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Abstract-The evolution of civilizations according to AJ. 
Toynbee can be explained by a simple feedback model that 
may be used as a stimulating "tool for thought". Even if the 
forward path simply consists of an integrator and the feedback 
path of a pure delay element, the model gives rise to a variety 
of responses, thus demonstrating clearly the counterintuitive 
behavior of closed-loop systems. The relation of the model with 
those used in control system design is pointed out. 
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I. INTRODUCTION 

Although the title might seem to allude maliciously to the 
need of introducing a new topic in the control engineering 
curriculum, it is simply intended to specify the nature of a 
potential nontechnical application of classic control theory. 
At the same time, it is plainly allusive to the famous 12-
volume opus magnum by Arnold J. Toynbee entitled "A 
Study of History" [18], finished in 1961, in which the author 
traces the development and decay of all of the major world 
civilizations in the hi storical record. The first IO volumes of 
Toynbee's monumental work have been abridged by David 
C. Somervell in 2 volumes which are themselves a great 
hisl0rica1 achievement ( 16] and were kept as iivre de cheve, 
by Antonio M. Lepschy (1931-2005), a founding father of 
the Italian control community, whose studies on the dynamics 
of historical events date back to the mid-70s [9]. Indeed, the 
interest of the present authors in this kind of problems was 
aroused by their long-lasting collaboration with Lepschy [20]. 

The intent of this paper is to show how the evolution 
of ancient civilizations, as described by Toynbee and his 
followers, can be explained by means of classic control theory 
wols. According to the authors' experience, this uncommon 
application is particularly appealing to engineers who realize 
that the properties of feedback systems can be exploited far 
beyond industrial processes. Of course, these authors are well 
aware that a thorough understanding of the laws underlying 
complex historical phenomena would require competences that 
cannot be expected from an average engineer, and in fact the 
study of the evolution of civilizations has been the lifelong 
concern of highly knowledgeable scholars (see, e.g., (13] [5] 
[2] (17]). However, wi th due awareness of its cultural limita­
tions, the suggested applica tion lends itself well to demonstrate 

some essential properties of feedback, with particular regard 
to the emergence of counterintuitive behaviors (in the sense 
of [6]) from the interconnection of simple component parts 
such as integrators and static gains. The value of the following 
exercise rests mainly on its use as a "tool for thought", 
borrowing an expression of Rheingold (14]. 

,,~--~---~---~--~---~ 

Fig. I. The "normal evolution" exhibited by the Nile River civ ili zation from 
about 3650 B.C. to 2650 B.C. (adapted from [31). One time unit corresponds 
to 40 years. The ordinate represenlS a suitable "societal index" [2] (normalized 
10 steady state). In particular, the second rally co1responds to 1he unification 
of Upper and Lower Egypt under King Nanner and the third rally to King 
Qlla's upheaval. 

Even if neither Toynbee (18] nor Somervell (16] offered a 
pictorial representation of the evolution of civilizations, they 
did provide a precise description of the course of all known 
historical civilizalions. Essentially, they distinguish three kinds 
of civilizations: 
- the "normal civilizations" whose evolution is characterized 
by a first period of rapid growth followed by four "routs" 
separated by three "rallies" as in Fig. l (precisely, Toynbee's 
words are: "the normal rhythm seems to be rout-rally-rout­
rally-rout-rally-rout: three and a half beats"}, 
- the "arrested civilizations" characterized by a monotonic 
growth ending rather rapidly (to this category belong the Poly­
nesian, Eskimo, Nomadic, Ottoman, and Spartan civilizations), 



and 
- the "abortive civilizations" which after a short initial growth 
return to the condition before the growth (to this category 
belong the Far Western Christian, Far Eastern Christian, Scan­
dinavian, and Syriac civilizations) . 

No explicit measure of civilization level is provided by 
Toynbee. Notable attempts in this direction have been made 
by Gray [7] and Blaha [2]. In particular, the latter defines a 
societal index based on a variety of social and technological 
aspects. Since this paper focuses on evolution patterns and 
explanatory models [15] rather than accurate descriptions, 
units of maesure will be neglected. 

Previous work on the modeling of historical phenomena 
has concentrated mainly on data fitting methods. The ap­
proximations based on the solutions of linear differential 
equations can be included in this category since they try to 
account for the observed patterns by means of combinations 
of exponential modes that depend, in a rather cryptic way, on 
the coefficients of a characteristic equation [9]. Instead, the 
adopted feedback model is meant to convey insight into the 
"mechanism" that gives rise to the observations and allows us 
to evaluate the effects of changes of individual parameters on 
the response patterns. As observed in [10], a similar approach 
was followed by A.W. Phillips in the modeling of a closed 
economy for stabilization purposes [12] [19]. Indeed, there is 
a close relationship between socio-economic phenomena and 
the evolution of civilizations. 

