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Abstract 

In this report we introduce the paradigm of learning from the past which is realized in a 
controlled prognostic context. It is a data-driven exploratory approach to assessing the 
limits to credibility of any expectations about the future system 's behavior which are 
based on a time series ofa historical observations of the analyzed system. Such horizon 
of the credible expectations is derived as the length of explainable outreach of the data, 
i.e. the spatio-temporal extent for which, in lieu of the knowledge contained in the 
historical observations, we may have a justified belief to contain future system 's 
observations. Explainable outreach is of practical interest to the stakeholders since it 
allows to assess the credibility of scenarios produced by models of the analyzed system. 
It also indicates the scale of measures required to overcome the system 's inertia. In this 
report we propose a method of learning in a controlled prognostic context which is 
based on polynomial regression technique. A polynomial regression model is used to 
grasp the system 's dynamie revealed by the sample of historical observations, while the 
explainable outreach is constructed around the extrapolated regression function. The 
proposed learning method was tested on various sets of synthetic data in order to 
identify its strengths and weaknesses, formulate guidelines for its practical application. 
We also demonstrate how it can be used in context of earth system sciences by applying 
it to derive the explainable outreach of historical anthropogenic C02 emissions and 
atmospheric C02 concentrations. We arrived at conclusion that the most robust method 
of building the explainable outreach is based on linear regression. However, such 
explainable outreach of the analyzed data sets (representing credible expectations based 
on extrapolation of linear trend) is rather short. 
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1. lntroduction 

1.1. Scientific context of the project 

The problem ofuncertainty and hori zons ofcredibility1 ofpredictions of future behavior 
of Earth - cl imate system attracts growing interest as a consequence of the increasing 
demand of incorporating information about future climate into planning and decision 
making ( e.g., IPCC 2007: FAQ 1.2, FAQ 8.1; NSF 20 12; IPCC 2013: Box 1 I. 1; Otto et 
al. 20 15). Numerous scientific institutions, including IIASA, use a variety of complex 
integrated assessment models to generate a great number of prognostic scenarios in 
order to identify policy options and effectiveness of different measures for mitigating 
the climate change. Modelers make huge efforts trying to ensure the credibil ity of their 
scenarios and gauging their uncertainty, e.g., by carrying out sensitivity tests or inter­
model comparisons under standardized conditions. In particular, multi-model-scenario 
exercises are becoming increasingly popular (e.g., Meinshausen et al. 2009). 
Nevertheless, such efforts are not entirely convincing and j udging the credibi lity of 
climate model projections remains a notorious and unresolved question (cf. Otto et al. 
2015). 

In contrast to these model-related issues we propose adopti ng an alternative, data-driven 
perspective of looking at the limits to applying our current understanding of the Earth 
system for predicting its future behavior. We seek to assess these limits by answering 
the following quest ions: 

(1) Given the data rejlecting a system and their diagnostic uncertainty can we 
deduce the explainable outreach2 of these data, which express aur 
understanding of the prevailing patterns of system 's behavior and their typical 
duration? 

1 Credibility of predictions is understood as our expectations (predictions) of its performance (Otto et al. 
2015) 
2 The region - both in terms of time horizon and the range of plausible future values - within which we 
may have justifiable belief based on the past system's behaviour, thai it will contain future trajectory of 
the process' evolution. 



and 

(2) Can the explainable outreach be used for assessing limits of credibility of 
predictions? 

In order to answer these questions, we develop and apply a new (to our knowledge) 
exploratory method, which we call learning in a controlled prognostic context3. lts 
main idea is to learn about the nature of the analyzed system from its past: we use a 
part of the historical observations of the system to understand its basie dynamie and 
formulate our expectations about its future evolution (expressed as the explainable 
outreach) and then test these expectations against the remaining part of the sample. Such 
way of testing the limits of our understanding of the system based on partia] and 
uncertain knowledge (carried by a finite set of possibly imprecise4 observations) may 
inform us about the likely time horizon within which our expectations about its future 
evolution may be considered plausible in lieu of the available historical data. Therefore, 
the proposed method belongs to the realm of data analysis, NOT modelling. The 
difference between learning in a controlled prognostic context and modelling is 
explained by Figure I.) 
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Figure 1. Model prediction vs. learning in a prognostic context. Left panel : Model prediction. A 
model is calibrated against historical data (diagnostic mode) before making a prediction, e.g. by 
extrapolating the historical trend inio the future or generating a scenario pathway (prognostic mode ). 
Modelers typically do not (or cannot) indicate unii! when a model prediction is in accordance with the 
systems past (i.e. is credible). Right panel : Learning in a prognostic context. Given the historical data the 
system's dynamics can be grasped and the data 's explainable outreach be constructed. The explainable 
outreach specifies both spatial and tempora! extent beyond which we cannot explain our system anymore 
in accordance with its past. The purpose of deriving explainable outreach directly from the data is to 
indicate limits ofpredictability of the model which we built to reflect the underl ying system. 

1.2. Motivation: problems with judging the credibility of predictions 

Credibi lity of predictions is one of the central problems of statistical modelling. A 
variety of well-established statistical methods - such as regression models and machine 
learning techniques (Hastie et al. 2009, Murphy 2012) or time series analysis techniques 
(Brockwell & Davis 2002) - aim at predicting responses of the analyzed system in yet 

3 For simplicity, we call it also a prognostic learning (PL) method. Description of the method together 
with explanation of its name is provided in Chapter 2. 
4 We assume that the data are accurate (i.e. no systemat ie bias of the system's observations). 
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unobserved states5• Predictions are typically expressed in te1ms of a regression function 
(i.e. conditional expected value of the system 's response given the value of the 
explanatory state variable). Quality of predictions, usually understood as expected 
prediction error, can be controlled6 provided that the state in which we wish to make a 
prediction lays within the range of the data sample on which the analysis is based. 
However, analogous error control is formally unavailable for predictions of the system's 
responses in states laying beyond the range of the data sample (i.e. in conditions which 
may be significantly different than those to which historical observations correspond). 

Similar problems haunt also the modelling community. Their common and apparently 
unavoidable practice is to extrapolate the current understanding of the system (e.g., 
discovered trends or relationships) beyond the range of historical data sample in order 
to predict its future behavior, possibly in yet unobserved states. For example, this 
approach was employed in the study of Meinshausen et al. 2009 aiming at prediction of 
level of global warming in the future, when GHG concentrations in the atmosphere will 
be at the levels without precedence in (recent) history. However, making such 
predictions by extrapolating the observed trends beyond the range of sample is 
problematic. Unless one assumes that observed process is in some sense stationary 
(which may be a too strong assumption, e.g. in presence of varying exogenous forcing) 
one Jose the control over the quality of predictions, whose errors may rapidly increase 
the more the further away from the sample of historical observations one moves. 
Typically, modelers try to assess credibility of predictions either (I) by providing 
uncertainty ranges for the predictions7; (2) by means of sensitivity analyses8; or (3) by 
exploring the range of possible futures by means of selected scenario pathways (in 
particular in the case of computationally expensive models). Unfortunately, these 
methods are not entirely convincing due to a certain degree of arbitrariness in their 
application ( e.g. , assumed distributions of parameters underlying Monte Carlo methods 
or the choice of storylines for scenario pathways). More importantly, they do no 
indicate the time horizon within which a model predictions remain in accordance 
with the system's past9• 

The paradigm of learning in a controlled prognostic context offers at least partia! 
solution to these problems. lt is a data analysis method designed to control the growing 
uncertainty of our expectations about the system 's evolution in the immediate future. 
Moreover, this approach may provide a model-independent indicator of the time range 
within which the projections of the model may be judged credible in lieu of the past 
system behavior. 

5 i.e. in conditions not covered by the available data (out-of-sample predictions) 
6 The upper bands for probability of occurring large prediction errors are available and depend on the 
complexity of the statistical model and the length of the data sample. 
7 Assuming suitable probability distributions for values of exogenous parameters of the model they may 
be derived analytically or by means of Monte Carlo simulations. 
8 In this case possible correlations between exogenous parameters of the model are typicall y ignored. 
Changes in model responses are usua ll y analysed by varying values of one of the parameters while 
keep i ng the rest constant. 
9 By "remaining in accordance with the system 's past" we mean that predicted future trajectory of the 
system's evolution exhibits behavior similar to this observed in the past, such as the level of "sys tem 's 
inertia" or the type of dynamics . Note that this is weaker notion than stationarity of the process. 
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1.3. Objectives and scope of the report 

Objectives of this report are following: (1) to introduce the generic paradigm of the 
learning in a controlled prognostic context allowing to assess the explainable 
outreach, i.e. the region - specified in terms of time horizon and the range of plausible 
future values (uncertainty) - within which we may have justifiable belief (based on 
historical observations) that it will contain future trajectory of the system ' s evolution; 
(2) to propose a way (based on regression techniques) of implementing the PL 
paradigm ; and (3) to demonstrate its usefulness in analysis of the real data samples 
relevant to understanding the Earth climate system (e.g. anthropogenic CO2 emissions 
and atmospheric CO2 concentrations). 

The paradigm of learning in the controlled prognostic context is applicable both to: (1) 
univariate regression - like problems in which one is interested in the form of 
dependence of one quantity characterizing a system (response variable) on another 
quantity (called independent variable) which represents the state of the system or its 
forcing; and (2) analysis of the data forming a time series - in which case the time is 
treated as the independent variable. 

In this report we restrict ourselves to analysis of the time series type of data only, i.e. to 
case (2). The reason for that is two-fold. Firstly, in context of time series "predicting 
beyond the range of sample" means "forecasting or predicting the future" which 
facilitates understanding of the idea of explainable outreach. Secondly, time series 
perspective is relevant both in context of prognostic modelling and in context of 
understanding the relevant earth systems processes (such as abovementioned CO2 
emissions or CO2 concentrations). Hence, from now on (unless stated otherwise), all 
considered data samples will be assumed to consist ofpairs (t,xt) , where Xt denotes the 
value of the observable describing the system of interest which was recorded at time t. 
We will call this observable a system's state variable 10. 

1.4. Structure of the report 

ln Chapter 2 we introduce the concept of learning in a controlled prognostic context. 
There we give a definition of the explainable outreach of the data, which is a central 
notion of the proposed methodology. Next, we formulate a generic procedure of 
learning in a controlled prognostic context and discuss how it should be applied and 
how to interpret its results. We conclude Chapter 2 with explaining characteristic 
aspects of the proposed approach vis-a-vis standard methods oftime series analysis. 

In Chapter 3 we propose a way of implementing the generic procedure of learning in a 
controlled prognostic context. Namely, we show how prognostic learning can be 
operationalized with use of the polynomial regression technique. We discuss how to 
define the shape of explainable outreach and how to determine its length. We 
summarize Chapter 3 with formulation of the regression-based procedure of prognostic 
learning. 

The next two chapters are devoted to analysis of the performance of the proposed 
method. In Chapter 4 we present insights following from the experiments on various 
synthetic data sets. The purpose of these experiments is to identify strengths and 

10 or simply state variable 
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weaknesses of the proposed method and to formulate guidelines for its application in 
analysis of the real-life data. In Chapter 5 we test these insights in practice by applying 
the method to determine explainable outreach of the time series representing 
anthropogenic CO2 emissions and atmospheric CO2 concentrations. 

We conclude this report with summary and outlook for future research followed by the 
Appendix in which we present yet another way of implementing the prognostic learning 
method - this time based on non-parametric regression techniques. We also demonstrate 
the potentia! of this variant of prognostic learning method by applying it to the 
abovementioned real-life time series. 

2. Learning in a controlled prognostic context 
In this chapter we present the notion of learning in a controlled prognostic context, 
which for the sake of brevity we also call prognostic learning (PL). Broadly speaking 
the purpose of this method is to indicate both the typical length of time intervals over 
which the trends observed in the historical data sample persist, and the level of 
uncertainty in grasping these trends. 

Prognostic learning can be classified as a method of exploratory data analysis. Its aim is 
not to find a forma! statistical model which can be used for testing hypothesis about the 
historical data sample and making predictions for the future. Instead, PL method offers 
a sem i-forma! first-order description of the system 's dynamics and its "inertia" 11 

exhibited by the system over the period in which the data sample was collected. This 
" inertia" is a critical factor determining the limits to credibility of predictions of the 
system' s behavior12• 

As such, the PL method informs us solely about the system ' s behavior in the past. 
However, in this report we demonstrate that it is also useful in context of expressing 
expectations about the immediate future of the system. Rationale for this approach is 
provided by the observation that patterns in the system 's behavior in the relatively 
recent past are also likely to occur in the nearby future. Therefore, the findings of the PL 
method, which, in essence, concerns only the past of the system, can also be informative 
about its nearby future. Note that the requirement for this line of thinking to be valid is 
just that the nature of the system itself or its ex terna! forcing do not change too rapidly 
over time. This is considerably weaker requirement than stationarity of the system 
usually assumed by the forma! statistical modelling methods 13• 

11 Understood as a system's memory - a typical period within which the system does not undergo a 
significant change of its dynamics (e.g., average time horizon within which system exhibits linear 
dynamics with constant slope ). 
12 For example, if a system has underwent a sudden and unexpected changes of its dynamics in the past it 
has a low "inertia". In this case any long term prediction of the future system 's behaviour is not very 
credible. 
13 Some sort ofstationarity is required by statistical models applied for making predictions of the future 
system 's behaviour. Thai way they avoid the question of the credibility of such predictions - their 
uncertainty may be growing in time but, due to stationarity, the dynamics of the system does not change 
in any limited time horizon. On the contrary, PL method aims at indicating time horizon within which the 
system's behaviour is sufficiently well described - thus assumptions are significantly weaker. Cf. Table 2 
for further discussion. 
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It is also important to note the fact that PL method is data - driven (i.e. is based only on 
the sample of historical observations) implies also that it adopts a conservative view of 
the system. Namely, it cannot anticipate systemie surprises and behaviors which had not 
occurred in the period over which the sample ofhistorical observations was collected. 

