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Newtonian dynamics of homogeneous strains
J.J. SLAWIANOWSKI (WARSZAWA)

Our aim in this paper is to formulate the Newtonian mechanics of bodies the deformative
behaviour of which is restricted to undergoing homogeneous strains (for example, appropria-
tely reinforced pieces of elastomers, or microobjects, the sizes of which are small when com-
pared with wave-lengths). Equations of motion with taking friction into account are given.

Wyprowadzono newtonowskie réwnania ruchu dla cial, ktérych zachowanie deformacyjne
ograniczone jest (przez jakie§ wigzy idealne) do ulegania odksztalceniom jednorodnym. Ciatami
takimi moga byé np. odpowiednio uzbrojone bloki elastomeréw lub ciala mikroskopowe o roz-
miarach matych, lub przynajmniej por6wnywalnych z typowa dlugoscig fali. Pokazano, w jaki
spos6b moina zastosowa¢ teorie do opisu zjawisk dysypacyjnych zwiazanych z tarciem.

BriBefieHE! ypaBHeHHA JemwxeHus HeioToHa Jnis Ten, KOTOPhIX AedOpMalMOHHOE MOBeAeHue
orpaHH4eHo (BCIE[CTBHE KaKMX-HMOYOb CBA3EH) M IOAIEHKHMT OJHOPOMHBIM AedopMalHAM.
TaxkEmu TeslaMu MOryT GBITH HAIIDHMED COOTBETCTBEHHO a3pMHPOBaHHBIE OIIOKH 3J1aCTOMEPOB
WIN MHKPOCKONIOBBIE TEJIA ¢ MATLIMH PASMEpaMH HJIM MO KpaiHeil Mepe CPaBHHMBIMH C THIIHY-
HoM JutiHo#M Bommbl. IToxazano KaxkuMm OOpa3’0M MOMKHO NMPHMEHATH TEOPHIO JUIA ONMHCAHMA
JHUCCHIIATHBHLIX ABNCHHHA CBA3AHHBIX C TPEHHEM.

1. Introduction

IN THE PAPER [6] we have formulated analytical mechanics of homogeneously-deformable
body. That theory, being based on the variational principle and the Hamilton canonical
equations, does not take dissipation phenomena into account; the mecanical energy is
a constant of motion. Hence, applicability of the theory is very restricted. In fact, both
macroscopic bodies (rubber-blocks, small inclusions in fluids), and microobjects (mole-
cules, small monocrystals) are subject to some friction forces which give rise to energy-
dissipation and, consequently, to the damping of vibrations. In macroscopic bodies, the
decrease of mechanical energy is due to heat production mainly. Besides, the presupposed
homogeneity of deformation is always approximate only, what gives rise to the efflux
of energy to “nonhomogeneous” degrees of freedom. In microobjects, some additional
phenomena become apparent in the balance of mechanical energy; let us mention only
the (electromagnetic) radiation damping and the exchange of energy between nuclei and
electrons (the better is satisfied the Born-Oppenheimer approximation, the smaller is the
last effect).

In what follows, we are dealing with finite strains; our theory can be applied to descri-
bing large, non-linear vibrations. The circumstance that the number of degrees of freedom
is finite, is especially advantageous just in non-linear theory. Our topic is strictly related
to micromorphic theories. The mechanics of micromorphic media has been studied by
ERINGEN and RIVLIN [1, 4]. However, the main aim of those works was to find the equ-
ations of micromorphic continua. Hence, the resulting theories are inapplicable when



94 J. J. StawiANOWSK]

studying essentially discrete problems, such as propagation of short waves in discrete
micromorphic media (molecular crystals e.g.). To be able to take such phenomena into
account one should remain on the level of discrete system of granules rather than to pass
to the limit of micromorphic continuum.

Obviously, our theory concerns micromorphic bodies degree 1 [1]. We are going to
formulate the Newtonian mechanics of a single, homogeneously deformable granule of
the body. Passing over to the mechanics of a system of such interacting granules presents
no difficulty. Independently of the micromorphic applications, our approach provides
a convenient framework when investigating the motion of small inclusions in fluids [2].

