910.

NOTE ON THE INVOLUTANT OF TWO BINARY MATRICES.

[From the Messenger of Mathematics, vol. xx. (1891), pp. 136, 137.]

CONSIDER the two matrices

and their product in one or the other order

$$MM' = (A, B), M'M = (A_1, B_1).$$

| C, D | | | C₁, D₁ |

Then the Involutant is by definition = either of the determinants

[=	1,	а,	<i>a</i> ′,	A	,	$I_1 = $	1,	a',	а,	A_1	;
1	0,	<i>b</i> ,	<i>b</i> ′,	B			0,	<i>b</i> ′,	<i>b</i> ,	B_1	1
	0,	с,	с',	C			0,	<i>c</i> ′,	с,	C_1	
	1,	d,	<i>d</i> ′,	D			1,	ď,	d,	D_1	

viz. it is to be shown that these two values are in fact equal.

We have

that is,

www.rcin.org.pl

NOTE ON THE INVOLUTANT OF TWO BINARY MATRICES.

and similarly

that is,

$$A_1 = aa' + cb', \quad B_1 = ba' + db',$$

 $C_1 = ac' + cd', \quad D_1 = bc' + dd',$

viz. A_1 , B_1 , C_1 , D_1 are obtained from A, B, C, D by the interchange of the accented and unaccented letters.

We have then, from the first expression for the Involutant,

$$\begin{split} I &= A & \begin{vmatrix} 0, & b, & b' \\ 0, & c, & c' \\ 1, & d, & d' \end{vmatrix} - B & \begin{vmatrix} 0, & c, & c' \\ 1, & d, & d' \\ 0, & b, & b' \end{vmatrix} + C & \begin{vmatrix} 1, & d, & d' \\ 1, & a, & a' \\ 0, & b, & b' \end{vmatrix} - D & \begin{vmatrix} 1, & a, & a' \\ 0, & b, & b' \\ 0, & c, & c' \end{vmatrix} , \\ &= A & (bc' - b'c) - B & (ac' - a'c + cd' - c'd) + C & (ab' - a'b + bd' - b'd) - D & (bc' - b'c), \end{split}$$

or substituting for A - D, B and C their values, this is

$$aa' - dd' + bc' - b'c) (bc' - b'c) - (ab' + bd') (ac' - a'c + cd' - c'd) + (ca' + dc') (ab' - a'b + bd' - b'd);$$

and multiplying out and grouping together the terms in bc, b'c', bc' and b'c, this is found to be

$$= -(a'-d')^{2}bc + (a-d)(a'-d')(bc'+b'c) - (a-d)^{2}b'c' + (bc'-b'c)^{2},$$

which is

$$= - \{ (a-d)b' - (a'-d')b \} \{ (a-d)c' - (a'-d')c \} + (bc'-b'c)^2.$$

Hence, writing

	$\mathbf{a} = bc' - b'c, \mathbf{f} = ad' - a'd,$				
	$\mathbf{b} = ca' - c'a, \mathbf{g} = bd' - b'd,$				
1	$\mathbf{c} = ab' - a'b, \mathbf{h} = cd' - c'd,$				
we have	$I = -(c + g)(-b + h) + a^2$,				
that is,	$I = bc - ch + bg - gh + a^2$.				

To obtain the value of I_1 , we must interchange the accented and unaccented letters, that is, change the signs of the several quantities a, b, c, f, g, h; but I, being a quadric function of the six quantities, is not altered by the change; that is, we have $I = I_1$.

10 - 2

www.rcin.org.pl

910]