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ABSTRACT: The paper deals with the topology optimization of the elastic contact problems using the level 
set approach. A piecewise constant level set method is used to follow the evolution of design domain interfaces 
rather than the standard level set method. The piecewise constant level set function takes distinct constant 
values in each subdomain of a whole design domain. Using a two-phase approximation the original optimization 
problem is reformulated as an equivalent constrained optimization problem in terms of the piecewise constant 
level set function. Necessary optimality condition is formulated. Finite difference and finite element methods 
are applied as the approximation methods. Numerical examples are provided and discussed. 

INTRODUCTION 

The paper deals with the numerical solution of a struc­
tural optimization problem for contact problems be­
tween an elastic body and a rigid foundation. This 
contact phenomenon is governed by an elliptic varia­
tional inequality. The structural optimization problem 
for the elastic body in unilateral contact consists in 
finding such topology of the domain occupied by the 
body and/or the shape of its boundary that the normal 
contact stress along the boundary of the body is min­
imized. The volume of the body is assumed bounded. 

The standard level set method (Allaire et al. 2004, 
Osher et al. 2003) is employed in structural optimiza­
tion for numerical tracking the evolution of the do­
main boundary on a fixed mesh and finding an opti­
mal domain. This method is based on an implicit rep­
resentation of the boundaries of the optimized struc­
ture. Recently, different modifications (De Cezaro et 
al. 2012, Yamada et al. 2010) of the standard level 
set method are developed to increase its effectiveness. 
Among others an arbitrary number of subdomains can 
be identified using only one discontinuous piecewise 
constant level set function taking distinct constant val­
ues on each subdomain (De Cezaro et al. 2012, Lie et 
al. 2005, Myslinski 2015, Wei et al. 2009, Zhu et al. 
2011). 

In the paper the original structural optimization 
problem is approximated by a two-phase optimization 
problem using weak and strong phases (Allaire et al. 
2004). Using the piecewise constant level set method 
(De Cezaro et al. 2012) this approximated problem is 
reformulated as an equivalent constrained optimiza­
tion problem in terms of the piecewise constant level 

set function only. Therefore neither shape nor topo­
logical sensitivity analysis is required. During the 
evolution of the piecewise constant level set function 
small holes can be created without use of the topolog­
ical derivatives . The paper extends results contained 
in (Myslinski 2015). Necessary optimality condition 
is formulated. The finite difference and finite element 
methods are used as the approximation methods. This 
discretized optimization problem is solved numeri­
cally using the augmented Lagrangian method. Nu­
merical examples are provided and discussed. 

2 PROBLEM FORMULATION 

Consider deformations of an elastic body occupying 
two-dimensional domain D. with the smooth boundary 
r. The elastic body obeying Hooke's Jaw is subject to 
body forces f (x) = (j1 (x), h(x)) , x E D.. Moreover, 
surface tractions p(x) = (p1 (x ),p2 (x) ), x E r , are ap­
plied to a portion r 1 of the boundary r. Assume the 
body is clamped along the portion f 0 of the bound­
ary r, and that the contact conditions are prescribed 
on the portion r 2, where r , n r i = 0, i f j, i,j = 

0, 1, 2, r = f'o U f'1 U f'2 . We denote by u = (u1, u2), 
u = u(x) , x E D., the displacement of the body and by 
e(x) = {e,j(u(x) )} as well as by a(x) = {a,j(u(x)) }, 
i, j = 1, 2, the strain field and stress field in the body, 
respectively. 
Let us formulate a contact problem in variational 
form. Denote by V,p and K the space and set of kine­
matically admissible displacements given by V.v = 
{z E [H1(r1)] 2 = H1(D.) X H 1(D.) : Z; = 0 on r o, i = 
1, 2} and K = {z E V.v : ZN :c:; 0 on f 2 } . Let A 



denotes the set of Lagrange multipliers A = { ( E 
L2 (I' 2) : I ( I ::S 1}. Variational formulation of con­
tact problem has the form: find a pair ( u, >- ) E K x A 
satisfying 

k a;;k1e;;(u)ek1(<p- u)dx - k f;(<p; - u;)dx - (I) 

{ p;(<p; - u;)ds + { >-(<pr - ur)ds ~ 0, lr1 lr2 

{ (( - .>-)urds s 0, (2) Jr, 
for all (cp,() E K x A i,j,k,l = 1,2. The elastic­
ity tensor satisfying usual requirements is denoted 
by {U;;k1} and the tangential (normal) displacement 
by ur(uN) , We use here and throughout the pa­
per the summation convention over repeated indices 
(Myslinski 2015). 