From the point of view of analytical mechanics, the restriction to homogeneous de-
formations is equivalent to imposing some holonomic constraints. Hence, to get satisfac-
tory equations of motion, we have to eliminate the reaction forces [5, 7). The special
geometric structure of our problem enables us to achieve this very easily, without using
general algorithm. We assume constraints to be ideal, this is our main physical assumption.

Let us sketch briefly general ideas of our derivation of equations of motion. Arbitrary
system of material points satisfies the following balance equations for linear and angular
momentum:

dpP dJ
ﬂat— . F, ‘?t_ — D,
where the angular momentum with respect to the origin O is given as: J = ¥'riXp;; riis

the radius-vector of i-th material point with respect to O, and p; — its linear momentum,
Similarly, D = }'r;x F; is a total moment of forces F; with respect to O. When no external
i

forces are present, the above balance equations become conservation laws. Let us impose
holonomic constraints that turn our system of points into rigid body. The balance equa-
tions above become then equivalent to the complete system of equations of motion. Let
us notice now that the components of angular momentum J are equal to independent
components of the anti-symmetric part of the tensor K = Y'r; ® p; (K = > riph).
It is well known that the anti-symmetry of the tensor K1), describing angular momentum,
reflects geometric pecularities of the rigid rotation.

A system of points which we are going to investigate here is only affinely-rigid. Hence,
one can suspect that in the corresponding theory the tensor K plays a similar role as J in
the mechanics of a rigid body. It is reasonable to expect the equations of motion of a ho-
mogeneously deformable body to be equivalent to the balance equations for the total
momentum P and the tensor K. In fact, this is the case; however, the balance for K is more
complicated than that for J. The tensor K is nonconserved even when there are no external
interactions. This is because the kinetic energy depends on the metric tensor. In such a way,
the full affine group of kinematical symmetries is broken by the metric geometry of the
physical space. Consequently, the group of symmetries is reduced to the orthogonal sub-
group in a quite non-dynamical way. Obviously, interactions can reduce it further and,
in general, they do.

The notations and fundamental notions used below are essentially the same as in the
previous paper [6].
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2. A body without translational degrees of freedom

Let us impose constraints which make one point of the body immovable. Hence, simi-
larly as in the previous paper [6], the material and physical spaces will be identified with
vector spaces U, V, respectively. We assume them to be endowed with the metric tensors
nelU*® U* geV*® V* Raising and lowering of indices in U, V is understood in
the sense of n, g, respectively.

Configuration space of our body is identified with Q = LI(U, V) — the manifold of
linear isomorphisms of U onto V¥ [6]. The mass-distribution in the body is described by
means of the non-negative regular measure £ on U. We do not assume anything more
about y; in particular, the distribution can be both discrete or continuous.

Now, let us consider a medium undergoing arbitrary strains, not necessarily homoge-
neous ones. Let ' € x — v(x) € V be Eulerian velocity field and m — nonnegative regular
measure on V describing the mass-distribution in the physical space.

Affine momentum of the body is defined as a tensor K€ V' ® V given by:

@.1) K= [x®v(x)dm(x).
4

The skewsymmetric part of K, K/l = f xtigi)(x) dm(x) describes the angular momentum.

Now, let us assume again that the body undergoes homogeneous strains only. When
its configuration is ¢ € LI(U, V) and generalized velocity & € L(U, V), then, making use
of (2.1), we obtain:

2.2) Kg,6)=(p®8)-J
or, in linear coordinates:

K = ‘P‘AEJBJ“B,
where

J= [ X ® Xdu(X)
4

is the co-moving tensor of inertia [1, 6).
In a similar way we introduce an affine momentum of forces:

23) N = [x® Fx)dm(x),

where F(x) is the density of forces at x € ¥, taken per unit mass of the body. When the
medium undergoes homogeneous strains only, then:

24) N = [¢-X®F(g- X)du(X).