2.1. Generic notion of the explainable outreach of the data 

The core idea of the PL approach is to deduce directly from the data their explainable 
outreach (EO), i.e. the spatial and tempora! extent beyond which we cannot explain the 
considered system only by the available knowledge about its past. The explainable 
outreach is characterized by four key attributes: (i) the instant of time in which it begins; 
(i i) diagnostic uncertainty of the state variable describing the system in this initial 
moment (defining the initial opening of explainable outreach); (iii) increase of 
prognostic uncertainty in time; and (iv) tempora! extent (quantifying the time in the 
future beyond which the system 's behavior cannot be shown anymore to be in 
accordance with its past behavior). 

Explainable outreach can be seen as a region in product space of time and the space to 
which values of the observations belong (i.e. real line). This region is induced by our 
understanding of the system (for example expressed in fonn of trend function). Its 
spatial boundaries are given by uncertainties related to the projection of our 
understanding of the system into future (e.g. prediction bands 14 centered around the 
extrapolated trend - to continue example), white its tempora! extent is characterized by 
the moment in which this projection starts and the time horizon within which the 
uncertainty region covers the trajectory of the system. 

Obviously, different hypotheses about the type of trend the system follows will result in 
different explainable outreaches. Some of them may be very long and wide (system 's 
behavior is described robustly but very imprecisely) or short and narrow (when our 
understanding of the system is quite precise but only locally correct). One would prefer 
the EO to be as long and at the same time as narrow as possible. 

Comparison of different EOs derived for the same sample may be facilitated by a score 
assigning a numeric value to the combination of EO attributes (i) - (iv). For example, 
one could use the following 

Length of tempora! extent of EO 
Score of EO = ------------­

Width of EO at its end 

Such score increases as the length of EO increases or its width decreases, thus one 
would prefer EO for which this score is the highest. 

2.2. Prognostic learning procedure 

Notice that an explainable outreach as defined above expresses our expectations about 
the consequent system 's behavior from a certain fixed instance of time on. Due to data 

14 For each instant of time prediction bands give the range which is expected to contain with predefined 
probability (called confidence level) an observation taken at !hat time. In contras!, confidence bands give 
range within which we expect to cover a true expected value of an observation. In this report we prefer to 
use prediction bands since we want to test our understanding of the system with individual data points. 
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variability and possible imprecision of our understanding of the system, an EO starting 
in another instance of time may have a different shape and length. Therefore, to gain 
some understanding of patterns of system 's behavior it is insufficient to look at just one 
EO. One should rather derive this understanding from a sequence of consecutive EOs 
resulting from a learning procedure. 

Below we provide a generic procedure of learning in a controlled prognostic context 
given the learning sample X0, ... , XT of observations of the analyzed system collected 
over the period [O, TJ: 

1. Choose a sui table set of hypotheses (e.g., a family of regression functions) about 
the rules governing the system behavior and the minimal number k of data 
points required to select the one which represents the system best. 

2. Choose the initial length T = k of the subsample X0 , ... , XT , which we call the 
learning błock (LB) 

3. Choose the hypothesis which retlects the system' s behavior best in the learning 
błock X0, ... , XT (e.g., estimate parameters of the regression function) and 
quantify its uncertainty (e.g., with use ofprediction hands) 

4. Find the EO starting at point T. To determine the shape of the EO calculate the 
uncertainty region R c [-r, oo) x lffi. spanned by the prediction of the future 
unfolding of the system based on hypothesis chosen in in point 3 and its 
uncertainty. To determine the length of the EO project the remainder of the data 
XT+v ... , XT, which we call testing błock (TB), onto region R and find the largest 
H such that15 

V T < t ~ T + H (t, Xt) E R 

lf H < T - T then length of the EO starting at point T is set to H; else it is set to 
00. 

5. lf T < T then set T = T + 1 and go to step 3; else end procedure. 

The above procedure explains the meaning of the name "learning in a controlled 
prognostic context": we learn about the patterns of the past system behavior (step 3.) 
and then test this knowledge applying it in a prognostic mode in the controlled context 
of the remainder of the data sample (step 4.). 

Assessment of the tempora! extent of the EO, H, from step 4 of the learning procedure 
requires a discussion. lt is either finite (not longer than the historical sample itself) or set 
to infinity. In the first case finite time horizon of the EO indicates limits within which 
we can sufficiently well predict system 's evolution after time T by means of the method 
selected in step I to grasp the system 's dynamics in the learning błock X0, ... , XT. In 
other words, it indicates the limits to credibility of predictions of the system 's behaviour 
after time T based on our understanding of the system 's dynamics given the knowledge 
carried by the subsample X0, .. . , XT. On the other hand, infinite time horizon indicates 
that we are unable to falsify this understanding of the system 's behaviour with use of 
the testing part of the sample XT+1 , ... , XT (i.e. we have no ground to reject our 

15 lf the hypothesis about the system's behaviour is formulated in terms of a regression model, the 
requirement that all points between time T and T + H belong to R may be relaxed - only a sufficient 
portion ofthese points should fali into R. 
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hypothesis about the system 's nature ). There are two possible reasons for such situation 
to occur: either our understanding of the system is exceptionally good or the testing 
sample is too short to provide evidence against it16. This indicates an important 
constraint of the PL approach (indeed, of any data - driven method), namely that data 
resources (length of sample of historical observations) set limits to the level of detail 17 

with which we wish to describe analyzed system. 

2.3. Applying the prognostic learning procedure and interpretation of 
its results 

Learning in a controlled prognostic context is essentially a model - independent 
paradigm of exploratory data analysis. By this we mean that it does not presuppose any 
particular model which reflects our a priori knowledge 18 or belief about the analyzed 
system, and which may be calibrated on the sample of historical observations and then 
used for making predictions. On the contrary, PL approach is purely data - driven: we 
explore a sufficiently broad family of alternative methods of describing the system 's 
behavior (e.g., different types of regressions) by running a PL procedure (cf. section 
2.2) for each of them and then select the one which yields the best explainable 
outreaches. 

After completing this task, we obtain a sequence of explainable outreaches indexed by 
their starting moments T = k, k + 1, ... , T. Technically, this infotm us how credible our 
predictions based on partia! knowledge about the system 19 were over the time interval 
[O, T]. In particular it provides no confirmed (tested) infonnation about the explainable 
outreach starting at time T and expressing our expectations about the immediate future 
of the system. This cannot be done formally without additional and restrictive 
assumptions (e.g., stationarity of the system), however, such exercise stili may be 
informative. lf only the behavior of the EOs over the period [O, T] was regular enough 
(i.e. , EOs have comparable scores, implying similar lengths and widths) and the last T 

for which EO has finite length is sufficiently close to T we may attempt to extrapolate 
the characteristics of (tested) EOs to formulate expectations about likely shape and 
temporal extent of the (untested) EO starting at time T. 

In principle, the results of PL method give us insight into system 's "inertia". Such 
information may be useful for decision makers trying to influence future behavior of the 
system (e.g., mitigate global warming by implementing certain policies). Firstly, it 
indicates likely directions of future system evolution under "business as usual" 
conditions20 which is a reference point with respect to which any policy is formulated. 
Moreover, it indicates the time horizon within which we may have some confidence in 
quality of predictions based on our understanding of the system. Secondly, it indicates 

16 Falsifying a good hypothesis may require a very long testing sample. In the extreme (but very unlikely) 
case, when we perfectly understand our system (i.e. know the process generating data - both in the past 
and in future) we wouldn 't be able to falsify it with use of any test sample of finite length. 
17 Understood as complexity of the hypothesis about the system 's dynamics. 
18 Additional knowledge (e.g. about a particular type of dynamics the system follows) obtained 
beforehand from some other source than the learning sampleX0, ... , XT. 
19 i.e. knowledge carried by learning blocks X0, ... , X,, T < T. 
20 i.e. in situation when current dynamics of the process and external forcing I policies / measures will not 
change. 
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the strength of the measures needed to overcome the system 's inertia and to shift its 
future evolution towards the desirable path21 • 

PL methodology may also be applied to assess scenarios produced by a particular model 
of the system of interest. lf a scenario falls out of the EO before its end it means that the 
model predicts a change in the system ' s dynamics (w.r.t. its past behavior). lf so, then 
modeler should explain what is the reason for that, e.g. what significant changes the 
system is expected undergo under that scenario. lf the future trajectory under "business 
as usual" scenario falls outside the EO it may indicate inadequacy of the model to 
describe the system of interest. 

No a priori 
Suffic1ently ntch set ot 

alternatives in 
knowledge about describing system's 

the system 
behaviour 

A model 
Specific form of model 

representing a 
priori knowledge projections as a 

about the svstem 
funciton of time. 

System's inertia and 
its uncertainty 
Time horizon of our 
undersanding of the 1. 

.__s_v_st_em _____ _ .... 

• • Adequacy of the 
model to describe the 
system 

• Time horizon for 
credible predictions 

Figure 2. Two modes of applying the learning in a controlled prognostic context paradigm. In 
exploratory data analysis mode the selection of the best method to represent system 's behavior and 
construct EO is purely data driven without use of any a priori knowledge. EO indicates the inertia of the 
system and uncertainty and time horizon of our understanding of the system. In model assessment mode a 
model-specific form of a trend function is fed into the PL procedure in order to assess model ' s ability to 
accurately describe the system and to quantify lirnits to its predictions. (This mode is not considered in 
this report). 

We also speculate that a modification of the PL method may be applied to assess a 
particular model and its projections even more directly. lf it is possible to express the 
model prediction as a function of time ofa certain form (dependent on initial conditions 
and values of exogenous parameters) and calculate a region spanned by the projection 
and its uncertainty one can use this function directly in the prognostic learning 
procedure (see section 2.2). Then resulting EOs could indicate the time horizon within 
which the model is sufficiently adequate to describe the system 's evolution. However, 
this generic approach would require designing of a model-specific implementation of 

21 If the system ' s trajectory under a scenario corresponding to introduction of certain poi i cy stays within 
the explainable outreach it indicates that the effectiveness of such policy remains uncertain within the 
time horizon ofthis EO. 
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the PL procedure in order to make it operational. This modification of PL approach has 
not yet been tested and will not be covered in this rep01i. 

2.4. PL versus forecasting with use of time series ana lysis 

The variant of the prognostic learning paradigm discussed in this report treats the data 
fo1ming a time series. It is, however, quite different form the commonly used time 
series analysis (TSA) methodology. While PL trades only approximate understanding of 
the behavior of the data itself for ability to indicate limits to this understanding and 
generality of the method, the TSA strives for complete understanding of the data 
generating process and applying this knowledge for making predictions. 

Typically, TSA is based on decomposition of the time series into deterministic 
component (functional trend, seasonal component, oscillations) and stochastic part. The 
detenninistic part can be estimated from the data with use of broad range of various 
techniques (such as regressions, curve fitting, smoothing methods, wavelet analysis etc.) 
The overarching goal is to estimate the dete1ministic part so that it fits the data as close 
as possible while its extrapolation properties are a lower priority concern. Nature of the 
stochastic part is infe1Ted from the behavior of residuals (i.e. remaining part after 
removing the estimated deterministic component from the data). This is usually clone by 
fitting a suitable time series model (such as ARIMA or GARCH). 

Obviously, the estimate of the deterministic component of the time series significantly 
influences the behavior of residuals and thus the statistical model of the stochastic part. 
As the latter may be quite complex and difficult to estimate (e.g. , due to scarcity of the 
data resources w.r.t. number of parameters in the model) the problem of estimation of 
the deterministic component is somewhat subordinate to analysis of residuals. Estimate 
of the deterministic part is expected to produce residuals for which the statistical model 
is as sim ple as possible. The literature of the subject puts much more emphasis on the 
statistical models of the residuals, typically assuming that the deterministic component 
of analyzed time series has already been removed with use of some suitable technique 
(e.g., Brockwell & Davis 2002). 

Once the time series is described in terms of deterministic function of time and 
statistical model of residuals one may use this knowledge for making forecasts. In order 
to do so the detenninistic trend is extrapolated and the behavior of the stochastic part 
(i.e. residuals) is either determined theoretically (e.g., prediction bands obtained under 
stationarity assumptions) or simulated (using the statistical model of residuals). 
However, such forecasts should be considered with caution. Technical problems may 
arise due to incorrect structure of the model of stochastic part and/or bad extrapolation 
properties of the function describing detenninistic component (such as instability due to 
uncertainty in estimated values of function parameters). Some techniques of describing 
the detern1inistic part such as smoothing splines even rule out the possibility of 
extrapolation. Moreover, when making forecasts the description of the analyzed time 
series (i.e. detenninistic function plus statistical model of residuals) are treated as the 
true process generating data which will never change. As a result, indicator of a time 
horizon within which the predictions are credible cannot be derived from TSA 
methodology. 

IO 



We conclude this section with Table I summarizing differences between PL method and 
TSA. 

Table 1. Prognostic learning versus time series analysis. 

Approach 

Assumptions 

Principle 

Learning in a controlled 
prognostic context 

Data - driven exploratory 
analysis. Emphasis on 
striking balance between 
approximate understanding 
of the system and ability to 
indicate the limits to this 
understanding. 

No systemie surprises 
(behaviors unobserved tn 

the past will not happen in 
the future) 

Optimization of the EO. 
Selecting the type of trend 
generating the longest and 
narrowest EO. 

Measure 
performance 

of Score of the explainable 
outreach 

Predictions 

Time 
within 

horizon 
which 

forecasts are 
supposed to be 
reliable 

Data-driven model describes 
the system only 
approximately correctly and 
uncertainty of predictions 
inevitably grows in time. 
The method does not 
strive for perfect 
predictions. It aims to 
understand their limits. 

Expected length of the EO 
based on the assessment of 
the results of the prognostic 
learning procedure. 

Time series analysis 

Deterministic 
component 

Stochastic component 

l nferring the data generating process. Emphasis on 
statistical model of the stochastic component, while 
estimate of deterministic component is to yield 
desired statistical properties of the residuals. 

Particular form of the 
dependence structure / 

Particular form of trend model of residuals. 
function. Usually also normality 

and weak stationarity of 

Fitting a 
minimizing 
error. 

function 
in-sample 

Typically sum of squared 
errors or mea n są uared 
error 

Within the range of 
observed sample the 
fitted function is 
interpreted as expected 
value of observations. 
Extrapolation of fitted 
function beyond the 
range of sample may be 
interpreted in the same 
way but there is no 
possibility for controlling 
the error of predictions 
with use of such 
extrapolation. 

residuals is required . 

