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706.

ON THE DISTRIBUTION OF ELECTRICITY ON TWO SPHERICAL 
SURFACES.

[From the Philosophical Magazine, vol. v. (1878), pp. 54—60.]
In the two memoirs “ Sur la distribution de l’électricité à la surface des corps conducteurs,” Mém. de l’Inst. 1811, Poisson considers the question of the distribution of electricity upon two spheres: viz. if the radii be a, b, and the distance of the centres be c (where c > a + b, the spheres being exterior to each other), and the potentials within the two spheres respectively have the constant values h and g, then— for Poisson’s writing </>(#), and for his writing Φ(^)—the question dependson the solution of the functional equations

aφ (x) + —Φ f—ή = h, 
c — x ∖c-x)c÷a,ψ(cA-j+i,φw=i'>

where of course the x of either equation may be replaced by a different variable.It is proper to consider the meaning of these equations : for a point on the axis, at the distance x from the centre of the first sphere, or say from the point A, thepotential of the electricity on this spherical surface is aφx or — φ I— \, according as vZ∕ ∖ X ∕the point is interior or exterior ; and, similarly, if x now denote the distance from the centre of the second sphere (or, say, from the point R), then the potential of
b2 ∕b2∖the electricity on this spherical surface is bΦx or -Φ — , according as the point isinterior or exterior; φ(x) is thus the same function of {x, a, b) that Φ(<c) is of c. xι. 1
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2 ON THE DISTRIBUTION OF ELECTRICITY [706

{x, b, a). Hence, first, for a point interior to the sphere A, if x denote the distance 
from A, and therefore c — x the distance of the same point from B, the potential of 
the point in question is

, δ2 , ∕ δ2 ∖= aφx + ------- Φ -------  ;
c — x ∖c-xj

and, secondly, for a point interior to the sphere Bi if æ denote the distance from B 
and therefore c — x the distance of the same point from A, the potential of the 
point is

= —≠(-)+δΦ(<4 
c-xτ∖c-x∕

The two equations thus express that the potentials of a point interior to A and of 
a point interior to B are — h and g respectively.

It is to be added that the potential of an exterior point, distances from the points 
A and B — x and c — x respectively, is

X ∖x) c — x ∖C~XJ

and that, by the known properties of Legendre’s coefficients, when the potential upon 
an axial point is given, it is possible to pass at once to the expression for the potential 
of a point not on the axis, and also to the expression for the electrical density at a 
point on the two spherical surfaces respectively. The determination of the functions 
φ(x) and Φ(zr) gives thus the complete solution of the question.

I obtain Poisson’s solution by a different process as follows:—Consider the two 
functions

a2(c - x) ax + b=5ΓP7Γ suPP°se'
and

b2 (c-χ} ax + β
=^+"s∙suppose;

and let the nth functions be
a^Λ + bii θj∙∩Q∣ ^f^ ∕3n 
⅛∙ft d^ Υn∙r "f*

respectively.

Observing that the values of the coefficients are

(a, b ) = ( — α3, α2c ), and (a, /3 ) = ( -b2, b2c ),
I c, d I I — c , c2 - b2 J I γ, δ I I — c, c2 — a2 I

so that we have
a + d = α + δ, = c2 — a2 — δ2, ad — be = aδ — ∕3y, = a2b2,

and consequently that the two equations

(λ+l)2 _ (a ÷ d)2 (λ + l)2 _ (« + δ)2 
λ ad — be ’ λ αδ — ∕3γ ’
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706] ON TWO SPHERICAL SURFACES. 3are in fact one and the same equation
(λ + 1)2 _ (c2-ct2-⅞2)2 

λ α2δ2for the determination of λ, then (by a theorem which [686, 687] I have recently obtained) we have the following equations for the coefficients( ⅛n> bn ), ( ttn, βn )
I θn, dra , ; yn, $n Iof the nth functions ; viz. these are :—1 ∕a 4- d∖w-1ana> + bn = χ2 _y {(χn+1 - l)(a« + b) + (λn - λ) (- dzr + b)},cnzr + dn= „ „ {(λn+1-1) (or + d) +(λn-λ) ( ex— a)};and similarly