One can easily show that the rate at which forces F do their work, is given by:

(2.5) P(p, &) = N¥g,;Q2i(o, &) ji
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or shortly:
(2.6) ? = th-Q]j*,

where (¢, £) = Eop~" is laboratory quasi-velocity of the body [6] (cf. also [1]; ERINGEN
uses the name “gyration”. All tensor indices above are related to some linear bases {¢;} < V,
{Es} < U

Differentiating (2.1) with respect to time and applying the second Newton law to all
material points, we obtain:

dK
2.7 ¥ T (E®8) - J+No
or, in linear coordinates:
iJ .
@9 A = E. Ny,

where N,,, = N+N, is the total affine momentum of both given forces (N) and reaction
forces (N,). The mentioned reactions restrict the deformative behaviour of the body to
homogeneous strains. This restriction can be achieved by an appropriate reinforcement
(for example, very thin rigid rods, randomly distributed in an elastomer biock), or, it is
assured by some structural peculiarities of the intermolecular forces in microobjects (it
seems, the radius of forces should be of the same order as the size of the body). Obviously,
the resulting homogeneity of strains is always approximate only.

Now, let us make use of the commonly accepted postulate that the reaction forces
do not do any work. Hence, (2.6) implies that N, = 0 and consequently:

dK

(2.9) - = E®8-J+N =2D,T+N,

where T = -;-g,JE‘A.ff,J" is the kinetic energy of the body [1, 6] and D, T denotes the
derivative at g in the usual sense of differential calculus on vector spaces. In coordinates

i
(2.10) Edl—(t—j = §l EIpJAB L N = 2-%—-%1\"".
It follows from (2.9), (2.10) that the symmetric part of K is nonconserved even in the
special case of free body, when only reaction forces are present (no real interactions).
The corresponding time rate is given by D, T. Hence, the Euclidean geometry of physical
space gives rise to the breaking of the full affine symmetry with which we are dealing on the
kinematical level.

Differentiating (2.2) with respect to time and comparing the result with (2.9), we obtain:

d’(p). _
@.11) (qp ® =7) 7 =N,
ie.:

2]
(2.12) &9s ysc _ 16, i

dt?
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or, equivalently:

420 .
—d%i = J a9~ '? N,

(2.13)
where J e U*®U* is reciprocal to J:J,5 J®€ = 8, (we assume that it does exist).

Hamiltonian equations of motion [6] result as a special case of (2.13). Let us assume
the Hamiltonian of the form: H = & +V, where V is a potential depending on ¢ only, and
7 denotes the kinetic term [6]:

1~ .
T (p,7m) = T-fasﬂ"t’fnjgu-

Then, denoting the corresponding Legendre transformation as %, we find:
@.14) KYo2™t = glumh gt = Flygh = FY,

where F', are laboratory quasi-momenta defined in [6]. The non-conservation of K"/ even
in the special case of free body is due to the non-vanishing Poisson bracket {F%,J,}.
It is interesting that this Poisson bracket does vanish when instead of J7,, the “non-
physical”, co-moving kinetic term &, is used (cf. [6]): {F';, 7,} = 0. This is because 7,
does not depend on g, and, consequently, it is invariant under the full linear group GL(V),
generated infinitesimally by Fi';. Hence, F{¥; and, consequently, K" become then con-
stants of motion. It appears once more that the co-moving. kinetic energy T,, although
“non-physical”, provides us with a key to understand the structure of the theory.

3. Complete system of equations of motion

Now, we will take into account the translational degrees of freedom. An internal mo-
tion will be referred to the centre of the mass. This simplification, although not necessary,
facilitates all considerations and formulas (similarly, as in the theory of the gyroscope).
We assume still the material: space to be a vector space U. The centre of the mass will be
placed at 0 € U:

G.1) Uf Xdu(X) =0,

where the regular, positive measure g on U describes a distribution of mass in the body
(the co-moving mass distribution).

We assume the physical space M to be endowed with an affine structure; the cor-
responding linear space of translations will be denoted as V.

The configuration space of the body will be identified with the manifold Q = M x
x LI(U, V).

Any point (m, p) € Q gives rise to a uniquely defined affine mapping Pp ,:U > M
such that:

D, ,0) =m, mD, (u) = qu.

7 Arch. Mech. Stos. nr I/75
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A configuration (m, ¢) should be understood as follows:

(i) the centre of the mass is placed at m e M.

(i) the radius-vector of an X-th material point, with respect to the centre of the mass,
is given by @ - X. This means that the X-th material point is placed at @,, ,(X) € M.

Generalized velocity of the body is described by a vector (£, &) eVxL(U,V);
¢ is a translational velocity (i.e. usual velocity of the centre of the mass) and & describes
time rates of deformations and rotations (£ o ¢~ is just what ERINGEN [1] calls “gyration™;
we have used the name “laboratory quasi-velocity”, because of the reasons explained
in [6)).