Estimation 
data values 

from 
of 

the 
the 

model parameters that 
minimize expected 
forecast error. 

Typically expected mean 
squared error 

Future behavior of the 
stochastic component 
(typically expressed tn 

form of prediction or 
confidence bands) is 
der i ved from the 
statistical model of 
residuals either 
theoretically ( usually 
under assumption of 
stationarity) or by means 
of simulations utilizing 
model structure. 

Unknown. Fitted model of the time series (ie . 
estimated deterministic component and statistical 
model of the stochastic part) is treated as the true data 
generating process and as such universally correct. 
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(I) Diagnostic uncertainty (I) Uncertainty ITI 

( 1Tieasurements errors) (I) Uncertainty ITI the estimate of deterministic 
reflected by initial opening form of the function component defining 

Sources of of the EO; and (2) describing deterministic residuals; (2) uncertainty 
uncertainty prognostic uncertainty component; and (2) of structure of model of 

which grows into the future uncertainty in the residual s; and (3) 
retlected by the shape of the parameter estimates. uncertainty of estimates 
EO of model parameters . 

3. Regression - based construction of the EO 
In this chapter we propose a practical method of implementing the generic paradigm of 
learning in a controlled prognostic context presented in Chapter 2. Making this generic 
notion operational requires addressing the following problems: 

1. Grasping the behavior of the data from the learning błock and quantifying the 
diagnostic uncertainty in order to specify direction and initial width of the EO. 

2. Defining the shape of the explainable outreach (i.e. its spatial boundaries). 

3. Determining the length of the EO by testing it against the data from the testing 
błock. 

Below we propose a solution to these questions which is based on the regression 
techniques. 

Ad 1. The trend in the data is grasped by means of a regression function fitted to the 
points from the learning błock. For each moment tbelonging to the learning błock the 
value of regression function at that moment is interpreted as the expected value of the 
observation taken at time t. The extrapolation of the regression function defines the 
main axis around which the EO is constructed. The diagnostic uncertainty is expressed 
as standard deviation of residuals (i.e. differences between the regression function and 
the actual observations) and defines the initial width of the explainable outreach. 

Ad 2. The shape of the EO (i.e. its upper and ]ower band) is given by extrapolation of 
the prediction bands calculated for the regression model fitted to the learning błock. 

Ad 3. Given the shape of the EO its length is determined by projecting remainder of the 
learning sample (i.e. testing błock) onto it. The moment in which the EO ends is defined 
as the earliest moment for which the position of the testing points with respect to the EO 
starts to be very unlikely if the regression model fitted over the LB is correct and true 
also beyond its range. 

The details of the proposed solution depend on the specific regression technique to be 
applied. In the remainder ofthis section we give these details for the prognostic learning 
procedure based on the polynomial regression. In Appendix B we present an alternative 
PL procedure based on loca! linear regression method. 

3.1.Analysis of historical patterns in learning phase with use of 
polynomial regression 

The polynomial regression is a widely used parametric technique of data analysis. Its 
popularity comes from the fact that it is a relatively simple and straightforward 
generalization of the classic linear regression method as well as from the tlexibility of 
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the family of polynomial regression functions22 • It is also a popular technique of 
estimating the deterministic part of a time series (Brockwell & Davies 2002). 

In order to grasp the historical trend in the learning błock we use a model ofpolynomial 
regression of order p 

x(t) = a0 + a1t + a2t 2 + ··· + aµtP + Et 

where x(t) = Xt is a value of the observation taken at time t and the noise term Et is 
normally distributed with zero mean and standard deviation CJ. Moreover, we assume 
that Et, t = O, 1, 2, ... , are independent and identically distributed. 

Let the learning błock contain n observations taken in times ti, ... , tn. We estimate 
parameters of the regression function 

X(t) = ao + U1t + a2t2 + ··· + aµtP 

with use of the ordinary least squares (OLS) method (Wolberg 2006: chapt. 2). The 
uncertainty of the fitted regression function at time t is then given by formula 

sx(t) = 
p+lp+l 

If=1(.x(t;) - x(t;))2 """" tj+k-2[c-1]. 
n-(p+l) ?,L J,k 

J=l k=l 

where [c- 1 ]j,k is the entry at the cross-section of the j-th row and k-th column in the 
inverse of matrix 

C = [f tJ+k-2] . 
i=l J=l, ... ,p+l 

k=l, ... ,p+l 

The diagnostic uncertainty over the learning błock is assumed to be constant and is 
estimated as a standard deviation of the model residuals 

If=i (x(t;) - x(t;))2 

n - (p + 1) 

Upper and !ower prediction bands at the confidence level (1 - a) for the observations 
taken at time t are then given by the formulas 

fup(t) = X(t) + tn-(p+l),1- a/2✓ sx(t) 2 + Si 

and 

fi.ow(t) = X(t) - tn-(p+l),1-a/2✓sx(t) 2 + Si 

respectively, where tn-(p+l),l- a/2 is (1 - a/2) quanti le of the t-Student distribution 

with n - (p + 1) degrees of freedom. Notice that parameter a regulates the width of 
the prediction bands (the !ower the a the wider the prediction bands). Observe also that 
distance between prediction bands, i.e. fup(t) - fiow(t), increase with p-th power oft. 

22 Jndeed, any continuous trend in the data can be locally approximated with arbitrary precision by a 
polynomial of sufficiently high order. 
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3.2. Construction of the EO 

The explainable outreach starts at time r = tn, i.e. the moment in which the last 
observation of the learning błock was taken. The EO is built around the extrapolated 
polynomial trend fitted to the data in the learning błock, that is around x(t), t ;?: r. Its 
initial width is defined as furCr) - fiowCr) and is determined by the diagnostic 
uncertainty Sr. The shape of the EO, i.e. its upper and )ower band are given by functions 
fur (t) and fiow(t) for t > r , that is the prediction bands for regression model 
extrapolated beyond the learning błock. 

Notice that in order to define the initial width and the shape of the EO only the 
information about the system 's behavior in the learning błock is needed. However, to 
determine its tempora) extent (time horizon) additional knowledge carried by the 
remainder of the learning sample (testing błock) is required. This remaining subsample 
is used to determine until when our expectations about the future system ' s evolution 
after time r represented by the EO (given only the knowledge contained by the learning 
błock) are in accordance with the actual evolution of the system after that time. 

To explain how we detern1ine the moment in which the EO cease to be in accordance 
with the actual system ' s evolution let us assume for a while that we know the evolution 
of the analyzed process only up to the moment r and the m remaining points in the 
testing błock (ti,X1 ) , ... , (tm,Xm), t 1 = r, tm = T, are unknown. In addition, let us 
define an auxiliary sequence of random variables 

Ek = {Q if Xk ff. [fiow(tk),/up(tk)] 

1 ifXk E [fiow(tk),/up(tk)] 

where (ti, X1), ... , Ctm, Xm) are the yet unknown points from the testing błock. 

Now observe that ifthe regression model fitted to the learning błock correctly describes 
the evolution of the analyzed process then also the points from the testing błock should 
follow this model. lf that is so, then by definition of the prediction bands at the 
confidence level (1 - a) the probability that the future observation taken at time t ;?: r 
will fali into interval Uiow(t),fup(t)] is equal to (1 - a) . Thus Ek = 1 with probability 

(1 - a) and Ek = O with probabi lity a. In other words, all Ek, k = 1, ... , m follows the 

Bernoulli distribution with parameter (1 - a) 23. Moreover, if the regression model 
fitted to the learning błock is correct also for the observations in testing błock, then 
these observations are independent. Therefore, all Ek, k = 1, ... , m are not only 
identically distributed but also mutually independent. As a consequence, for each 
k = 1, ... , m, a random variable 

k 

sk = LE; 
i=l 

23 Random variable X follows the Bernoulli distribution with parameter p if P(X = 1) = p = 1 - P(X = 
O). Random variable X is the outcome of a so called Bernoulli trial , i.e. a random experiment with only 
two possible results : success (coded as I) which occurs with probability por failure (coded as 0) which 
happens with probabi lity (1 - p). 
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has a binomial distribution B(k, (1 - a)) 24. Sk may be interpreted as the number of 
points among the first k points of the testing błock which falls into the prediction hands. 

In order to determine the length of the EO25 we confront our expectations based on 
fitted regression model about the distribution of future observations (formulated above) 
with the actual observations form the testing błock, denoted by (t1,x1), ... , (tm,Xm)­
Let ei, ... , em be the actual values of the random variables E1 , ... , Em and Jet for each 
1 ~ k ~m 

be the actual number of points among the first k points of the TB which fali into the 
prediction hands. Recall that if our regression model is true, sk should follow the 
binomial distribution B(k, (1 - a)). This is the key observation allowing us to find the 
tempora] extent of the EO. Namely we set the end of the EO to be the first moment tk 

for which actual value of sk is an unlikely outcome given our understanding of the past 
of the process (represented by the fitted regression model). The observed value sk is 
considered unlikely if the joint probability of such event and all not more probable (i.e. 
all events in which from the first k points of the TB only sk of them or less fali into the 
prediction bands) is less than some suitably selected low threshold p0 . For the sake of 
consistency, we use Po = a. 

To summarize the above argument we present the algorithm for finding the length of the 
EO: 

I. Select threshold Po (e.g. equal to a) and set k = 1. 

2. Calcu late sk (i.e. the number of points among the first k points of the TB which 
fali into the prediction bands). 

3. Let Fk,(t- a) be the cumulative distribution function of the binomial distribution 

B(k, (1 - a)). If Fk,(t- a)Ćsk) < Po then we set the end of the EO to the 
moment tk-t , its length H to k - 1 and we stop the algorithm. 

4. If k = m (i.e. testing błock is exhausted) then we cannot determine the end point 
of the EO. We stop the algorithm and set EO length H to oo. 

5. Set k = k + 1 and go to point 2. 

3.3. Procedure of prognostic learning based on regression method 

To wrap up the present chapter, below we provide the procedure for prognostic learning 
based on the regression techniques presented above. It is a method - specific version of 
the generic PL procedure formulated in Section 2.2. 

24 Binomial distribution B(n,p) is a distribution ofa number ofsuccesses in the n independent Bernoulli 
trials with probability of success p. 
25 i.e. the time horizon within which we have no reason not to believe that the actual observations are in 
agreement with our understanding of the system's dynamics based on its past 
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I. Choose the regression technique (e.g., polynomial regression of certain order) 
which will be used to grasp the data behavior in the learning błock. 

2. Choose the initial length k of the learning błock X0, ••• , Xn r = k. (Note that k 
should be large enough with respect to the complexity of selected type of 
regression function in order to ensure good estimates of the trend function 
parameters and to prevent overfitting26.) 

3. Fit the regression model to the learning błock Xr-k, ... , Xr-

4. Construct the EO sta1iing at time r following the guidelines presented in Section 
3.2 and determine its length H. 

5. If r < T set r = r + 1 and go to step 3. In the opposite case end the procedure. 

Notice that in step 3 we ignore a part of the learning błock X0, ... , XT discarding all but 
last k points. In effect, at each stage of the learning procedure we fit a regression model 
to the data points falling into a window of fixed length k, which we move along the 
learning sample in course of the learning procedure. We call this version of PL method 
"rolling window". Using window of fixed length is advantageous in two ways. Fi rst, it 
allows for easier comparison ofEOs at different stages of the PL procedure, since width 
of each EO is determined not only by the uncertainty of the regression model but also 
by the number ofpoints used for fitting this model. Ifthis number is fixed, the widths of 
EOs depends only on appropriateness of regression model to grasp the data behavior in 
corresponding learning blocks. Secondly, by using only k last points from each learning 
błock makes the method more responsive to the loca! behaviour of the data, 
acknowledging that the recent data points are more relevant to the direction of the EO 
than the points from the beginning of the learning sample. Throughout this report the 
"rolling window" learning procedure will be used27. 

We conclude this chapter by emphasizing that the formulas for estimates of prognostic 
diagnostic and prognostic uncertainty as well as for prediction bands defining the shape 
of the EO given in Section 3.1 are applicable exclusively to polynomial regression. 
However, method of constructing the EO described in Section 3.2 and prognostic 
learning procedure given in Section 3.3 are readily applicable to any type of regression 
method for which the prediction bands can be calculated and extrapolated beyond the 
range of the LB. (Note, however, that the assumption on independence of residuals of 
the fitted regression model must be satisfied). For example, these sections are 
immediately applicable to the prognostic learning procedure based on non-parametric 
regression (as demonstrated in the Appendix). 

26 i.e. situation, in which flexible trend function is not sufficiently constrained by short sample of data 
points and too closely mimics the random layout of the data points. Overfitting has strong negative impact 
on the quality of model predictions. 
27 Another version of the PL method which at each stage makes use of the whole learning błock is equally 
easy to implement as the "rolling window" procedure (in step 3 of the procedure one only needs to fit a 
model to all points X0, ... , X, instead of the last k ones). We call this version "expanding". lt is useful 
when we want to check whether the selected regression model is able to correctly grasp the system 's 
dynamics over the whole period covered by the learning sample. This method is also used in the 
Appendix where we employ nonparametric regression techniques to grasp the behaviour of the data in the 
learning błock. As these methods use only loca! information (i.e . regression curve is determined only by 
the nearby points, not the whole sample) the effect of increasing length of LBs on the EO (especially in 
its width) is negligible. 
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4. Assessment of prognostic learning performance in the 
controlled conditions. Monte Carlo experiments 

Before we apply the prognostic learning procedure based on the polynomial regression 
(described in the previous chapter) in analysis of the real-life data we first test its 
performance under controlled conditions, that is, we conduct Monte Carlo experiments 
by repetitively running PL method on synthetic data sets. 

Having full knowledge about the true trend in the synthetic data and the control over the 
strength of noise disturbing that trend allow us to clearly identify strengths and 
weaknesses of the PL method as well as their reasons. This enables us to draw useful 
conclusions and to formulate guidelines for applying the PL method in analysis of the 
real-life data. 

