910.

NOTE ON THE INVOLUTANT OF TWO BINARY MATRICES.

[From the Messenger of Mathematics, vol. xx. (1891), pp. 136, 137.]
Consider the two matrices

$$
M=\left(\begin{array}{l}
a, b \\
c, d
\end{array} \left\lvert\,, \quad M^{\prime}=\left(\left.\begin{array}{c}
a^{\prime}, b^{\prime} \\
c^{\prime}, d^{\prime}
\end{array} \right\rvert\,,\right.\right.\right.
$$

and their product in one or the other order

$$
M M^{\prime}=\left(\begin{array}{l}
A, B \\
C, D
\end{array} \left\lvert\,, \quad M^{\prime} M=\left(\left.\begin{array}{c}
A_{1}, B_{1} \\
C_{1}, \\
D_{1}
\end{array} \right\rvert\,\right.\right.\right.
$$

Then the Involutant is by definition $=$ either of the determinants

$$
I=\left|\begin{array}{cccc}
1, & a, & a^{\prime}, & A \\
0 & b, & b^{\prime}, & B \\
0, & c, & c^{\prime}, & C \\
1, & d, & d^{\prime}, & D
\end{array}\right|, \quad I_{1}=\left|\begin{array}{cccc}
1, & a^{\prime}, & a, & A_{1} \\
0, & b^{\prime}, & b, & B_{1} \\
0, & c^{\prime}, & c, & C_{1} \\
1, & d^{\prime}, & d, & D_{1}
\end{array}\right|
$$

viz. it is to be shown that these two values are in fact equal.
We have

$$
M M^{\prime}=(a, b)\left|\begin{array}{cc}
\left(a^{\prime}, c^{\prime}\right)\left(b^{\prime}, d^{\prime}\right) \\
(c, d)
\end{array}\right| \begin{gathered}
" \\
\#
\end{gathered}=\binom{A, B}{C, D}
$$

that is,

$$
\begin{array}{ll}
A=a a^{\prime}+b c^{\prime}, & B=a b^{\prime}+b d^{\prime} \\
C=c a^{\prime}+d c^{\prime}, & D=c b^{\prime}+d d^{\prime}
\end{array}
$$

and similarly

$$
\left.\begin{array}{r}
(a, c)(b, d) \\
M^{\prime} M=\left(a^{\prime}, b^{\prime}\right) \\
\left(c^{\prime}, d^{\prime}\right)
\end{array} \right\rvert\, \begin{array}{cc}
" \# & "
\end{array}=\left(\left.\begin{array}{ll}
A_{1}, & B_{1} \\
C_{1}, & D_{1}
\end{array} \right\rvert\,,\right.
$$

that is,

$$
\begin{aligned}
A_{1}=a a^{\prime}+c b^{\prime}, & B_{1}=b a^{\prime}+d b^{\prime}, \\
C_{1}=a c^{\prime}+c d^{\prime}, & D_{1}=b c^{\prime}+d d^{\prime},
\end{aligned}
$$

viz. $A_{1}, B_{1}, C_{1}, D_{1}$ are obtained from A, B, C, D by the interchange of the accented and unaccented letters.

We have then, from the first expression for the Involutant,

$$
\begin{aligned}
I & =A\left|\begin{array}{lll}
0, & b, & b^{\prime} \\
0, & c, & c^{\prime} \\
1, & d & d^{\prime}
\end{array}\right|-B\left|\begin{array}{ccc}
0, & c, & c^{\prime} \\
1, & d & d^{\prime} \\
0, & b & b^{\prime}
\end{array}\right|+C\left|\begin{array}{lll}
1, & d, & d^{\prime} \\
1, & a, & a^{\prime} \\
0, & b, & b^{\prime}
\end{array}\right|\left|\begin{array}{ccc}
1, & a, & a^{\prime} \\
0, & b & b^{\prime} \\
0, & c & c^{\prime}
\end{array}\right| \\
& =A\left(b c^{\prime}-b^{\prime} c\right)-B\left(a c^{\prime}-a^{\prime} c+c d^{\prime}-c^{\prime} d\right)+C\left(a b^{\prime}-a^{\prime} b+b d^{\prime}-b^{\prime} d\right)-D\left(b c^{\prime}-b^{\prime} c\right),
\end{aligned}
$$

or substituting for $A-D, B$ and C their values, this is

$$
\begin{aligned}
\left(a a^{\prime}-d d^{\prime}\right. & \left.+b c^{\prime}-b^{\prime} c\right)\left(b c^{\prime}-b^{\prime} c\right)-\left(a b^{\prime}+b d^{\prime}\right)\left(a c^{\prime}-a^{\prime} c+c d^{\prime}-c^{\prime} d\right) \\
& +\left(c a^{\prime}+d c^{\prime}\right)\left(a b^{\prime}-a^{\prime} b+b d^{\prime}-b^{\prime} d\right) ;
\end{aligned}
$$

and multiplying out and grouping together the terms in $b c, b^{\prime} c^{\prime}, b c^{\prime}$ and $b^{\prime} c$, this is found to be

$$
=-\left(a^{\prime}-d^{\prime}\right)^{2} b c+(a-d)\left(a^{\prime}-d^{\prime}\right)\left(b c^{\prime}+b^{\prime} c\right)-(a-d)^{2} b^{\prime} c^{\prime}+\left(b c^{\prime}-b^{\prime} c\right)^{2}
$$

which is

$$
=-\left\{(a-d) b^{\prime}-\left(a^{\prime}-d^{\prime}\right) b\right\}\left\{(a-d) c^{\prime}-\left(a^{\prime}-d^{\prime}\right) c\right\}+\left(b c^{\prime}-b^{\prime} c\right)^{2} .
$$

Hence, writing
we have

$$
\begin{array}{ll}
\mathrm{a}=b c^{\prime}-b^{\prime} c, & \mathrm{f}=a d^{\prime}-a^{\prime} d, \\
\mathrm{~b}=c a^{\prime}-c^{\prime} a, & \mathrm{~g}=b d^{\prime}-b^{\prime} d, \\
\mathrm{c}=a b^{\prime}-a^{\prime} b, & \mathrm{~h}=c d^{\prime}-c^{\prime} d,
\end{array}
$$

that is,

$$
I=-(\mathrm{c}+\mathrm{g})(-\mathrm{b}+\mathrm{h})+\mathrm{a}^{2},
$$

$$
I=\mathrm{bc}-\mathrm{ch}+\mathrm{bg}-\mathrm{gh}+\mathrm{a}^{2}
$$

To obtain the value of I_{1}, we must interchange the accented and unaccented letters, that is, change the signs of the several quantities $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}, \mathrm{h}$; but I, being a quadric function of the six quantities, is not altered by the change; that is, we have $I=I_{1}$.