+ βn = λ7∣yι (⅛i) Kλ,n+1 - 1) (θ∞ + /3) + (yl - M (- δx + β)},

yna + δn = „ „ {(λn+1-l)(7^+ δ) + (λw-λ)( yx-a)}.Observe that these equations give, as they ought to do,a0<r + b0 = aj, c0ir + d0=l, a1zr + b1 = ax + b, c1zr + d1 = ex + d ;and similarly
α0x + β0 = x, 70α+δ0 = l, α1<zj + ∕31 = ax + β, γ1zr + δ1 = 7a? + δ. 

o?Substituting in the first two equations -—— in place of x, and in the second two δa .equations ------- in place of x, we obtain the following results which will be useful :—
ana2 + bn (c - x) = a2 (ynx + 8n), 
cna2 + dn (c-x) = ∣2 (αn+1aj + βn+1), 
anb2 + βn(c-x) = b2 {enx + dn),7« δ2 + δn (c x) = — (an+1zr + bn+1),the last two of which are obtained from the first two by a mere interchange of letters ; it will therefore be sufficient to prove the first and second equations.For the first equation we haveanα2 + bn (c - x) = ()⅛l) Kχn+1 -1) + b (c “ a0] + (χn “ λ) [“ dft2 + b (c “ ⅛

1—2
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4 OX THE DISTRIBUTION OF ELECTRICITY [706where the term in { } is= (λn+1 — 1) [— a4 + α2c (c — #)] + (λn — λ) [α2 (δ2 — c2) + α2c (c — #)] ;viz. this is = a2 {(λn+1 — 1) (c2 — a2 — ex) + (λn — λ) (δ2 — ex)} ;
or it is = a2 {(λn+1-1) (y#+δ) + (λn — λ) (y# — a)}, whence the relation in question.The proof of the second equation is a little more complicated. We have 1 /‘i 4- —icnα2 + dn (c - x) = χ2_ 1 {(λ"+1 - 1) Ecα2 + d (c - «)] + (λn - λ) [cα2 - a (c - «)]},where the term in { } is= (λn+1 — 1) [— cα3 + (c2 — δ2) (c — #)] + (λn — λ) [— cα2 + α2 (c — #)].Comparing this with<⅛+ι* + ‰, = ~-1 (£±y)” ((λn+2 -1)(∞ + 3) + (λ>∙+∙ - λ) (- & + ∕3)), 
where the term in { } is= (λw+2 - 1) [δ2 (c - a?)] + (λ"+1 - λ) [- c (c2 -a2- b2) + (c2 - α2) (c - α)],it is to be observed that the quotient of the two terms in { } is in fact a constant; this is most easily verified as follows. Dividing the first of them by the second, we have a quotient which when x = c is(λn+1-1)(—cα2) + (λn — λ) (—cα2) _ α2(λn+1-l+λn-λ) α2(λ + l)(λw+1 - λ) {- c (c2 -a2 - b2)} , ~ (λn+1 - λ) (c2 -a2-b2), ~ (c2 - a2 - b2) λ ’and when x = 0 is(λn+1 — 1) c(c2 — a2 — δ2) -(λw+1-l)(c2-a2-δ2) c2-a2-δ2(λn+2 - 1) 62c + (λn+1 - λ) 02c ’ -(λn+2-l + λn+1-λ)δs, - δ2(λ + l) :these two values are equal by virtue of the equation which defines λ; and hence thequotient of the two linear functions having equal values for x = c and x = 0, has c2 ““always the same value; say it is ≈ ⅛g(χ+j) ∙ Hence, observing that a + d = α+δ,= c2 - a2 -b2, the quotient, cna2 + dn (c- x) divided by an+1x + ∕3n+1, isλ +1 c2-a2-b2 1“ c2 - a2-b2 ' δ2 (λ + 1) ’ ~b2',or we have the required equationcnα2 + dn(c-x) = & (an+1x + βn+1).
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706] ON TWO SPHERICAL SURFACES.Considering now the functional equations, suppose for the moment that g is = 0; the two equations may be satisfied by assuming
φ (&) = h ∙i--- —5- 4------ —5- 4- ∙..} L,(C0Λ! + d0 cλx + d1 JΦ (&) = — h ∙i------ 77 4-------o + ...]■ 71/.v ∣α1ic4-βι a2x + β2 JWe in fact, from the foregoing relations, at once obtainα2 a2 _ ( ω ω2 ) a2b2L