By choosing to work with synthetic data we overcome a problem of data scarcity, which 
often occurs when working with real-life data. Real-life data sample is often too short to 
support application of PL method of higher order28, whereas synthetic data sample may 
be of any desired and suitable length. In addition, we may always afford to have 
additional sample used exclusively for testing our expectations about the length of the 
EO starting at the end of the learning sample. Moreover, we can generate multiple 
independent data sam pies following the same fixed deterministic trend and compare the 
performance of the PL method applied to each of them. This gives us the ability to study 
the stability of the method. In addition, we can repetitively compare the predicted and 
actual lengths of the EO starting at the end of the learning sample in order to test the 
extent to which we can use the insight given by the PL method about the dynamics of 
the observed system to inform us about its immediate future. 

In the present chapter we describe the method which we use to generate synthetic data 
samples used for testing the PL method in controlled conditions, purpose and setup of 
performed numerical experiments and their results. We conclude this chapter with some 
generał observations and guidelines of applying the prognostic learning procedure based 
on the polynomial regression. 

4.1. Method of generating the synthetic data 

The synthetic data samples were generated in the following way: 

1. We choose the length of the sample N. For simplicity we assume that tk = k, 
1 :S: k :S: N, where tk denote times for which synthetic observations are 
generated. 

2. We choose a suitable trend function f which synthetic data will follow. 

3. We choose the strength of the noise with which we disturb the true trend f. This 
strength is defined by the standard deviation c, of the noise, which we express as 

28 Learning błock required for good estimation of parameters of higher order polynomial trend may be 
of comparable length as the whole learning sample leaving too few points for meaningful testing of the 
explainable outreach 
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a percentage of the width of range of the trend function values29 (for example, 
CJ = O.Ol X (max1,;ksN f (tk) - min1 ,;k,;N f (tk)). 

4. We generate a synthetic sample (tk,xk), 1:::; k:::; N, by setting xk = f(tk) + 
Ek, where E1, ... , EN is a sequence of independent random variables following 
norma! distribution of zero mean and standard deviation CJ. 

In Section 4.3 we present result of running the PL method on five different synthetic 
data sets. Two of them follow polynomial trends which belong to the family of 
regression functions used in the employed regression method. Namely these are: the 
linear trend and the 4th order polynomial trend. They were selected in order to test the 
performance ofthe PL method on trends of low (linear) and high (4th order polynomial) 
complexity in nearly ideał conditions30, where polynomial regression may give an 
unbiased31 model fit. 

The remaining three synthetic data sets do not follow trends of polynomial type, thus 
allowing us to test the performance of the PL method in situations where the employed 
regression technique is not able to reproduce the true trend in the data (i.e. it provides 
only a biased estimate of the true trend). Moreover, they are intended to mimie the types 
of behavior often encountered in the real-life data. Namely, considered synthetic 
sam pies follow: exponential trend (increasing trend whose rate of increase accelerates), 
logarithmic trend (increasing but with decreasing slope) and sinusoida! with long period 
of oscillations, comparable with the length of the sample (to mimie a situation when 
apparent loca! trends in the historical data are in fact results of slow, long-term 
oscillations). 

Before we present the actual results of applying the PL method on the abovementioned 
synthetic data samples, in the following section we describe the setup and details of 
performed experiments. 

4.2. Description of experiments on synthetic data 

The numerical experiments we perfonn for each of the abovementioned types of 
synthetic data involve multiple Monte Carlo runs of the "rolling window" variant of the 
polynomial regression based PL procedure. Each of the experiments corresponds to a 
fixed combination ofvalue oforder of the method (i.e. the degree ofpolynomial used in 
the regression model), level of noise and length of the learning błock. 

Objectives ofthese experiments are two-fold. Firstly, we want to identify situations (i.e. 
patterns in the loca! behavior of the data forming the learning błock and the strength of 
the noise) in which the proposed method of prognostic learning presents its strengths or 
performs poorly. Secondly, we investigate the influence of order of the PL method, 

29 Expressing the strength of noise in relation to the range of the true trend function instead ofin absolute 
terms allows us for easy comparison of different types of synthetic data samples. 
30 In principle, in noiseless conditions il would be possible to determine both past and future behaviour of 
the data given only relatively few points in the LB. 
31 We say thai estimator is unbiased if its expected value is equal to the estimated quantity. In case of 

regression methods, we say that fitted trend/ is unbiased estimate oftrue trend f if E (/Ct)) = f(t) for 

all t within the range (period) of the sample. Fitted regression model is necessarily biased ifthe true trend 
does not belong to the family of considered regression functions. 
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strength of the noise and length of the learning błock on the performance of the PL 
method. 

In addition, we explore the reliability ofpredictions of future EO lengths both in-sample 
(i.e. using the actual EO lengths32 in stages up to the present one in order to predict the 
EO length in the next stage of the PL procedure) as well as out-of-sample (i.e. using EO 
lengths calculated for all stages of the PL procedure in order to predict the length of the 
EO starting at the end of the learning sample on which the PL procedure was run). In 
both cases predictions are made by fitting the linear function (with use of the OLS 
method) to all available (finite) values of the past EO lengths and then extrapolating it 
to the future point of interest33 . 

Notice that in-sample predictions may be compared against the actual EO lengths 
calculated in due course of the learning procedure. Testing prediction of EO length out­
of-sample in sim i lar way, however, requires additional testing sample back-to-back with 
the learning sample used in the PL procedure. Obtaining such sample is not a problem 
for the synthetic data - one can easily generate it. 

Observe also that for a single learning sample and corresponding additional testing 
sample one can only get one pair of predicted and actual EO lengths starting at the end 
of the learning sample. However, both values may be to large extent random and only 
one such pair is not very informative. Much more information carries their joint 
distribution. Working with synthetic data allows us to easily obtain an empirical 
estimate of such distribution by means ofrepetitive Monte Carlo simulations. 

Below we describe the procedure that each of experiments follows: 

I. Select the functional trend which the synthetic data sample will follow. Choose 
the length N of the learning sample and the strength of the noise. 

2. Select the order of the PL method and the length of the learning błock (window) 
kto be used. 

3. Select the number ofrepetitions of the experiment M. 

4. Set the current iteration (Monte Carlo run) number i to 1. 

5. Generate the synthetic data sample of length 2N ( cf. Section 4.1 ). Use the first N 
points as a learning sample for PL procedure and the remaining data as the 
additional testing sample to be used exclusively for determining the actual 
length of the EO starting at the end of the learning sample. 

6. Run the "rolling window" prognostic learning procedure on the learning sample 
generated in step 5. At each stage of the procedure check the fulfilment of 
assumptions of the polynomial regression model fitted to the learning błock and 
record the score of the EO, its actual length and the predicted EO length for this 
stage given the EO lengths for previous stages (cf. Figure 3, left panel). 

32 Actual EO length is the length of the EO determined with use of data from the testing błock. In 
contras!, predicted EO length is just our (untested) expectation about the length based on the knowledge 
of actual lengths of EOs from previous stages of the learning procedure. 
33 This is just one, straightforward but possibly crude way of making such predictions. Application of 
some more subtle methods (e.g., time series model) may improve reliability ofsuch predictions. This will 
be tested in course of future research . 
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7. After the PL procedure is complete use the calculated EO lengths (in-sample) to 
predict the length of the EO starting at the end of learning sample (out-of­
sample). 

8. In order to test the predicted length of the EO starting at the end of learning 
sample (cf. step 7) calculate the actual length of the EO sta1iing at the end ofthis 
sample. To do so, take the learning błock consisting of the last k points of the 
learning sample, fit a regression model to it and extrapolate the prediction bands 
to determine the shape of the EO. To find its length use the data from the 
additional testing sample (cf. Figure 3, right panel). 

9. lf i < M then set i = i + 1 and go to step 5. Otherwise end the experiment. 

~ i-th stage of the PL procedure "' C: Prediction of the EO for the immediate future 
o o 
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Figure 3. Schematic picture of the Monte Carlo experiment. Left panel: One stage of the prognostic 
learning procedure with "rolling window" of length k. Regression model is fitted to the data forming a 
learning błock [i, i+ 1, ... , i+ k]. Prediction bands for this model define the shape of EO starting at i+ 
k. Actual length of the EO is determined with use of the data from the testing błock. Right panel: 
Determining the actual length of the EO starting at the end of the learning sample (prediction for the 
immediate future). The direction and shape of the EO is given by the last k points from the learning 
sample (last learning błock). Since there are no points left in the testing sample to form a testing błock, 
the actual length of the out-of-sample EO is determined with use of the additional testing sample. 

With use of the insights gathered by performing abovementioned experiments we 
formulate the guidelines for selecting the order of the method and length of the LB 
yielding optima] performance of the PL method. By this we mean: 

(I) Satisfactory level of fulfilment of the assum ptions of regression model fitted to 
each learning błock. 

(2) As long and narrow EOs calculated at different stages of PL method as possible 
(i.e. , with high score - cf. Section 2.1 ). Stable behavior of EO lengths at different 
stages of the PL procedure is desirable. 

(3) Ideally, good reliability of predictions of the EO lengths (both in-sample and 
out-of-sample). 

4.3. Results 

In this section we present the results of five sets of Monte Carlo experiments on five 
different types of synthetic data. This allows us to assess usefulness of the proposed 
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methods of prognostic learning under controlled conditions. In each set of experiments 
we investigate the influence of: (I) order of the method, (2) length of the learning błock 
and (3) level of noise on the performance of prognostic learning, by varying these 
parameters. Below we present results only for Monte Carlo runs of the PL methods on 
synthetic data with low level of noise34• For each considered order of method the 
optima! length of the learning błock is presented. General conclusions about marginal 
influence of each of the three abovementioned factors on the performance of PL method 
are presented in Section 4.4. 

4.3.1. Data following a linear trend 

We begin our analysis of performance of the PL method with testing it in the simplest 
possible setting, i.e. on the synthetic noisy data following a linear trend. Such type of 
trend in the data is easily detected and robustly estimated with use of OLS technique, 
even for relatively short samples. Hence even the simplest linear regression model fitted 
to the data in (any) learning błock not only accurately represents the in-sample data 
behavior but also correctly grasps the dynamie governing the whole sample. Figure 4 
depicts an exemplary synthetic sample following the linear trend which are used in the 
set of Monte Carlo experiments, parameters ofwhich are outlined in Table 2. 

As one might have expected, the I st order PL method is able to accurately approximate 
the true trend in the data, even with use of short learning blocks of 30 points - see 
Figure 5. However, ability to correctly estimate the true trend results in that for majority 
of stages of the learning procedure EOs have infinite (undefined) lengths (cf. Figure 6: 
infinite EO lengths do not appear on the plot, finite lengths occur sporadically). This is 
due to the fact that the exact grasp of the true trend in the whole sample given only 
information contained in the learning błock is in this case equivalent to obtaining a 
precise model of the data generating process, which holds also beyond the learning 
błock. As a consequence, we cannot falsify our understanding of the process based on 
the data form learning błock with use of the testing błock (i.e. part of learning sample 
which follows the learning błock), and thus EO is infinite. Since most of the EOs in­
sample are of infinite length we are also unable to formulate expectations about the 
limits to extrapolating our understanding of the process beyond the learning sample (i.e. 
the length of EO starting at the end of learning sample). 

Table 2. Experiments setup. 

True trend formula f(t) = 0.1 X t 

Length of the synthetic data 200 points 
sample 

Length of the learning sample 100 points 

Order of PL met hod I, 2 

Length of the learning bloc ks 30, 40 

34 Results of Monte Carlo runs on data with higher level of noise are used to formulate generał 
conclusions about the influence of the strength of noise on the PL method. 
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Strength of the noise" 0.05 

Nnmber of Monte Carlo runs 40 
for each parameter 
combination 

25~------~------~-------~------~ 

15 

10 

s 

learning sample testing sample 
-s~------~---------------------~ 

O 50 100 150 200 
Fig u re 4. Exemplary data (black dots) following a linear trend 
f(t) = 0.1 x t (blue line). Standard deviation of noise (J = O.OS x (max[ - min!) . 

35 Expressed as fraction of the range of the true trend (cf. Section 4.1) 
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Figure 5. Six exemplary stages of the I SI order PL procedure with learning błock length of 30 points. 
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Figure 6. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the I SI order PL 
procedure with learning błock length of 30 points. Correlation between actual and predicted EO lengths is 
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-0.175. The red square marks the predicted length of the EO starting at the end of testing sample. 
Prediction is based on all fin i te actual EO lengths calculated in the learning procedure ( i.e. all of the black 
dots) Notice that all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock. 

!n the case of noisy data following a linear trend the use of higher order PL methods 
(using trend functions more complex than the true linear trend) is not advisable. We 
demonstrate it on the example of 2nd order PL procedure. As one can see on Figure 7, 
prediction hands for the 2nd order polynomial regression diverge much faster than 
analogous prediction hands for linear regression. As a result, most often the EOs 
obtained in the process of2nd order PL procedure have infinite lengths. Moreover, more 
tlexible 2nd order polynomial model is more visibly susceptible to influence of noise in 
the data, and thus producing less certain and robust, often ill-directed projections. 
Therefore, any EO of finite length obtained with use of the 2nd order method is 
unreliable as it is most likely ill-directed and overly wide. 
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Figure 7. Six exemplary stages of the 2nd order PL procedure with learning błock length of40 points. 

4.3.2. Data following a 4th order polynomial trend 

In the next set of experiments we analyze the performance of prognostic learning 
method applied to the noisy data following the trend of higher complexity. Method of 
polynomial regression is in principle able to provide an unbiased estimate of such trend. 
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In Table 3 we gather the parameters of these experiments. Figure 8 shows exemplary 
synthetic data sample used in these experiments. 

Table 3. Experiments setup. 4th order polynomial trend. 

True trend formula f(t) = (0.001 x (t - 50)) 4 - (0.09 x (t - 50))3 

Length of the synthetic data 400 points 
sample 

Length of the learning sample 200 points 

Order of PL method I, 2, 3, 4 

Length of the learning bloc ks 20, 30, 40, 50, 60 

Strength of the noise O.O I, O.OS , O. I 

Number of Monte Carlo runs for 40 
each parameter combination 

.. 
... .. ···-

. . · .;- . _-. .. 
. ...... .. :• .: 

·.•;•.... ·---~"- .... -:~.:·.·,~ .... . .. , ..... , .. _ ... 

learning sample 

+ (0.5 X (t - 50))2 - t - 50 

testing sample 
-20000>----~---~--~~--~~--~---~--~~-----,, 

Figure 8. Exemplary data (black dots) following 4th order polynomial trend (blue line) given by formula 

f(t) = (0.001 x (t - 50))4 - (0.09 x (t - SO)/+ (0.5 x (t - 50))2 - t - 50 . Standard deviation of 
the noise a= O.OS x (maxf - min!). 