Before formulating a structural optimization prob­
lem for (1)-(2) let us introduce first the set 
Uad of admissible domains in the form Uad = 
{fl : n is Lipschitz continuous, Vol(rl) - Vol9iv s 
0, Per(rl) ::S consti} where Vol (rl) d;f fo dx and 

Per(rl) d;f fr dx. The set Uad is assumed to be 
nonempty. In order to define a cost functional we 
shall also need the following set M st of auxiliary 
functions M st = {17 = (171,172) E [H 1(D)]2: 17; ::S 
0 on D, i = 1, 2, 1117 ll1H'(D)]2 ::S 1} where the norm 
II 17 li[H1 (D)]'= (I:1=1 II 17; llt,(v))112. Recall from 
(Myslinski 2015) the cost functional approximating 
the normal contact stress on the contact boundary 

(3) 

depending on the auxiliary given bounded function 
17(x) E M' t . (JN and ¢N are the normal components 
of the stress field (J corresponding to a solution u sat­
isfying system (1)-(2) and the function 17, respectively. 

We shall consider the following structural opti­
mization problem: for a given function 17 E M st, find 
a domain fl* E Uad such that 

R2 x [0, t0 ) --+ R satisfying: rp(x, t) = 0, if x E Brit, 
rp(x,t) < 0, if XE !11, rp(x,t) > 0, if XE fl t. 
Function ¢ is called the level set function (Osher et 
al. 2003). 

Let us reformulate problem (4) in terms of a piece­
wise constant level set function. For hold-all domain 
D c R2 partitioned into N subdomains {rl;}i1 such 
that D = U{:,1(!1; U 8!1;) where N is a given integer 
and 8!1; denotes the boundary of the subdomain fl; 
a piecewise constant level set function ¢ : D --+ R is 
defined as (Yamada et al. 2010, Wei et al. 2009) 

¢ = i in !I;, i = 1,2, ... ,N. (5) 

Consider piecewise constant density function p : D --+ 
R2 defined as 

(x) = { E if X E D \ !l , 
P 1 1f x En, (6) 

where E > 0 is a small constant. We confine to con­
sider a two-phase problem in the domain D where 
the characteristic functions of the subdomains are 
X1(x) = 2 - rp(x) and x2(x) = rp(x) - l. Therefore 
p(x) = P1X1(x) + P2X2(x) = (1 - E)rp(x) + 2E - 1. 

Using it as well as (5) the structural optimization 
problem (4) can be transformed into the following 
one: find ¢ E ufd such that 

(7) 

where the set ufd of the admissible functions is given 
as 

Ufd = {¢ E H 1(D ) : Vol(¢) - Volgiv S 0, 

Vol(¢) d;f k p(rp)dx, 

W(rp) d;j (¢- l )(rp- 2) = 0, 

Per(¢) d;j k [ '7¢ I dx '.S const1}, 

(8) 

(9) 

( 4) The element (u., >-,) E K x A satisfies the state sys­
tem (1)-(2) in the domain D rather than n. 

3 PIECEWISE CONSTANT LEVEL SET 
APPROACH 

In (Allaire et al. 2004) the standard level set method 
(Osher et al. 2003) is employed to govern the evo­
lution of domains and to solve numerically problem 
(4). Denote by t > 0 the artificial time variable and 
consider the evolution of a domain n under a velocity 
field V. Under the suitable regular mapping T (t, V ) 
we have flt = T(t , V)(rl) = (I+ tV)(rl), t > 0. 
By n; (resp. nt) we denote the interior (resp. out­
side) of the domain flt, The domain flt and its bound­
ary ant are determined by a function ¢ = ¢(x, t) : 

