1): 

(5.9) :
1 

(e v;) = -div{e ~~ v}-v · Vp+V · {FM+ F,+F;}, 

where 

FM = jx H, F, = gg, Fe = -eDxv. 
Consequently the change of the kinetic energy of the fluid in a given volume is caused 

by the work done by the pressure forces and the sum of the forces: magnetic FM, gravita-

13* 
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tional ~ and Coriolis Fe and of course by the energy outflow from the area under consid
eration. In the case of entropic states EN the kinetic energy is conserved. In fact: V p, 

FM, F,, Fe are compensated. However no dissipative effect occurs. Only the kinetic energy 
stream influences the change of the kinetic energy in the investigated fluid element. 

The change of magnetic energy in time can be expressed as follows: 

(5.10) a ( ii2 
) 1 . - - ;- _ -;- --- = -dtv{ExH}-a- 1f-v·JXH. at 8n 4n 

The first term describes the energy stream (i.e. the Poynting vector). The second term 
describes the velocity of magnetic energy changes into the Joule heat and the third term -
work of the medium against magnetic field forces. When we substitute (5.1) into (5.10) 
we get that the changes of electromagnetic energy are dependent on kinetic phenomena. 
Consequently it follows that the fluid movement influences the change of the magnetic 
field. However electromagnetic phenomena do not influence kinetic phenomena. 

5.2. Simple acoustic state AN 

The simple acoustic state AN corresponding to simple elements (2.24) is of the form: 

(!o = const, P0 = /(!0 , g = (cs+D)A~ 

(5.11) 

where 

IAI = 1, B1A = o, A1 ·A= o, e· .A= o. 

- e 
j=-

4n 

This state differs from the previously described ones first of all in the fact that the planes 
of the constancy of the solutions dislocate relatively to the medium with the constant ve
locity of sound. 

Moreover the direction of the state A propagation is distinguished in the space C. 

In fact, it has to be orthogonal to ~ as well as to the sum of magnetic and Coriolis forces. 
It is a characetristic fact for the acoustic state AN that the density (!o, pressure p0 and 

current J remain constant. The solution allows also a fluid vortex (rof v(s) =I= 0 ). However 
the velocity circulation along an arbitrary closed contour is not conserved. The magnetic 
force acting on medium is of the form (5.5)- just as in the previously described case. 
The contribution causing the torsion of the fluid element is compensated by the inertion 
and the Coriolis forces (this yields the constant direction of state propagation is conserved). 
Directions of the magnetic and the electric field are orthogonal like in the case of entro
pic states. We have eo = const, p0 = const, consequently entropy is only the temperature 
function: S = S(T). Likewise in entropic states dissipation for the Joule heat is 

constant (] = const.) Therefore the. heat transport equation is of the form: 

(5.12) 
as ar 

(!oT aT Tt = "L1T+const. 
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The temperature distribution in the investigated area depends on the adopted model of 
entropy changes. It can be easily checked that the internal energy and enthalpy of the 
acoustic state depend on the temperature only. 

(5.13) f as 
H= T--+Ho ar 

When we substitute (5.13a, 5.13b) into the energy conservation equation (1.4) then we get 
that the gravitation influences the fluid movement but there is no inverse influence. When 
we substitute (5.11) in the expression on the kin.etic energy change we can easily see the 
changes of the magnetic field influence the quantity of kinetic energy changes (an expres
sion v ·FM :F 0 is the coupling term here). Moreover an analysis of the expression on the 
magnetic energy change (5.10) for the case AN shows that this change is influenced by 
kinetic phenomena (the coupling term: v ·] x H :F 0). So we have here a feedback of ki
netic and magnetic phenomena. 

5.3. Simple magnetohydrodynamic state M N 

The simple state M N corresponding to the simple elements (2.40) is of the form: 

eo Ieo - -e = 4nkt5 ' p = -4nkt5 +po, g(s) = Hs)A+B, 

(5.14) 

where 

IAI = 1, B · A = o, k · A = o, 

Hs) = _i_ {eo t5,s+k ( (i
2 

) . + t(g!>_) } + __!___ {ii,s. Q- b(i • Q-Q x k ·A.} 
eo 2 ,s t5 ,s c2 4na 

with conditions 

(5.15) 0 < lt51 < yJ or lt51 > yJ satisfied. 

Moreover we have a system of three equations with respect to three functions: 

eo { ~- - ~ - - i ss X A l {k - -- uCX 5 XA+uscxXA---·
4
-- = C2 CX 5 XA c2 , , na , 

+ ~ [B- _!__ (t5Q · Aii- (lix k-iixk· AA-)- :Q. A r; s)-(t5-c1)i2xA]}. 
t5 c2 4na ' 

This is an involutive system (hence it has solutions). 
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Likewise in the case of the acoustic state AN the planes of constancy of the solutions 
propagate relatively to the medium. It is characteristic however that their propagation 
velocity is strictly determined and according to the function c5(s) it can have various sub 
or supersonic values (5.15). The direction A of propagation of the state MN is orthogonal 
to the current]. Fluid vortexes are possible. The velocity circulation on the closed contour 
is not conserved here. The magnetic field has a form similar to one in the case of entropic 
and acoustic states. Its torsioning action is compensated by the inertion and Coriolis for
ces. As before entropy is only a temperature function so the equation of the heat transport 
is of the form: 

(5.17) 

The internal energy and enthalpy are expressed as follows: 

as 
U = S(T)-T aT +flne+ Uo, 

(5.18) as 
H = S(T)-T aT +flne+Ho. 

If we substitute (5.18a, 5.18b) in the Eq. (1.4) we get that the fluid movement influences 
changes of the gravitational field as well as the gravitational field influences the change 
of fluid velocity. An analysis of the expression on kinetic and magnetic energy changes 
shows that the kinetic and magnetic phenomena are mutually coupled. Expressions 
FM · v #= 0, v ·] x ii -:/:: 0 are the coupling term here. 

Let us notice that the propagation velocity of the state is equal to group velocity for 
en tropic states EN and acoustic states AN: 

(5.19) 
Ao v, = Ill = lv,,l = IVrAol· 

Hence we have no dispersion phenomena here. On the other hand the magnetohydrody
namic state MN has a noncountable velocity spectrum c5 (5.15.). This yields v1 -:/:: v,,. There
fore we have dispersion medium here. 

6. Final remarks 

Finally let us notice that particular states differ at least in one vector coordinate. 
In fact, it follows from the correspondence between the . covector A and the wave vector 
(cl' A). Consequently, when various states propagate in the medium in the same direction 
then their velocities differ. On the other hand when they propagate with the same velocity 
then the directions are different. 

The simple states we have just described form a basis for searching for wider classes 
of solutions of M.H.D. equations. These solutions are nonlinear superposition of simple 
waves and simple states. An interaction of this type can be of interest from the physical 
point of view thus they will be an object of consideration in our subsequent papers. 
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