Table 4 presents the results obtained for the synthetic data with low level of noise36 (i.e. 
O.Ol ofwidth of the trend function range). For each order of the PL method the optima! 
learning błock length is used. 

Table 4. Choices of the LB lengths for different orders of the PL method yielding 
the best results of experiments on data following 4t1, order polynomial trend. 

Method LB Noise Regression EO EO Correlation Actual Predicte Correlation 
order len level assumptions Scores lengths : actual vs. EO d EO : actnal vs. 

gth predicted lengths lengths predicted 
EO lenglhs (out-of- (out-of- EO lengths 
(in sample) sample sample) (out-of-

36 For stronger noises the performance of the PL method deteriorates, which to certain extent may be 
compensated by increasing the length of the learning błock. 
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) sample) 

1 40 O.Ol Ok O.Ol -0.08 Slightly 0.54 Mode Mode 18 0.2 
increasing 25 

[12 - 33] (finite EO 
Average: [6 - 37] length in 40 
15 out of 40 

(I - 30) 
runs) 

2 50 O.Ol Ok 0.03 - Oscillating 0.63 Fiat Left skew 0.09 
0.08 decreasing 

130to O Mode Mode O (fi nite EO 
below length in 38 
50 [0 - 40] out of 40 

[0- 180] 
runs) 

3 40 O.Ol acceptable Up to Oscillating -O.OS [3 - 14] [O- IO] 0.09 
(possible 0.03, [2 - IO] 

(fin ite autocorrelati mostl y few EO 

on of undefined outliers up length in 7 

residuals) to 18 out of 40 
runs) 
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4 50 O.Ol Ok Up to Oscillating -0.09 (1-19] , (O - 19], -0.39 
0.02, [I - 15] mostly most ly 
mostly outlier at below6 below 5 (finite EO 

undefined 48 length in JO 
out of 40 
runs) 

Surprisingly, the best perfo1mance is achieved for the variant of prognostic learning 
method which employ I st order regression over short learning blocks Gust 40 points). 
Figure 9 illustrates six exemplary stages of such prognostic learning procedure. This 
optima) combination of the order ofmethod and the length of LB yields relatively stable 
behavior of the EO lengths with not too strong oscillations around slightly increasing 
trend ( cf. Figure I O). The ran ges of the actual and predicted lengths of the EO starting at 
the end of learning sample are in good agreement, although the correlation between 
these lengths is weak (see F igure 11 ). Notice also that all EO lengths are not longer than 
the learning błock. 
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Figure 9. Six exemplary stages of the I st order PL procedure with learning błock length of 40 points. In 
regions where the curvature of the true trend is significant linear model does not fit well to the data in the 
learning błock and the actual lengths of the EO are low. In regions, where the true trend has 
approximately constant slope the PL method performs well. 
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Figure 10. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the I" order 
PL procedure with learning błock length of 40 points. Correlation between actual and predicted EO 
lengths is 0.537. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e. all of the black 
dots). Notice thai all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock. 
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Figure 11. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 40 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 40. Histograms approximates 
marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is 
0.195. 
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Equally surpnsmg is a relatively poor performance of the 4th order PL method. 
Polynomial trends of degree 4 fitted to learnings błock of length 50 grasp the behavior 
of the data better than linear trends. However, predictions of future behavior of the data 
by extrapolating 4th order polynomial regression functions are highly uncertain. This is 
caused by their high flexibility, which within the learning błock is forced to minimize 
distance from the data points, but beyond it, when it is unconstrained, it may strongly 
deviate from the actual trend. This high uncertainty is represented by quickly diverging 
prediction bands. As a result, for most of the stages of the PL procedure we cannot 
determine the length of the EO because extremely wide prediction bands cover all 
points in the testing błock (cf Figures 12 and 13). This phenomenon has also a strong 
impact on both predicted and actual lengths of the EO starting at the end of the learning 
sample. Although ranges of the actual and predicted lengths are in very good agreement, 
only few cases in which these lengths are finite undermine meaningfulness of Monte 
Carlo experiments ( cf Figure 14). 
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Figure 12. Six exemplary stages of the 4 •h order PL procedure with learning błock length of 50 points. 
Notice that often extrapolated trend deviates substantially from the actual data in the testing sample. High 
uncertainty ofthese predictions is exhibited by quickly diverging prediction bands. 
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Figure 13. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 4 tl, order 
PL procedure with learning błock length of 50 points. Correlation between actual and predicted EO 
lengths is -0.086. The red square marks the predicted length of the EO starting at the end of testing 
sample. Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e all of 
the black dots). Notice that all of the EO lengths (both actual and predicted) areno longer than the length 
of the learning błock. 
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Figure 14. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of I O points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 40. Histograms approximates 
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marginal distributions of actual EO lengths (green) and predicted EO lengths (blue) . Their correlation is -
0.387. 

4.3.3. Data following exponential trend 

In this set of experiments we analyze the performance of the prognostic learning method 
applied to the noisy data following a commonly occurring type of trend not belonging to 
the family of polynomials. Although it is not possible to model the data following 
exponential trend with any polynomial in the long run, it is possible to achieve the 
satisfactory loca! approximation with use of polynomial function of sufficiently high 
order. Hence, the PL method grasping the local37 behavior of the data with polynomial 
regression model is expected to be applicable also in this case. In Table 5 we gather the 
parameters of Monte Carlo experiments on synthetic exponential data. Figure 15 shows 
exemplary synthetic data sample used in these experiments. 

Table 5. Experiments setup. Exponential trend. 

True trend formula f(t) = exp(0.01 x (t + 100)) 

Length of the syn the tie data 400 points 
sample 

Length of the learning sample 200 points 

Order of PL met hod I , 2, 3, 

Length of the learning bloc ks 20, 30, 40,50 

Strength of the noise'" 0.00 1, 0005,0.01 

Number of Monte Carlo runs for 50 
each parameter combination 

Ęxponentl■ l tre nd; y(tl • u p(0.01 • (X twe-+ 100)) 
E11.em la d• t• -

learning sample testing sample 
-~,----.,-----,.,.-----=---.!.----=---=---~,----

37 i.e. only within relatively short learning błock 
38 Expressed as the fraction of trend function range width - cf. Section 4.1. 

31 



i 

! 

Figure 15. Exemplary data (black dots) following exponential trend (blue line) given by formula 
f(t) = exp(0.01 x (t + 100)) . Standard deviation of noise CJ = O.Ol x (max/ - min!) . 

Table 6 gathers the results obtained for the synthetic data with low level of noise39 (i.e., 
0.001 ofwidth of the trend function range). For each order of the PL method the optima! 
learning błock length is used. 

Table 6. Choices of the LB lengths for different orders of the PL method yielding 
the best results of experiments for synthetic data following exponential trend. 
Method LB Noise Regresś.i0·~- · · ---- ito·s-~·o·~es· 'i;;o lengths Correlntion: Actual PrectiCte- ·co·~;;i;tfo···· 
order len level assumptio actual vs. EO d EO n: actual 

gth ns predicted lengths lengths vs. 
EO lengths (oul-of- (out-of- predicted 
(in sample) sample) sample) EO lenglhs 

i I (oul-of-

I I sample) 
I 

1 40 0.001 Ok ' Oscillaling, Osci lla1ing, 0.75 Fial Fial -0.03 
(possible gradually decreasing 

[l - 10] (0 - 5] ' (finite EO 
i autocorrelat decreasing (3010 I] 

ion of , (42 to2] lenglh in 50 

I residuals) -t out of 50 

! ! ~ runs) 

2 40 0.00 1 Ok Oscillating Oscillating. 0.34 Fiat Left 0.27 (finite 
below 20, slight skew EO length 
mostly decrease (O - in 50 out of 
undefined (35 Io !], 200] [0 - 30] 50 runs) 

few outliers Mode O 
up to 80 

i 
--· - - oi - --1--0SCilfatinS - DeCreaST~g ~- -·---- - Left ------ --··-·----

3 50 0.001 o.oz (0 - 8] 0.26 (finile 
below 11.2, skew EO length 
mostly (20 Io 3] in IO out of 
undefi ned Outliers 

(4 - 80] 50 runs) up 
to 75 Majorit 

y below 
20 

l 

The best performance is achieved for the I '1 order PL method using short learning 
blocks (of just 40 points). Six exemplary stages of such prognostic learning procedure 
are visualized on Figure 16. For the initial stages of PL procedure EOs are relatively 
long (due to initially small changes in the slope of exponential trend), but getting short 
in course of the procedure (as the increase of exponential trend accelerates) - cf. Figure 
I 7. The ranges of the actual and predicted lengths of the EO starting at the end of 
learning sample are comparable (see Figure 18). The range of values of predicted EO 
lengths is narrower than the range of actual EO lengths, which means that expected EO 
length is likely to underestimate the actual EO length. However, they are virtually 
uncorrelated. 

39 For stronger noises the performance of the PL method deteriorates, which to certain extent may be 
compensated by increasing the length of the learning błock. 
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Figure 16. Six exempłary stages of the 1" order PL procedure with learning błock length of 40 points. 
For initial stages of the PL procedure lengths of the EO are comparable with the length of the learning 
błock. This is due to slow initial increase of the exponential trend. As this increase begin to accełerate in 
further stages the EO lengths get shorter. 
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Figure 17. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the I st order 
PL procedure with learning błock length of 40 points. Correlation between actual and predicted EO 
lengths is 0.746. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e. all of the black 
dots). Notice that all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock. 

Figure 18. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 50. Histograms approximates 
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marginal distributions ofactual EO lengths (green) and predicted EO lengths (blue). Their correlation is -
0.032. 

Higher order polynomials are much better in approximating the exponential trend, yet 
the performance of higher order PL methods is worse than for the one based on linear 
regression. We discuss it on the example of the 2nd order polynomial method. Fitted 
quadratic trends extrapolated beyond corresponding learning blocks always increase 
slower than true exponential trend (yet quicker than linear trends). However, prediction 
bands are usually wide enough to cover all the data points in the testing błock. As a 
result, for most of the stages of the PL procedure we cannot determine the length of the 
EO ( cf. Fi gu res 19 and 20). Distribution of the predicted lengths of EO starting at the 
end of learning sample is strongly skewed to the left and has much narrower support 
than the relatively flat distribution of the actual EO lengths at the end of the learning 
sample (see Figure 2 l ). Thus predicted EO length is likely to heavily underestimate the 
actual length, while correlation between them is weak. 
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Figure 19. Six exemplary stages of the 2"d order PL procedure with learning błock length of50 points. 
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Figure 20. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order 
PL procedure with learning błock length of 50 points. Correlation between actual and predicted EO 
lengths is 0.335. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e. all of the black 
dots) Notice thai majority of the EO lengths (both actual and predicted) are no longer than the length of 
the learning błock. 
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Figure 21. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 50. Histograms approximates 
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marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is 
0.286. 

4.3.4. Data following /ogarithmic trend 

Now we examine the performance of the prognostic learning method on the synthetic 
data following an increasing but decelerating trend - exemplified by logarithmic trend. 
Such trend, often encountered in real life data, cannot be approximated well by any 
polynomial in the long run, however, satisfactory local (i.e. for relatively short 
subsample) agreement may be achieved. This is the rationale for applying PL method 
for such type of data. In Table 7 we gather the parameters of Monte Carlo experiments 
on synthetic logarithmic data. Figure 22 shows exemplary synthetic data sample used in 
these experiments. 

Table 7. Experiments setup. Logarithmic trend. 

True trend formula f(t) = log(0.05 X (t + 50)) 

Length of the synthetic data 400 points 
sample 

Length of the learning sample 200 points 

Order of PL met hod I, 2, 3, 

Length of the learning bloc ks 20,30,40, 50 

Strength of the noise40 O.O I, 0.025, 0.05 

Number of Monte Carlo runs for 50 
each parameter combination 

-~ 

learning sample testing sample 

40 Expressed as the fraction of trend function range width - cf Section 4.1. 
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Figure 22. Exemplary data (black dots) following logarithmic trend (blue line) given by formula 
f(t) = log(0.05 x (t + SO)) . Standard deviation of noise u= O.Ol x (maxf - min!). 

Table 8 summarizes the results obtained for the synthetic data with low level of noise41 

(i .e. O.Ol of width of the trend function range). For each order of the PL method the 
optima! learning błock length is used. 

Table 8. Choices of the LB lengths for different orders of the PL method yielding 
the best results of experiments on synthetic data following a logarithmic trend. 
i.i,1hoc1 LB •·-•r ··N~i~e Regression 

! 
EO Scores EO lengths Correlation Actual Predicte Correlation 

order len level assumptions : actual vs. EO d EO : actual vs. 
gth predicted lengths lengths predicted 

EO lengths (out- (out-of- EO lengths 
(in sample) of- sample) (out-of-

sample sample) 
) 

1 50 O.Ol Ok Oscillating Oscillating, , 0.62 IO -1 115-50) ! 0.14 
below i max 110] 

i (finite 405, often 1 increasing I Mode30 EO 

I undefined 1040 Mode length in 

I 
! 40 j 50 out of 

! ! ! ' 50 runs) 

·= ' ·-" 2 50 O.Ol Ok Oscillating Oscillating, 0.63 13-26] left skew 0.66 
120 - decreasing 
160), [120 to l] [0 - 23) (finite EO 

mostly Mode O 
length in 7 

undefined out of 50 
runs) 

········ ..... ,.. ·· ··········· ···· · ······· 
Oscillating Oscillatlng 0.5 [3-26] [1-11) -0.26 

(occasionally [10 - 67), below 15, 
autocorrelatio mostly diminishin (finite EO 

n of residuals) undefined g outliers length in 7 

(max 30) out of 50 
runs) 

- - ·········-- ···- ·····- - - ... - ·-··········· ..... 