Let us fix some arbitrary physical point 0 € M. We assume for a moment that the phys-
ical mass distribution in M is described by a positive, regular measure », and the Eulerian
velocity field is given by an assignment: M 3 m — v(m) € V. For the sake of generality,
we assume for a while the strain state to be quite arbitrary, not necessarily homogeneous
one.

Affine momentum of the body with respect to the point o € M, is defined as follows:

(3.2) K@) = [ o ® v(m)dv(m).

M
Now, let us assume again that the body undergoes homogeneous deformations only. Let
(m, @) € Q be its configuration and ({, £) — generalized velocity. Then, (3.2) implies that:
(33) K@) = (p®&)-J+Mom ® L,

where M = [ du(m) is the total mass of the body and J — its co-moving tensor of inertia
u

with respect to the centre of the mass. Making use of affine coordinates corresponding to
bases {E,} = U, {e;} = ¥ and to the origin 0 € M, we can rewrite (3.3) as follows:

(3.4) Kii(o) = ¢4 &g JA2 + MfITI,

where f = om.

Hence, the total affine momentum K(o) equals the sum of the internal affine momentum
K.n = (p®&) - J with respect to the centre of the mass and the gffine momentum of the
centre of the mass K,.(0) = Moni®( (orbital affine momentum). If the centre of the
mass were not placed at 0 e U, this would not be the case — then some interference terms
would appear. Similarly, (3.1) implies that the kinetic energy is a sum of terms correspond-
ing to the centre of the mass and to the internal motion:

1 1
(3.5) Ty(p, &) = ‘i‘(g’ E®E I+ E'MQ', (@5 = '%*guf‘_.(f"s-f‘w+ EMguC‘C‘-
Affine momentum of forces with respect to o € M, is defined as follows:

(3-6) N = ;! om ® F(m)dy(m),

where F is the density of forces per unit mass.
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Now, let s € M be a position of the centre of the mass in the physical space: f sm dv(m) =
= 0. It enables us to express N as a sum N = N,,,+N,,,, where:

G.7) New = [ 57 ® Fm)dv(m),
38 Now, = [ 05® Fm)dv(m) = 65 ® F;

F = fF(m) dv(m) is the total force acitng on the body. Similarly, N, is a total affine mo-
mentum of all forces with respect to the centre of the mass, and N, is an affine momentum
of the total force acting on the centre of mass, with respect to the fixed origin o0 € M.

Proceeding as in§2 and eliminating the reaction forces, we obtain the following
balance law for K:

dK

3.9 =3 =(¢(@®&E - J+ML®L+N.

Similarly, one obtains the well-known balance law for the total linear momentum P =
= fﬂ(x)dv(x):

dP
(3.10) S =F
Differentiating (3.3) with respect to the time, making use of equations (3.9), (3.10) and
substituting P = M{, we obtain the following system of equations:

@3.11) Ko e ¢ @8 T4 Now,
(3.12) LA

or, equivalently:

(.13) (q: ® ‘f:T‘f) sl
(3.14) M.'_jtizf_ _F

where [ = omi is a radius vector of the centre of the mass with réspect to the fixed origin
o € M. In linear coordinates:

2

(3.15) 27 ¥4 = Jg™ " N,

dzfi :
(3.16) M—-=F.

The above balance laws form a complete system of equations of motion of homogeneously
deformable body.

T
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4. Phenomenological description of the viscous friction

Let us rewrite the equations of motion (3.15), (3.16) in the following form:

dl
@.1) 8 g3 ¢'pJP = 04,
t
d*f!
(4'2) MgU di? = Qi;
where Q4;, Q' are generalized forces. Now, let us make the following dynamical assumption:
ov
4.3) QAE=“‘m+DAb
v
(4.4) Q= —"EfT'FDu

where V: M x LI(U, V) - R is the potential energy depending on the configuration only
and D#,, D; depend on generalized velocities (and configurations) in such a way that they
vanish when the body is at rest. Hence, generalized forces D4;, D; are able to describe
dissipative and magnetic phenomena. In what follows, we are interested in a dissipation
only. Let E = T+ V denote the total mechanical energy of the body. We have the follow-
ing balance law:

dE

4.5) & an D/ Qy,+ DL,

where DJ' = ¢/c D€, g" is an affine momentum of dissipative forces D*;. (Even if magnetic
forces are present, their contribution to the energy balance, or rather to the right-hand
side of (4.5), vanishes identically).