By pursuing previous ideas [4], Section II presents a simple 
time---<lelay feedback model and shows how its response de­
pends on the forward-path gain and the extent of the delay in 
the feedback path. The model differs from that proposed in [4] 
in the number and location of its component parts: it turns out 
that only two ingredients are required to reproduce all of the 
behaviors described by Toynbee, i.e., an integrator and a delay 
element. Section III shows how to obtain different responses 
and discusses the choice of the input and the location of the 
delay inside the loop. 

II. FEEDBACK MODEL 

A widely adopted approach to the design of standard 
controllers in feedback control systems assumes that the plant 
can adequately be represented by a first-order rational transfer 
function in series with a time delay. Indeed, such a model 
approximates well the behaviour of typical complex industrial 
processes characterized by many left half-pale (LHP) real 
poles and a large pole/zero excess , and allows us to evaluate 
easily system robustness, e.g., in terms of modulus margin 
[8], which would be difficult by referring to more elaborate 
models. On the other hand, time lags are actually present 
in many applications due to transportation, measurement or 
communication delays ( cf., e.g., [21 ]). 

It seems reasonable to adopt a similar model inside a loop 
for complex historical processes, too. However, an essential 
difference with respect to the control of industrial plants is 
related to the fact that the feedback action in these kind of 
non-technical systems may not be associated with a subsystem 

that is physically distinct from the rest of the system, i.e., the 
feedback is intrinsic or endogenous, as is often the case in 
systems biology [l]. Of course, time scales are much different 
from those encountered in technological applications: histori­
cal time is usually measured in decades or even centuries. 

Based on the previous considerations, the adopted explana­
tory model is structured as in Fig. 2. It consists of a closed­
loop system whose forward path contains only an integrator 
with gain k and the negative feedback path only a delay 
element of duration td, Despite its disarming simplicity, this 
two-parameter model can generate a variety of oscillatory and 
aperiodic behaviors depending on the values of the td and k. 
The latter can be viewed as the proportional gain of a standard 
controller. 

u(tl+~y(t) 
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Fig. 2. Simple nega1ive feedback model of a civilization: the output of an 
integrator with transfer function k/ s is fed back to the input through a pure 
delay element with transfer function is e-td., . 

The transfer function from u(t) to y(t ) is clearly 

W(s)=--k- . 
s + ke-t<1s 

(I) 

According to the Nyquist criterion, stability is ensured if, and 
only if, the Nyquist diagram of the loop function L(Jw) = 
ke_,,,w /Jw does not encircle the critical point -1 + JO. Simple 
calculations show that this condition is satisfied for 

71" 
k<-. 

2td 
(2) 

Due to the presence of the delay term, the system may well 
exhibit oscillations even if the forward-path transfer function 
has just one pole in the origin, which makes the system a 
type-I system with zero steady-state error to a step input. 
Fig. 3 shows the step responses of system (I) for td = 1 and 
a number of values of k. 

Given the value of td, oscillations are present only when 
k exceeds a certain value, under which the system response 
is overdamped. For example, when td = 1, as in Fig. 3, this 
discriminating value is k, = 0.36 which leads to a critically 
damped response. Clearly, the overshoot of an underdamped 
response increases with k since the system approaches insta­
bility. The settling time, too, increases with k; correspondingly, 
the rise time decreases and the system becomes more reactive. 

The effects of the delay duration td on the system response 
are shown in Fig. 4. An increase of td reduces the stability 
margins and, thus, increases the tendency to oscillate. As is 
expected, also the pseudo-period T• of the oscillations, i.e., 
the distance between two consecutive maxima, increases with 
td and tends to 4td. 
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' Fig. 3. Step responses of the system described by the transfer function (I) 

for td = 1 and k = 0.2, 0.5,0.8, l.l, 1.4. Promptness, overshoot (if any) 
and settling time increase with k. 
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Fig. 4. Step responses of 1he system described by the transfer function ( I) for 
k = 1 and tJ = 0.1, 0.4, 0.7, 1.0, 1, .3 Oscillations become more persistent 
for larger values of ta, and their pseudo-periods longer. 

Without pretense of expert analysis, the feedback model of 
Fig. 2 lends itself to a natural interpretation. Precisely, the 
integrator in the forward path accounts for an accumulation 
process (e.g., of knowledge and experience) leading to an 
increased exploitation of resources. After a certain time, 
however, this augmented consumption deprives the system of 
resources that are necessary for further development. For such 
a depriving action accounts the negative feedback channel. 
The gain k can be thought of as a measure of system respon­
siveness, whereas td is somehow related to the availability of 
resources (either natural or manmade). The overall process 
may be considered efficient if it reaches rapidly a steady 
state compatible with the input and then maintains it without 
excessive oscillations, which depends on both parameters. 