As in previous sets of experiments, the best performance is achieved for the I st order PL 
method - this time using slightly longer learning blocks of 50 points. Six exemplary 
stages of such prognostic learning procedure are shown on Figure 23. EOs calculated 
for the initial stages of PL procedure are short due to quickly decelerating trend at the 
beginning of learning sample. Slower rate of decrease of slope of logarithmic trend in 
the further part of the learning sample results in longer EOs for later stages of the 
procedure (cf. Figure 24). Notice also that the range of all (finite) lengths of EOs in­
sample is narrower than the learning błock. This is also the case for predicted lengths of 
the EO starting at the end of learning sample (see Figure 25). However, actual lengths 
of EO starting at the end of learning sample are significantly longer, while the 
correlation between actual and predicted lengths is weak. 

41 For stronger noises the performance of the PL method deteriorates, which to certain extent may be 
compensated by increasing the length of the learning błock. 
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Figure 23. Six exemplary stages of the I" order PL procedure with learning błock length of 50 points. 
For initial stages of the PL procedure lengths of the EO are short due to initially quick decrease ofslope 
of logarithmic trend. As this decrease begin to decelerate in further stages the EOs are getting longer. 
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Figure 24. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the I st order 
PL procedure with learning błock length of 50 points. Correlation between actual and predicted EO 
lengths is 0.619. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e. all of the black 
dots). Notice that all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock . 
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Figure 25. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 50. Histograms approximates 
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marginal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is 
0.144. 

PL methods based on higher order polynomial regressions perform worse than I st order 
method when applied to the data followin~ the logarithmic trend (or one of similar 
shape). We discuss it on the example of 2" order polynomial method. The deviations 
from testing data of fitted ąuadratic trends extrapolated beyond the corresponding 
learning blocks increase faster than the analogous deviations of extrapolated linear 
trends. In addition to this often strong miss-direction of extrapolated higher order trends, 
their prediction bands diverge much faster than for prediction bands of linear models -
see Figure 26. As a result, for the majority of stages of PL procedure the EOs have 
infinite (undefined) length (cf. Figure 27). Also the actual length of the EO starting at 
the end of the learning sample is infinite for the most of the Monte Carlo runs - making 
any analysis of joint behavior of predicted and actual lengths of the EO out-of-sample 
virtually impossible (cf. Figure 28). 
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Figure 26. Six exemplary stages of the 2'ld order PL procedure with learning błock length of 50 points. 
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Figure 27. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2'1'1 order 
PL procedure with learning błock length of 50 points. Correlation between actual and predicted EO 
lengths is 0.628. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e. all of the black 
dots). 
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Figure 28. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 7 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 50. Histograms approximates 
marginal di stributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is 
0.664. 
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4.3.5. Data following periodic trend 

In the last set of experiments we investigate the usefulness of the prognostic learning 
method for analysis of the data following a sinusoida! trend with period comparable to 
the length of learning sample. Within short time intervals (i.e. comparable in length to 
the learning błock) such data may appear to follow a elear non-periodic trend, which 
may be locally approximated by a polynomial. By applying PL method based on 
polynomial regression we want to understand the limits of such local approximations. 
Table 9 outlines the setup of Monte Carlo experiments on synthetic data following a 
periodic trend . Figure 29 exhibits exemplary synthetic data sample used in these 

- experiments. 

Table 9. Experiments setup. Exponential trend. 

True trend formula f(t) = sin(0.018 x (t - 100)) 

Length of the synthetic data 400 points 
sample 

Length of the learning sample 200 points 

Order of PL met hod I, 2, 3, 

Length of the learning blocks 20, 30, 40, 50 

Strength of the noise•· O.O I, 0.05, O. I 

Number of Monte Carlo runs for 50 
cach parameter combination 

learning sample testing sample 
- l .5 0!----c,-----,=c-----=-------,!,------=----c=----=---

42 Expressed as the fract ion of trend function range width - cf Section 4.1 
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Figure 29. Exemplary data (black dots) following sinusoida! trend with long period (blue line) given by 
formula f(t) = sin(0.018 x (t -100)). Standard deviation of noise a= O.Ol x (maxf - min!) . 

Table 10 summarizes the results of experiments performed with use of the synthetic 
data with low level of noise43 (i.e. O.Ol of width of the trend function range). For each 
order of the PL method the optimal learning błock length is used. 

Table 10. Results of experiments for optima) choices of LB lengths in case of 
synthetic data following a periodic trend. 
Method LB Noise Regression EO EO Correlation Actual Predicte Correlation 
order len level assumptions Scores lengths : actual vs. EO d EO : actual vs. 

gth predicted lengths lengths predicted 
EO lengths (out- (out-of- EO lengths 
(in sample) of- sample) (out-of-

sample sample) 
) 

I 30 O.Ol Ok Slowly Oscillating 0.43 Fiat ; (7 - 14] I -0.04 

! oscillating 
[I - Il] : Mode Il I (finitc EO ' increasing 

increasing , [ I - 70] I 
length in 50 

to 39S, . then I out of 50 

then decreasing runs) 

gradually ; to I. Most I 
decreasin ; of the time I 
gto IO · below20 

_.J. ' -=~ 
2 50 O.Ol Ok Oscillatin Oscillating 0.3 [O _ , [0 - 24] 0.14 

I g below below 40, 150] 
I 200, slightly (finite EO 

I slightly decreasing Mode length in 50 

! mcreasmg outliers 100 out of 50 

up to 60 runs) 

3 50 O.Ol Ok •- .. + .. Q~~i i lat i n Oscillating 0.53 [3 - 2S] [I - I I] -O. I 
(occasionally g [IO - below 20, 
autocorrelatio 68], gradually (finite EO 

n ofresiduals) mostly decreasing length '" 8 

undefined outliers up out of 50 

to40 runs) 
I -·-·--- -- --- ---

As for the previous sets of experiments, the best performance is achieved for the I st 

order PL method using short learning blocks (of just 30 points). Figure 30 shows six 
exemplary stages of such prognostic learning procedure. For stages of the PL method 
whose learning blocks are close to the bending points of the true trend the EO lengths 
are relatively short with respect to the length of the learning błock. However, EOs are 
much longer when corresponding learning blocks coincide with regions in which the 
true trend is nearly linear - see Figure 31. The predicted EO lengths out-of-sample may 
be slightly over-optimistic - the range of estimated lengths is shifted to the right with 
respect to the range of actual lengths of the EO starting at the end of the learning sample 
(cf. Figure 32). Moreover, predicted and actual EO lengths are virtually uncorrelated. 
Note however, that they are shorter than the length of learning blocks used in the PL 
procedure. 

43 For stronger noises the performance of the PL method deteriorates, which to certain extent may be 
compensated by increasing the length of the learning błock. 
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Figure 30. Six exemplary stages of the I" order PL procedure with learning błock length of 30 points. 
EOs are relatively short in cases when corresponding learning blocks are close to the bending points of 
the true trend and long otherwise. 
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Figure 31. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the I" order 
PL procedure with learning błock length of 30 points. Correlation between actual and predicted EO 
lengths is 0.434. The red square marks the predicted length of the EO starting at the end oftesting sampl e. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i .e. all of the black 
dots). 
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Figure 32. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample. Each of 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 50. Histograms approximates 
margi nal distributions of actual EO lengths (green) and predicted EO lengths (blue). Their correlation is -
0.037. 
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Higher order polynomials are better suited to grasp the local behavior of the data in the 
learning blocks than the linear functions, especially when the LB is in the vicinity of 
bending points of the true trend (see Figure 33). This results in longer (in comparison to 
the I st order method) EOs for the stages of PL procedure when the learning błock 
coincide with intervals in which curvature of the true trend is significant - cf. Figure 34. 
Nevertheless, the EO scores are worse than for the I st order PL method. This is due the 
fact that the prediction bands (defining the shape - and thus score - of the EO) for higher 
order polynomial regressions diverge faster than for linear regression. Moreover, 
flexibility of higher order polynomial trends is not particularly advantageous when 
predicting the length of the EO starting at the end of the learning sample - the predicted 
EO lengths grossly underestimate the actual EO lengths while their correlation is weak 
(see Figure 35). 
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Figure 33. Six exemplary stages of the 2nd order PL procedure with learning błock length of50 points. 
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Figure 34. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2nd order 
PL procedure with learning błock length of 50 points. Correlation between actual and predicted EO 
lengths is 0.309. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i .e. all of the black 
dots). Notice thai majority of the EO lengths (both actual and predicted) are no longer than the length of 
the learning błock. 
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Figure 35. Estimate of joint distribution of actual and predicted lengths of the EO starting at the end of 
the learning sample . Each of 50 points on the scatter plot represents the result of one Monte Carlo run 
resulting in finite actual EO length. Total number of Monte Carlo runs is 50. Histograms approximates 
marginal distributions of actual EO lengths (green) and predicted EO lengths (blue) Their correlation is 
0.140. 
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4.4. Conclusions 

In this section we present same generał conclusions on the performance of prognostic 
learning method based on polynomial regression following from the results of 
experiments on synthetic data sets described in previous two sections. 

We begin with analysis of the impact of complexity of the class of regression functions 
(i.e. order of polynomials) used in the PL method. This factor appears to be the most 
important for the performance of the prognostic learning. With increasing complexity: 

• Fulfilment of regression method assumptions do not change significantly, 
however assumptions violations may be slightly mare frequent. 

• EO scores in principle decrease. This is due to the fact that the speed of 
divergence of the prediction ban ds - and thus width of EO - is of the same order 
as the polynomial trend used in the underlying regression model. In addition, the 
number of stages of PL procedure for which EO scores are undefined (i.e. cases 
for which EOs have infinite length) usually increase. 

• Actual EO lengths (in-sample) - if fin i te - in generał decrease. Clear tendencies, 
such as often observed decrease of the EO lengths for consecutive stages of the 
I st order PL procedure, gradually change to oscillations around relatively stable 
level. 

• Correlation between actual and predicted EO lengths (in-sample) is typically 
getting weaker. This correlation is relatively strong in presence of elear 
monotonie trend in lengths of consecutive EOs obtained in course of the learning 
procedure. This is most often the case for the I st order method. As such 
tendencies in EO lengths change to oscillations typical for higher order methods, 
this correlation gets weaker. 

• Actual out-of-sample EO lengths (which are determined with use of the 
additional testing sample back to back with the learning sample) typically 
decrease. This effect is especially elear for the upper limits (maximums) of the 
observed ranges of finite EO lengths. Moreover, for higher order methods EOs 
of infinite ( undefined) lengths are predominant. 

• Predicted out-of-sample EO lengths in principle decrease. Moreover, regardless 
the order ofmethod, the range ofpredicted EO lengths usually lays within (or at 
least significantly overlaps with) the range of the actual EO lengths. Thus, at 
least on average, predicted EO lengths out of sample underestimate the actual 
ones. However, the correlation between actual and predicted EO lengths is 
typically weak, often negative and in principle not very reliable for higher order 
methods (due to EOs being predominantly infinite). 

Increasing level of noise in the data has in principle a negative impact on the 
performance of prognostic learning. The most apparent effect is the deterioration of EO 
scores due to the fact that higher level of noise stipulates wider EOs. 

Optima! length of the learning błock is closely related to the order of the method used. It 
should not be too short or overly long (we discuss the choice of optima! LB length in 
the further pai1 ofthis section). Therefore, it is difficult to discriminate marginal impact 
of increasing the length of the LB - what is too short for one method may be too long 
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for the other. The clearest effect one sees for the EO scores. They may slightly improve, 
as longer LB allows for better estimation of parameters of the regression function 
(!ower variance of estimates ofregression function parameters). 

Based on the experiments on synthetic data described in the previous section, we 
formulate the following observations about the 1st order method of prognostic 
learning: 

• Any true trend and any data behavior can be locally approximated by a line. This 
loca! approximation is relatively robust to the level of noise. As a consequence, 
the ill-directed EOs (if appear) are the result of inability of the linear model 
fitted to the LB to follow quickly changing true trend rather than result of noisy 
conditions. 

• Bias44 - variance trade-off: I st order method is biased - it looks only for linear 
trends in the data and cannot grasp well strongly non-linear trends. This bias 
may be negligible when the true trend is slowly varying, but can be significant in 
presence of curved true trend in the data. This bias however is balanced by the 
relatively low variance of predictions made with use of the linear regression 
model , i.e. slowly (at least slower than for higher order methods) diverging 
prediction bands determining the width (and thus the score) of the EO. 

• This has two significant practical consequences: 

o If the true trend is linear then 1 st order method is optima] (prognostic 
uncertainty is the lowest possible). 

o If the true trend is non-linear then predictions made by extrapolating the 
linear trend fitted to the LB will eventually be wrong, thus EO will 
almost always have a finite Iength, usually not greater than the 
optima) length of the learning błock. Then the length of the EO 
informs us about safe tower band for the time horizon within which 
treating the dynamics of the data as Iinear is a good approximation. 

• Optima! length of the LB (and thus of the learning sample) is the lowest for the 
1 st order PL method. This is important for the applicability of the PL 
methodology, since in practice the data scarcity is a common problem. 

Conclusions for the higher order PL methods are slightly different: 

• Bias - variance trade-off: any continuous true trend in the data over a specified 
interval may be well approximated with use of a polynomial of sufficiently high 
order. This ability of higher order polynomials to closely follow the data sample 
reduces the bias of the method. However, in noisy conditions uncertainty in 
estimates of the parameters of the polynomial regression model fitted to the data 

44 Here the term "bias" refers to the method. lt means that E (/(t)) * E(X,) for some t within the range 

(period) of the sample, where / denotes the estimate of the true trend. lt is not a systematic 
(measurement) error of analysed data. 
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in a learning błock al most always results in high variance of predictions beyond 
the range of the LB (represented by quickly diverging prediction bands). 

• This has two significant practical consequences: 

o Quickly growing uncertainty of predictions made by extrapolation of the 
fitted polynomial trend beyond the range of the learning błock makes 
usefulness of such predictions questionable. 

o More importantly, due to tlexibility ofhigher order polynomial trend and 
quickly diverging prediction bands in most of the cases (stages of the 
PL procedure) EO length is infinite. Indeed, it is finite in cases when the 
extrapolated polynomial trend around which EO is constructed was so 
ill-directed that this was not offset by quickly diverging prediction bands. 
Thus, results of higher order PL methods should be treated somewhat 
differently and with more suspicion than the results of the I st order 
method. 