4 NECESSARY OPTIMALITY CONDITION 

Using a two-phase approximation the original struc­
tural optimization problem (4) is reformulated as an 
equivalent constrained optimization problem (7) in 
terms of the piecewise constant level set function 
rp(x) . Using the Augmented Lagrangian associated to 
the problem (7) the derivative of the cost functional 
is calculated and a necessary optimality condition is 
formulated. Let us formulate the necessary optimal­
ity condition for the optimization problem (7)-(9). We 
denote byµ= {µ;}f=1 Lagrange multiplier associated 



,, 

with constraints in the set (8). Let us introduce the 
Augmented Lagrangian L( ¢,, µ) associated with this 
optimization problem: 

L(cp, µ) = L(¢,, u,, >-.,,p", q",µ) = 

Jry(¢,) + lp(cp)aijkleij(u,)eki(p")dx - (10) 

J, p(cp)fipfdx - f PiPfds + f >-. ,prds + 
D lr1 lr2 

£
2 

q"u,rds + µc(cp) + t 2~i ct(¢), 

where i,j , k, l = 1, 2. Moreover c(¢,) d~ {e;(¢,)}f:1 = 
[Vol(¢,) ,Per(¢,), W (cp)f, cT(¢,) denotes a transpose 
of c( ¢,) and f3m > 0, m = 1, 2, 3, are a given real num­
bers. The pair (p", q") E K 1 x A1 denotes an adjoint 
state defined as the solution to the following varia­
tional inequality (Myslinski 2015): 

l p(cp) aijkleij(T/ + p" )ekl('P)dx + 

f q"<prds = 0 Vcp E K 1, 
lr2 

( ((Pr +TJT)ds=0 V( EA1. Jr, 
The sets K 1 and A1 are given by 

K 1 ={~ E l/,p : ~N= O on Ast } , 

and by 

A1= {(E A ((x)= Oon B•'} , 

(11) 

(12) 

(13) 

(14) 

while the coincidence set A•t = {x E r 2 : uN + v = 
O} and 3 st = B1 U B2 U Bf U B;J:. Moreover B1 = 
{x E r 2 : >-. (x) = -1}, B2 = {x E r 2 : >-. (x) = + l}, 
B; = {x E B;: uN(x) + v = O} , i = 1,2, Bt = 
B; \ B;, i = 1, 2. For interpretation of these sets see 
(Myslinski 2015). 
The derivatives of functions p( ¢, ), c( ¢,) with respect 
to ¢, are equal to (Myslinski 2015, Zhu et al. 2011) 
p' (cp ) = 1-E, c'(cp) = [Vol' (¢,), W' (¢,), Per'(¢,)], re­
spectively. Moreover Vol' (¢,) = 1, W'(cp) = 2¢, - 3 
and 

Per' (¢,)= X{oCT=consto ) max{O , (15) 

V cp V cp 
- V · (J V cp J)} - X {o CT >consto) V · ( J V cp J ) . 

(16) 

Therefore the derivative of the Lagrangian L with re­
spect to ¢, has the form: 

!~ (¢, ) ) = lp' (¢,)[aijkleij(u,)ek1(p" + ry )-

3 1 
fi(Pf + ry )] dx + µc'(cp) + E Ac(¢,)c'(¢,) . (17) 

Using (17)-( 16) we can formulate the necessary op­
timality condition for topology optimization problem 
(7)-(9). It talces the form (Myslinski 2015): if ¢ E Ufd 
is an optimal solution to the problem (7)-(9) than 
there exists Lagrange multiplier µ* E R 3 such that 
ili, µ,2 2': 0 and satisfying for all ¢, E ufd and µ, E R3 

the inequalities 

L(ef;, µ) :<::: L(ef;,µ*) :<::: £ (¢,, µ*) . (1 8) 

Condition (18) implies (Myslinski 2015) that for all 
¢, E Ufd and µ, E R3 

3L(ef;, µ* ) > 0 and 3L(ef;,µ*) < 0 
8¢, - 8µ - ' (1 9) 

hold at the optimal point (¢,µ*) E ufd x R3 . 

5 NUMERICAL IMPLEMENTATION 

The optimization problem (7) is discretized using 
the finite difference and the finite element methods. 
The discretized optimization problem is numerically 
solved using Uzawa type iterative algorithm. The 
minimization of the Augmented Lagrangian with re­
spect to function ¢, is realized using the gradient flow 
equation. For details see (Myslinski 2015). 