c—x™c—x ]a1x + β1 a2x + βfs"') ω ’

b2 , b2 , f ω ω2 1 ,,c— x c — x (c1ic4-d1 c2ic4-d2 )To satisfy the first equation we must have M = cιL ; viz. this being so, the equation becomes
. b2 f b2 ∖ aLh 

aφx 4--------Φ — =-------- τ ;c—x ∖c — xj c0x + d0or, since c0zr4-d0=l, the equation will be satisfied if only αZ = l, whence also 71/=1. And the second equation will be satisfied if only a = bM ; viz. substituting for L, M their value, we find ω = ab.Supposing, in like manner, that A = 0, g retaining its proper value, we find a like solution for the two equations ; and by simply adding the solutions thus obtained, we have a solution of the original two equationsα*w+⅛φG⅛H'
5⅛≠(γ⅛) + 6φw=^viz. the solution is Ail ab ) i ab (ab)2 )α (c0ze4-d0+c1zc4-dj + "'∫ (a1rc + b1 a2^ + b2 ∫.∕ x if ab (ab)2 1 ) 1 .7 f 1 1 ab 1 )Φ (x) = — A -I--------77 4------ ~x^ ÷. ∙. f + τ i------Γ-F^ d------- 7T d^ ’ ' ‘ I "(a1x + β1 a2χ+β2 j 0 (70^ + δ0 y1x + o1 )We have a general solution containing an arbitrary constant P by adding to the foregoing values for φx a term

_ ________ Pb(a-b)_______
*Ja2(c - x) —x (c2 — b2 — ex)and for Φx a term

Pa (b — a)
Vb2(c-x)-x (c2 — α2 — ex) ’
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6 THE DISTRIBUTION OF ELECTRICITY ON TWO SPHERICAL SURFACES. [706as may be easily verified if we observe that the function α2 (c — x) - x (c2 -b2- ex),writing therein ------ for x, becomes
δ c—x = (^⅛)2 {ft2 (c - ») - « (c2 - α2 - cx)} :and similarly that

b2(c-x)- x (c2 — a2 — ex),

. b2writing therein ------  for x, becomes
6 c - x

b2
≈ (c — x)2 ^c~x>~x(°2 ~ δ'2 - cxti∙More generally, the terms to be added are for φx a term as above, where P denotesZζ⅜ _ z^∖a function of x which remains unaltered when x is changed into ------- ---- —, and forΦ# a term as above with P, instead of P, where P, denotes what P becomes when ĆZ-“

x is changed into -----  . But these additional terms vanish for the electrical problem,C ““ vZ∕and the correct values of φx, A>x are the particular values given above.It is to be remarked that the functionα2 (c — x) . a2ll-.>,______ , 2g — ___________  ∙c2 — b2 — ex b2 ,
c — xviz. considering x as the distance of a point X from A, then taking the image of X in regard to the sphere B, and again the image of this image in regard to the sphere A, the function in question is the distance of this second image from A. And similarly the function

b2 (c — x) . b2■ .—— is =----------— ;c2 — αa — ex a2
c — xviz. considering here x as the distance of the point X from B, then taking the image of X in regard to the sphere A, and again the image of this image in regard to the sphere B, the function in question is the distance of this second image from B. It thus appears that Poisson’s solution depends upon the successive images of X in regard to the spheres B and A alternately, and also on the successive images of X in regard to the spheres A and B alternately. This method of images is in fact employed in Sir W. Thomson’s paper “ On the Mutual Attraction or Repulsion between two Electrified Spherical Conductors,” Phil. Mag., April and August, 1853.
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