• Required length of the LB is considerably higher than for the I st order method. 
Longer LB is needed to prevent overfitting - situation in which the fit of the 
tlexible polynomial trend may be strongly impacted by the random noise. This 
further reduce the usefulness of higher order PL methods in analysis of the 
relatively short real-life data sets. 

We conclude this chapter with formulation of a few rules of thumb for applying the 
PL method: 

I. 1 st order method should be preferred over the higher order methods. 

2. The stronger the noise the longer the LB required and the more difficult it is to 
use the higher order methods. 

3. The higher the order of method the longer the LB required. In any case there 
should be at least I O points in the LB per each parameter of the regression model 
to be estimated. 

4. Given the data and the order of the PL method one should follow the following 
guidelines when selecting the optimal length of the LB: 

a. Choose the LB length for which EO score is the highest (or slightly 
longer). 

b. Choose the LB length for which EO length exhibits stable behavior in 
course of the PL procedure (oscillating with few small outliers) or when 
trends in the behavior of the EO lengths is changing (e.g., from elear 
decrease of EO length in course of the PL method to oscillations around 
certain level or when increasing tendency appears in the oscillations). 

c. Choose the LB length for which correlation between actual and predicted 
EO lengths in-sample is relatively strong and positive. 

ldeally these criteria should be fulfilled simultaneously. Such choice of the optimal LB 
length usually coincides with a good behavior of the predicted length of the EO starting 
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at the end of the learning sample (i.e. good over I ap of the ran ges of actual and predicted 
EO lengths and relatively strong correlation between them). 

5. Real-life case studies 
In the present chapter we test the applicability of the prognostic learning method in 
determining the limits of our understanding of the dynamics of the real-life data (i.e. 
their explainable outreach). In finding the optima! parameters of the PL method we 
draw on the insights of the previous chapter. 

As the case examples we choose two data sets reflecting the dynamics of two processes 
of fundamental importance for our understanding of the impact of humans on the 
cli mate, namely the anthropogenic C02 emissions and the increase of C02 concentration 
in the atmosphere. Knowledge about the dynamics of these process is also necessary to 
run integrated assessment models (such as IMAGE45). Hence estimation of tempora! 
limits of our understanding of these dynamics may also shed some light on the time 
hori zons beyond which projections of the abovementioned IAMs may be unreliable. 

The data sets we use contain the annual global C02 emissions from technosphere46 (i.e. 
resulting from fossil fuel burning and cement production) and the annual average 
concentration of the C02 in the atmosphere measured at the Mauna Loa station47 • As the 
C02 concentrations are influenced by the anthropogenic C02 emissions the analyzed 
data sets cover the same period, namely years 1959 - 2011. 

5.1.Global C02 emissions from technosphere 

In case of the anthropogenic C02 emissions the best perfo1mance is achieved for the ! st 

order PL method with learning blocks oflength of 25 points (which is roughly half the 
size of the learning sample). This is consistent with our observations following from the 
experiments on synthetic data - for them I st order PL method was also the best choice. 
The optima! length of the learning błock was chosen according to the guidelines 
provided at the end of the previous chapter. Exemplary stages of the optima] PL 
procedure are presented on Figure 36. As one can see, the data follow roughly linear 
trend48, although three segments of slightly different slopes are clearly visible. These 
segments are of comparable length as the learning blocks used in the learning 
procedure. Hence, two types of configurations of the learning błock with respect to the 
abovementioned segments are possible - and each ofthese constellations has a negative 
impact on the length of the explainable outreach. lf the learning błock strongly overlaps 
with one of these segments, then the linear model describes the data in the learning data 
well. However, the explainable outreach representing the expected future behavior of 
emissions is then compared against the data in the testing błock which follows a 
different regime (i.e. increase of different slope) than the data in the learning błock. As a 

45 For brief synopsis of the IMAGE model see e.g., 
http://unfccc.int/adaptation/nairobi work programme/knowledge resources and publications/items/539 

Mhu 
46 Source: CDIAC http://cdiac.ornl.gov/trends/emis/overview 2011.html 
47 Source: NOAA http://www.esrl.noaa.gov/gmd/ccgg/trends/full.html 
48 In broader perspective the overall trend in CO2 emissions over the last 200 years is approximately 
exponential , but sleep growth over the last six decades alone is roughly linear. 
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conseąuence, the EO is relatively short. The other possibility is that moment of regime 
change lays well within the learning błock. This renders the linear model less suitable to 
represent the data behavior within the learning błock and thus in increase of 
autocorrelation of model residuals. Such strong violation of the PL method assumptions 
results in shorter EO. Analysis of both actual and predicted lengths of the EOs for 
different stages of I st order the learning procedure - cf. Figure 36 - confirms these 
observations. It shows that in principle one should not expect the EO to be much longer 
than about five points49, while very short EOs for some of the stages of the learning 
procedure indicates that analyzed process occasionally undergo sudden regime changes. 
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Fig u re 36. Six exemplary stages of the I st order PL procedure with learning błock length of25 points. 

49 Note that the EOs are shorter than the used learning blocks. This is in agreement with what we have 
observed for the synthetic data sets ( c. f. Chapter 4 ). 
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Figure 37. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the I st order 
PL procedure with learning błock length of 25 points. Correlation between actual and predicted EO 
lengths is 0.777. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i .e. all of the black 
dots). Notice thai all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock . 

Higher order PL procedures do not yield better results. As they require longer learning 
blocks, at each stage of the PL procedure a LB contains the moment ofregime (slope of 
local trend) change. Although polynomial trends are more tlexible than the linear trend, 
they too are unable grasp slight but sudden regime changes - as demonstrated on the 
example of the 2nd order PL method (cf. Figure 38). As a result, the EOs constructed 
with use of the 2nd order method are only wider (since prediction bands for higher order 
polynomial regression more rapidly than for linear case) but not longer - see Figure 39. 
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Figure 38. Six exemplary stages of the 2"d order PL procedure with learning błock length of30 points. 
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Figure 39. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2 nd order 
PL procedure with learning błock length of 25 points. Correlation between actual and predicted EO 
lengths is 0.713 . The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure ( i.e. all of the black 
dots). Notice thai all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock. 

5.2. Concentration of CO2 in the atmosphere 

Time evolution of the CO2 concentrations is smooth (in comparison to time evolution of 
anthropogenic CO2 emissions) and follow a elear, exponential-like detenninistic trend. 
The analyzed sample resembles the synthetic data with low level of noise following an 
exponential trend which we have analyzed in Chapter 4. Similarly to that case, the I st 

order prognostic learning method proves to be the best choice among PL methods based 
on polynomial regressions. The optima! length of the learning błock in this case is 20 
points. As one can see on Figure 40 the EOs constructed with use of this method are 
narrow ( due to low variance of the residuals for the linear models fitted to the learning 
blocks) but relatively short. Indeed, for most of the PL procedure stages the EOs are not 
longer than three points ( cf. Figure 41 ). This is eau sed by the curvature of the trend the 
data clearly follows. 
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Fig ure 40, Six exemplary stages of the 1st order PL procedure with learning b ł ock length of20 points. 
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Figure 4L Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 1 st order 
PL procedure with learning błock length of 20 points. Correlation between actual and predicted EO 
lengths is 0.461. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e . all of the black 
dots). Notice that all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock . 

Quadratic trends are more suitable to approximate data following a curved trend (cf. 
Figure 42), However, in case of atmospheric C02 concentrations applying the 2nd order 
method does not result in longer EO, Indeed, although EOs constructed around 
quadratic trend have curved shape and are narrower than those for the I st order method, 
they are stili unable to follow the true trend in the long run (see Figure 43). 

Applying the 3rd (or higher) order PL method to the data is not feasible as the minimal 
length of learning błock for those methods I comparable to the size of the whole 
learning sample. 
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Figure 42. Six exemplary stages of the 2nd order PL procedure with learning błock length of30 points. 
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Figure 43. Actual (black dots) and predicted (green diamonds) EO lengths for all stages of the 2'1<1 order 
PL procedure with learning błock length of 50 points. Correlation between actual and predicted EO 
lengths is 0.302. The red square marks the predicted length of the EO starting at the end oftesting sample. 
Prediction is based on all finite actual EO lengths calculated in the learning procedure (i.e. all of the black 
dots). Notice that all of the EO lengths (both actual and predicted) are no longer than the length of the 
learning błock. 

5.3. Conclusions 

The tempora! dynamics of both considered processes (i.e. anthropogenic CO2 emissions 
and CO2 concentrations in the atmosphere) are essentially nonlinear. The typical time 
hori zons within which linear predictions of the behavior of upcoming data are credible 
is indicated by the lengths of the EOs obtained in result of applying the I st order PL 
method. These limits for credible linear predictions are rather short. 

For anthropogenic CO2 emissions it is at most 15 points (years) but linear predictions 
for the immediate future are expected to be credible in much shorter time horizon. This 
is due to the fact that linear regression model employed in the learning procedure is not 
able to grasp or anticipate regime chan ges (i.e. sudden chan ges of slope ). 

More regular behavior of the atmospheric CO2 concentrations result in slightly better, 
yet stili short horizons for credibility of linear approximation of the process ' dynamics -
typical length of the EOs for the I st order PL method is 2 to 6 points (years). 

Approximations of the loca! dynamics of the considered processes by polynomial 
regression functions of higher orders are better in comparison to linear ones. However, 
predictions made by extrapolations of such trends are more uncertain and thus it is often 
impossible to assess their credibility by means of explainable outreach. 

60 



Finally, it is important to emphasize that limits of credibility assessed by means of the 
I st order PL method should be treated just as the !ower bo und for period within which 
our understanding of the system 's past may be used for making reliable predictions. In 
principle, some other method than polynomial regression may be more suitable to 
explain the data behavior. PL procedure based on such a method would most likely 
yield better (i.e. longer but stili relatively narrow) EOs and thus improving the !ower 
bounds for horizons of credibility which have established in this chapter. 

6. Outlook 
The research presented in this report is a feasibility study on the notions of prognostic 
learning and explainable outreach of the data. As such, it pursues the two objectives: (I) 
to frame the idea of the prognostic learning and place it in a broader context of earth 
system sciences; and (2) to develop and implement a prognostic learning procedure 
allowing to test the PL concept in practice. 

While realizing the first objective we have restricted ourselves to analyze the data 
forming a time series and describing the tempora! evolution of the analyzed system. Our 
main effort was directed to detecting the system ' s dynamics (i.e. the deterministic part 
of the analyzed time series) represented by the prevailing trend and to understanding the 
relation between the uncertainty of estimates of this trend and the credibility of our 
expectations about the future system ' s behavior based on projections this trend. 

Understanding the tempora! dynamics of the system and indicating the extent of 
credible predictions based on this understanding is just a first step in development of the 
paradigm of learning in a controlled prognostic context. However, the proposed PL 
method concentrates on grasping the tempora! dynamics revealed by a single time series 
(using the time as the only explanatory variable) while hiding explicit dependence of the 
system on external forcing. For example, anthropogenic C02 emissions exhibit a 
roughly linear tempora! dynamics over the last five decades (cf. Section 5) but they also 
strongly depend on the trends and disturbances of the global economy (such as energy 
crises in the 1970s, economic collapse of the soviet bloc in the 1990s or increased 
consumption in developing countries in recent years). We envisage a modification of 
the PL method by introducing additional explanatory variable(s) representing external 
forcing of the system (in context of anthropogenic C02 emissions this could be for 
example GDP) or dependence on some additional factors (e.g. , carbon intensity of 
production processes). We speculate that explicit use ofadditional explanatory variables 
in the PL method will result in longer hori zon of credible predictions (i.e. longer EOs). 

Another challenge related to the objective (1) is to demonstrate the ability of the PL 
method to support a modelling exercise by realizing the "model performance 
assessment" track (cf. Figure 2) for a suitably selected climate or integrated assessment 
model. 

Pursuing objective (2) we have proposed a way of implementing the prognostic learning 
concept which is based on the ordinary least squares (OLS) polynomial regression 
technique. This regression method was selected for its simplicity and relatively good 
performance. However, results presented in Sections 4.3 and 5 indicate the need for 
development of analogous versions of the PL method based on regressions using other 
parametric trends (e.g. exponential or power functions). 
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Moreover, we expect that the performance of the PL method based on the higher order 
polynomials may be improved by application of the regularization techniques (Hastie 
2009, Murphy 2012). In principle, regularization penalizes the trend functions which are 
overly "wiggly". lt would allow to strike a balance between the tlexibility of the high 
order polynomials and the robustness of predictions based on their extrapolations. We 
speculate that this would result in longer and not too much wider EOs than those 
obtained for the I st order PL method. 

Another way of improving the regression-based PL is to replace the OLS polynomial 
regressions with some more robust methods of fitting the trend, such as ridge regression 
or support vector regression (Hastie 2009, Murphy 2012) or nonparametric regressions 
(Wasserman 2006). Some preliminary results obtained with use of PL method based on 
selected nonparametric regression techniques are presented in the Appendix. This 
direction of future research is particularly interesting for the following reasons: (1) 
nonparametric methods do not confine us to any specific class of regression functions; 
(2) nonparametric offers a promising link between memory of the system (grasped by 
means of bandwidth parameter determining how many previous data points intluences 
the present one) and the explainable outreach (defined as extrapolated prediction bands) 
and (3) Flexibility of the nonparametric regression curve results in longer (yet equally 
robust) EOs than the ones obtained with use of OLS linear regression. 

Notice that the PL method presented in Chapter 3 relies heavily on assumption of 
independence of points in the learning sample50• However, by making such assumption 
(which we do deliberately for the sake of simplicity) we ignore the fact that the patterns 
of behavior of the stochastic part (such as autocorrelation structure of residuals) may 
also be of a significant importance. Simply assuming that the stochastic part is just an 
uncorrelated noise may result in underperformance of the EO51 • In the future research 
we plan to address this problem by modifying the construction of the EO to account for 
the autocorrelation structure of the data. 