III. SIMULATION OF DIFFERENT BEHAVIORS 

As shown in the previous section, the behavior of a normal 
civilization can be simulated well by the step response of the 
feedback model in Fig. 2. For example, the evolution of the 
Nile river civilization depicted in Fig. 1 can be obtained by 
setting td = 1.5 and k = 0. 75. In this way, the distance be­
tween two consecutive intersections of the oscillatory response 
with the steady-state value is a little more than 2td = 3 and 
the pseudo-period a little more than T, = 6, i.e., almost a 
quarter of a millennium by assuming a time unit of 40 years. 

The evolution of an arrested civilization, too, can be repro­
duced by the step response of such a model. For instance, by 
assuming td = 1.5, a behavior of this kind is obtained for 
k 5 0.25. The upper curve in Fig. 5 shows the critically­
damped behavior corresponding to k = kc = 0.25. 

' Fig. 5. The upper curve shows the evolution of an arrested civilization. It is 
obtained as the step response of the feedback model in Fig. 2 for td = 1.5 and 
k = 0.25 (critically-damped behavior). The lower curve shows the evolution 
of an abortive civilization. It is obtained as the response of the same model 
to the input e-t/2, t > O. 

The behavior of an abortive civilization cannot be obtained 
from the system of Fig. 2 using a step input because the step 
response of a type-I system tends asymptotically to reproduce 
the input. To allow for an eventual decay without adding 
further elements to the block diagram of the closed-loop 
system, an asymptotically decreasing input must be adopted. 
Such a choice corresponds to the relaxation and eventual 
disappearance of the thrust exerted on the system, which seems 
to be a reasonable assumption in many cases. The response 
of system (1) with td = l.5 and k = 0.25 to the decreasing 
exponential input u(t) = e-•/T , t > 0 with time constant 
T = 2 is also shown in Fig. 5 (lower curve). 

Clearly, the same result can be achieved using a step input 
and inserting a unit-gain smoothed-derivative filter character­
ized by the transfer function 

Ts 
F(s) = l + Ts' (3) 

with T = 2, in cascade with the closed-loop system of Fig. 



2. This additional component could account for a progressiv, 
deterioration or obsolescence of resources (Toynbee uses th, 
term "disintegration" to describe this process). 

The same procedure can be followed to generate evolution 
that fall off to the final value in an oscillatory fashion. I 
behavior of this kind is exhibited by the Greek scientifi, 
civilization accord ing to Napolitani (1 l]. Fig. 6 reproduce 
the curve shown in (1 I]. It has been obtained by filtering th, 
oscillatory step response of (I) with td 1 and k = I b: 
means of (3) with T = 10. 

Fig. 6. Evolution of the Greek scientific civilization according to [11]. The 
curve starts increasing at the middle of the fifth century B.C. (Hyppocrates 
of Chios), reaches a first maximum at the middle of the third century 
B.C. (Archimedes of Syracuse) and then declines slowly until the end of 
the fifth century A.O. (Eutocius of Ascalon) presenting, however, a second 
raiher flat maximum around the end of the third century B.C. (Pappus of 
Alexandria).This diagram has been obtained by filtering the step response of 
(I) with td = 1 and k = 1.03 by means of (3) with T = 10. 

A final remark concerns the location of the delay. If the 
delay is placed entirely in the feedback path, as in Fig. 2, the 
model response y(t) starts immediately after the application 
of the input. Instead, if the delay is placed entirely in the 
forward path of the loop, the output is equal to zero for 
t < td. An intermediate situation occurs when one part of the 
delay is placed in the forward path and the remaining part in 
the feedback path. However, since the loop function does not 
change whatever the position of the delay inside the loop is, 
the shape of the response remains the same. Fig. 7 shows the 
step responses for k = I and td = 1 when the delay element 
is located entirely in the forward path (no output delay) and 
when it is located entirely in the feedback path (output delayed 
by td). 

IV. CONCLUSIONS 

Despite its remarkable simplicity, the model of Fig. 2 can 
explain well the behaviour of all the civilizations studied 
by Toynbee and his successors. Its feedback structure and 
the nature of its two component parts lend themselves to 
suggestive interpretations, making the model a useful tool for 
thought even in a nontechnical context. 

Fig. 7. Step responses of the feedback system fork= 1 and td = 1 when 
the delay td is placed entirely in the feedback path (curve a) and when il 
is placed entirely in 1he forward path (curve b). Curve b is simply a shifted 
version of curve a. 

However, the main purpose of this contribution has been 
to show how the feedback connection can generate a variety 
of system behaviors depending on the values of very few 
parameters. 

Based on the authors' academic experience, the presentation 
of these concepts in a historical guise is appealing to control 
engineers, as well as to experts in the social sciences, and helps 
them appreciate the "mysterious" properties of feedback . 
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