In many practical problems concerning slow motions one makes assumption that the
friction forces are linear in generalized velocities:

(4.6) DV = —n(Q, Q)" Q" —n(Q, Y'ul™,
4.7 D' = —q(C, Q"™ Q"n—1(C, O)il™.
The components of the viscous friction, 7(£2, ), ... are allowed to depend on the con-

figuration. D, D' are purely dissipative (non-magnetic) when the following symmetries
hold:

(48) ?}(Q,.Q)ﬁm,, = 7}'('9’ 'Q)mn.fi'
4.9 n(¢, C)u = (¢, C)ji-

“Skewsymmetric” parts do not give rise to the energy balance. Obviously, (4.6), (4.7) de-
scribe most general friction forces linear in velocities. To be able to restrict the arbitrariness
of the viscous coefficients 7, one should go into details of the problem.

For example, assuming that all dissipation forces are due to the internal friction, we
obtain the following form of the corresponding dissipation forces and momenta Di,,, Dii,:

(4.10) Dl =0,
(4-11) DE: s "'?mtumngi"m
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where 7,,, satisfies (4.8) and the following additional symmetry rules:

ijnm

(4.12) ’?lntum = 7?:.“‘“""' = Nint

(i.e. dissipation caused by internal friction depends only on the symmetric part of the
velocity gradient).
Assuming isotropy of the body, one obtains [3]:

(4.13) DY, = 2,}[991)_ %8”9:";‘]+CQ;"&3”

(obviously, the viscous coefficient £ has nothing to do with the orbital velocity denoted
above by the same symbol).

Dissipation forces and momenta, corresponding to the external, i.e. surface friction,
Di_., DY, do not satisfy either (4.10) or (4.11). This is because rigid motions, i.e. transla-
tions and rotations are subject to the surface damping forces. Surface friction becomes
very important when studying the motion of small inclusions in fluids [2]. This subject
needs separate treatment. In this paper we will sketch only general ideas of describing
homogeneously-deformable inclusions by means of (4.1)-(4.4):

1) Let us assume the configuration of inclusion to be (m, @) and its generalized velo-
city: (£, £). We start with calculating the Eulerian velocity field x = Vi, o.¢,6/(%) €V,
defined inside the inclusion

(4.149) Vimo.t,0(¥) = E+&ogp™t -mx = {+Q(p, §) - mx.

(Obviously, (4.14) is well-defined all over V; however, it is physically interpretable only
inside the inclusion).

2) Let 3 < U be a (material) surface of inclusion, and 0, , = Pm, () = V —its
physical surface in V, corresponding to the configuration (m, ¢).

Now, we find a solution (rigorous, or approximate) of hydrodynamic equations de-
scribing our fluid. Let X — ¥Y(m o.¢,¢ (X) denote the corresponding velocity field of the
fluid, defined outside of inclusion and satisfying the following boundary conditions:

(4.15) Yim 0.0, 510m,0 = Vom,0,0,6|Om, o

(i.e. usual boundary conditions of viscours fluid).

3) Having Ym,4,¢,¢) at our disposal, we calculate the viscous stress tensor #(m, 4,7, <, and
consequently, the forces acting on the surface of inclusion.

4) We calculate the total force and affine momentum of viscous damping:

(4.16) Dim, 9,8,8) = [ 18406 do(),
m,p

@.17) Di(m, 92,8 = [ . o()do(),
Um‘w

where doy(x) denotes a surface element.
5) Finally, the viscous forces and momenta, D', D, should be substituted into
equations of motion (3.15), (3.16).
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If Y is a rigorous solution of hydrodynamic equations, then, in general, D', D'/ need
not be linear in ¢, &. Excepting some special cases (e.g. small “monochromatic” vibrations),
damping forces and momenta, D, DV, contain terms nonlocal in time. The corresponding
equations of motion become then integro-differential and the system is endowed with
a memory [3].
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