6 NUMERICAL EXPERIMENTS 

The discretized topology optimization problem (7)­
(9) has been solved numerically in Matlab environ­
ment. The elastic body in unilateral contact with 
the rigid foundation is assumed to occupy two­
dimensional domain n given by 

n = {(x1,x2) E R 2 : 0 :<::: X1 :<::: 8 A 

0 < v(xi) :<::: x2 :<::: 4}, (20) 

with the function v(xi) = 0.125 * (x1 - 4) 2. The 
boundary r of the domain n is divided into three 
pieces 

r o = {(x1,X2) E R2 : X1 = 0,8 A 

0 < v(x1 ) :<::: x2 :<::: 4}, (21) 

r1 = {(x1,x2) E R2 : 0 :','. X1 :','. 8 A X2 = 4}, 

r 2 = {(x1,X2) E R2 : 0 :<::: X1 :<::: 8 A X2 = v(x1)} . 

The computations are carried out for the elastic body 
characterized by the Poisson 's ratio v = 0.29 and 
strong material Young modulus E = 2.1 • 1011 N/m2. 
The weak material phase parameter € = 10- 3_ The 
body is loaded by the boundary traction p1 = 0, 
p2 = - 5.6 • 106 N along the boundary r 1. The body 
forces f ; = 0, i = 1, 2. The computational domain 



Figure I: Optimal topology domain fl*. ¢P = 1.5. 
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Figure 2: Normal contact stress distributions for initial and opti­
mal domains. ¢,0 = 1.5. 

D = [0, 8] x [0, 4] is selected. Domain Dis discretized 
with a fixed rectangular mesh into 3200 elements. 
Auxiliary function ry in (3) is selected as a piecewise 
linear on computational domain D. Material volume 
fraction r fr = 0.5 is prescribed. The other computa­
tional parameters are equal to: the tolerance parame­
ter c:1 = 10-4, the smoothness parameter c:2 = 10- 6 , 

the penalty parameter {Ji = 10- 6 , i = 1, 2, 3. The com­
putations have been performed for the initial level set 
function qi = 1.5. 

Figure 1 presents the optimal topology domain of 
structural optimization problem (7)-(9). The big area 
with low values of density function, i.e., filled with 
the weaker material, appear in the central part of 
the domain l1 and is symmetrically distributed. Two 
smaller such areas appear near the fixed edges. They 
are slightly unsymmetrically distributed due to nu­
meric errors (Myslinski 2015). Figure 2 presents the 
distribution of the normal stress along the contact 
boundary for the initial and the optimal topology do­
mains. The peak of the normal contact stress at the 
initial topology domain has been smeared out and sig­
nificantly reduced. For the optimal topology domain 
the obtained normal contact stress along the contact 
boundary is almost constant. 

7 CONCLUSIONS 

New method for solving topology optimization prob­
lems for elastic unilateral contact problems with a 
given friction based on piecewise constant level set 
functions has been proposed. The original topology 
optimization problem is approximated by the two­
phase optimization problem and is transformed into 
the constrained optimization problem in terms of the 
piecewise constant level set function. The proposed 
method does not require to solve Hamilton - Jacobi 
equation and to perform the reinitialization process 
of the signed distance function as in standard level 
set approach. Moreover the proposed method has also 
voids nucleation capabilities as topological derivative 
based methods. It can be viewed as combining the el­
ements of SIMP and topology derivative approaches. 

The obtained numerical results that the optimal do­
mains contain the areas with low values of density 
function in the central part of the body and near tile 
fixed edges. The normal contact stress is almost con­
stant along the optimal topology domain boundary 
and has been significantly reduced comparing to the 
initial one. The proposed algoritllm is robust and finds 
optimal topologies which seems to be in accordance 
with the physical reasoning and engineering experi­
ence. Since the elliptic inequalities constrained topol­
ogy optimization problems are generally nonconvex 
it is well known that their numerically obtained so­
lutions are dependent on the initial design. Therefore 
tile obtained optimal topology domains are likely of 
local character. 
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