Prognostic learning techniques discussed in this report grasp the dynamics of the system 
of interest by means of a regression function. Yet, trend functions are not the only way 
of expressing the patterns of the data behavior. Therefore, alternative52 approaches to 
learning in a controlled prognostic are conceivable. For example, the techniques of 
granular computing such as quantization or clusterization (Pedrycz 2013) may be 
employed to grasp the patterns of data behavior. These techniques are based on 
assigning each of the data points to one member of a discrete collection of classes 
(called also information granules) in order to reduce the level of detail which may biur 
more fundamental features of the data (which are represented by these classes). The 
patterns in data behavior may then be expressed as transition rules from one inforrnation 
granule to the other, or more broadly by transition probabilities, i.e. likelihoods of 

so lt is required by both the OLS method of fitting a regression function to the data and by the way we 
determine the length of the EO (cf. Section 3.2). 
st Recall thai we decide to end the EO in the first moment for which layout of observations in period 
between the end of the learning błock and this moment is unlikely under assumption that the extrapolated 
regression function fitted to the learning błock is also a good approximate of the true trend in the testing 
błock and the observations in the testing błock are independent. However, if the observations were 
corre lated then encountered layout ofpoints might be not so unlikely and the actual EO length should be 
~reater. 
• 2 i.e . alternative to the regression-based method presented in this report. 
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observation taken at certain time to belong to a certain information granule given the 
class into which the previous observation falls. This approach is currently being 
explored (Puchkova et al). 

7. Summary 
In this report we introduce the paradigm of learning in a controlled prognostic context. 
lt is a data-driven exploratory approach to assessing the limits to credibility of any 
expectations about the future system 's behavior which are based on a time series of 
historical observations of the analyzed system. The aim of the proposed method is to 
indicate the typical length of time intervals over which the trends in the historical data 
sample persist as well as the level ofunce11ainty in grasping these trends. 

The key idea of the learning in a controlled prognostic context is to deduce directly 
from the data their explainable outreach, i.e. the spatio-temporal extent for which, in 
lieu of the knowledge contained in the historical observations, we may have a justified 
beli ef to contain future system 's observations. The length of such explainable outreach 
indicates the time horizon within which predictions based on our current understanding 
of the system are credible. The initial width of the EO reflects the diagnostic uncertainty 
inherent to our system ' s perception, while the shape of the EO informs us about the 
strength of measures required to overcome the system ' s inertia. 

We propose a method of constructing the explainable outreach based on the polynomial 
regression technique. The data sample is split into two parts: the learning błock and the 
testing błock. The dynamics of the system in the period covered by the learning błock is 
grasped by means of a polynomial regression model and the explainable outreach 
ex pressing our expectations about the system 's evolution beyond the learning błock is 
constructed by extrapolating the prediction bands of the fitted regression model. These 
prediction bands represent both our expectations about the future system ' s dynamie and 
its uncertainty. The explainable outreach is then tested against the remainder of the data 
(i.e. testing błock) in order to indicate the time horizon within which predictions based 
on the fitted regression model are believed to be credible. 

We also propose a prognostic learning procedure which supports (with use of the score 
of explainable outreach) selection of the most appropriate type of regression model to 
represent the system 's dynamie. In addition, the PL procedure allows also to derive an 
indicator of the typical length of the time interval, within which predictions made with 
use of such regression model match the actual future observations sufficiently well (i.e. 
are credible). 

The proposed prognostic learning method was tested on various sets of synthetic data in 
order to identify its strengths and weaknesses, formulate guidelines for optima] selection 
of the method parameters (order of the polynomial regression and the length of the 
learning błock) and check how useful the proposed construction of the EO may be in 
informing us about the immediate future of the observed system. We also indicate how 
the prognostic learning method can be applied in the context of earth system sciences 
applying it to analyze historical anthropogenic CO2 emissions and atmospheric CO2 

concentrations. We conclude that the most robust of the analyzed methods is the one 
based on linear regression. However, EOs obtained with use of this method and 
expressing horizons within which linear projections are credible are rather short. 
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8. Acronyms 
EO Explainable outreach 

GHG Greenhouse gases 

LB Learning błock (part of the learning sample to which regression model is 
fitted) 

OLS Ordinary least squares method offitting a regression function to the data 

PL Learning in a controlled prognostic context (prognostic learning for 
short) 

TB Testing błock (part of the learning sample used to test the EO in order to 
determine its length) 

TSA Time series analysis (statistical techniques of analysis of time series) 
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Appendix: Nonparametric kernel-based regression 
Nonparametric regression is an alternative to conventional parametric methods . lt can 
be used when we do not want to be limited to the predetermined form of the estimated 
regression function, when we need to relax some assumptions from the regression 
analysis, while maintaining a good estimate, or simply when the nature of the data 
analysed does not allow the selection of a reasonable model. 

Among known methods of nonparametric regression (Wasserman 2006), (Hardle 
1990), (Fan 1992), (Green & Silverman 1994), (Gyorfi et al. 2002), e.g. local averaging, 
regression and smoothing splines (Rice & Rosenblatt 1981 , 1983), (Stone 1994), 
(Eubank 1999), wavelets (Nason 1996), (Johnstone & Si lverman 1997), (Wang 1996), 
or orthogonal series (Green & Silverman 1994), the kernel estimation is especially 
notewo1ihy. It belongs to popular smoothing techniques (Simonoff 1996), (Silverman 
1986), etc., that allow for estimation even in the case of complicated relationships 
between explanatory and response variables. 

This Appendix is dedicated to application of the prognostic learning method to 
nonparametric kemel-based regression in real-life case studies from Chapter 5: 

(!) Global CO2 emissions from technosphere, 

(2) Concentration of the CO2 in the atmosphere. 

A.1 Kernel functions 

Kernel estimation (Wasserman 2006), (Green & Silverman 1994), (Hart 1991), etc. is an 
extension of loca! averaging and involves the use of the so-called kernel Junction K, 
being nonnegative, symmetric, square integrable, and satisfying the conditions 

f +oo f+oo f+oo 
_

00 
K(t)dt = 1, -oo tK(t)dt = O, and -oo t 2 K(t) dt < oo. 

Given these characteristics the specific choice of a kernel function is not critical. One 
can take any symmetric probability density function (PDF) of a continuous random 
variable with zero mean and finite variance53• 

The most popular choices ofkernel functions (Figure A.I) are the Gaussian (normal) 
kernel (i.e. PDF of the standard norma! distribution), and a few kernels with compact 
support, like rectangular (uniform), tricube, or the Epanechnikov kemel. 

53 The choice of the kernel K may slightly affect the asymptotic properties of the kernel estimator. For 
results in finite sam pies, the difference is negl i gibie. 
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Figure A. I. Four most popular kernel functions. 

A.2 Kernel-based regression methods 

- Gaussian kcmc! 
- rectangu lar kemel 
- tricubc kcmcl 
- E ancchnikov kcmcl 

Kemel regression has been known for many years and various kernel estimators (KE) 
have been used since then. The most important are (see Table A. l for overview): 

- Nadaraya-Watson KE (Nadaraya 1964), (Watson 1964), 
k-nearest neighbours KE and its modifications (Wasserman 2006), 
Priestley-Chao KE (Priestley & Chao 1972), 
Gasser-Mi.iller KE (Gasser & Mi.iller 1984), 
Loca] polynomial regression, in particular loca! linear KE (Li & Racine 2004), 
(Ruppert & Wand 1994), (Fan & Gijbels 1997). 

Some of them have also been considered and analysed in the case of time series data 
or correlated errors (Hart 1991), (Opsomer et al. 2001), (Altman 1990) etc. In Section 
A.4 two kernel estimators are used: the Nadaraya-Watson KE (NWKE) - mostly 
because of its simplicity in applications, and the !ocal linear KE (LLKE) - because of its 
properties and good results, even for small samples. 

Each of the aforementioned KEs (except the !ocal polynomial KE) can be considered 
a linear smoother of the form 

n 

f(x) = L li(x)Y; 
i=l 

where ( x1,Y1), ( x 2,Y2), ... , ( Xn,Yn), denote the bivariate data, corresponding to 
continuous random variables x and Y, 

Y, = f(x;) + ei, i = 1,2, .. . n, 

(A. l) 

and residuals ei, i= 1,2, ... n, are assumed independent54 and normally distributed, with 
zero mean and standard deviation 1J > 0.55 

54 For some kernel-based methods, the independence assumption can be relaxed, in particular, when 
applying KE to time series data (Section A.3). 

55 In generał, standard deviation <Y does not need to be constant. Sometimes <Y(x) > O, is considered 
instead. 
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Functions l;(x), i= 1,2, ... n, satisfy 
n 

L l;(x) = l 
i=l 

and take various forms, depending on the estimator considered (Table A. I). 

Table A.1. Overview of the most popular kemel regression estimators. The methods 
further used in this Appendix are marked in green colour. 

KE 
Nadaraya­
Watson 
(NWKE) 

k-nearest 
neighbours 
(weighted) 
(k-NNKE) 

Priestley-Chao 
(PCKE) 

Gasser-Mliller 
(GMKE) 

Loca! linear 
(LLKE) 

Loca! 
polynomial 
KE 

Ux) in (A.I) 

K (X hX;) 

l,(x) = _! n (X - Xi) 
nL.i=1K R 

Kc;x•) 

where R denotes the distance 
between x and its k-nearest 
neighbour; 

Xi - Xi-1 (X - Xt) 
l,(x) = - -h-K - h-

v, 
l,(x) = ~ J Kc~u)du 

Vj-1 

where Xt ~ vi ::;; xi+l 

( b1(X) 
11 x) = 'f.l'•• • i (x)' where 

b,(x) = K (7 ) (S,.,(x) - (x, - x)s •. ,.(x)) 

'li:' (x- x,) Sn./ (x) = L, K -h- (x, - x)l-
i • t 

Estimate locally (at a po int x) thai 
polynomial of degree p, which 
approximates r (x) in a small 
neighbourhood of the point x, in 
the best way. 
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Prooerties & Remarks 
- !ocal constant estimator 
- can be adopted for ( discrete) time series case 
- several 'rule ofthumb' for selection of 
bandwidthh 
- biased ( design bias and strong boundary 
bias) 
- require large samples 
- for rectangular kernel, it reduces to NWKE 
- k = 2nhf(x), where f denotes the PDF of 
the explanatory variable 
-biased (both design and boundary bias) 
- various modifications and simpli fications; 
various we ights 
- requi re large samples 

- appl icable to compactly supported data 
(rescaling option, with good results) 
- req uires kerne l fu nction with compact 
support 
- no design bias, but strong boundary bias 
- req uire large samples 
- continuous version of PCKE 
- partition { v;}, i=l, .. n-1 required 
- applicable to compactly supported data 
(rescaling option with good results) 
- requires kernel function with compact 
support 
- no design bias, but boundary bias 
- reo uire large samoles 
- particular case of ]ocal polynomial 
regression 
- local linear smoother 
- can be adopted for ( discrete) time series case 
- no boundary nor design bias 
- require large samples, although thanks to 
good ]ocal fit, better results for smaller 
samoles 

- becomes NWKE for p =O, and LLKE for 
p =l 
- in generał cannot be represented as a linear 
smoother given by (A I) 
- no boundary nor design bias 
- require large samples, although thanks to 
good !ocal fi t, reasonable results for smaller 
samples; 
- for Jarger fJ reouires Jarger samoles 



A.2.1 The problem with bandwidth selection 

Weights l;(x), i= 1, ... ,n, in formula (A. l) depend on kernel function K, and a smoothing 
parameter h > O (also call ed a bandwidth) 56, such that 

h -> O but nh -> co, as n -> co. 
The choice of optima! value of the smoothing param eter is crucial 57 and corresponds to 
a problem offinding the 'golden mean ' , by minimizing the mean squared error (MSE), 
being the sum of squared bias58 and sampling variance 

MSE(r(x)) = bias(r(x) )2 + Var(r(x) ), 
or its asymptotic and integrated versions. 

Varying the bandwidth h controls the smoothness of the estimated regression 
function. Larger h results in a smoother curve, but sometimes with a worse fit and hence 
a larger variance. Smaller h in tum means a better fit, with smaller variance, may 
however cause a greater bias (see Figure A.2). Too large h means therefore 
oversmoothing (possibly fai ling to reflect the character of the data analysed), while too 
small - undersmoothing. 

h.::0.00001 h:::0.5 h=1 

100 200 300 400 100 200 300 400 100 200 300 400 

h::2.5 ha20 h.SO 

100 200 300 400 100 200 300 400 100 200 300 400 

Figure A.2. Varying the smoothing parameter: examples of the NWKEs fitted to the data following 
sinusoida! trend (from Section 4.3.5) given by g(x) = sin(0.018 x (x - 100)), with standard deviation 
of noise a= O.Ol x (maxg - ming), where n=400, for various values of h, and using the Gaussian 
kernel. 

56 There are also methods involving variable bandwidths. Here, we focus on methods with fixed 
bandwidth. 
57 See e.g. (Wasserman 2006), (Simonoff 1996), etc. 
58 bias (f(x)) = E(f(x)) - f(x) 

69 



The shape of f(x) changes for various values of h. The plots in the first row illustrate 
the case, when the smoothing parameter is too small. The variance in that case is really 
small, which results in a good fit, but it is done for the price of undersmoothed and 
tluctuating regression curve. The sample is relatively large (n =400), so the 'noisy' 
shape of the estimator is connected with overfit. Increasing h, gives smoother f(x), 
what can be noticed for h=2.5 and 20. The plot in the lower right corner of Figure A.2 
illustrates the evident underfit (resulting in large variance) - the curve is oversmoothed 
and does not grasp the behaviour of the data. 

It is worth noting that, despite the problem with bandwidth selection, even the sim ple 
NWKE approximates the regression function fairly well. Despite the almost ten-fold 
difference between the values of h, the two figures bottom left, look satisfactorily. To 
assess which of them really performs better, one can look at confidence or prediction 
intervals (the latter works better in this regard, due to more emphasis on standard error). 

Since the degree of smoothing corresponds to the variance of f(x), it also affects the 
width of prediction intervals59. Oversmoothing causes too wide intervals (interpreted as 
large uncertainty ofresults), while undersmoothing - too narrow (Figure A.3). 

ha(l.00001 h::0.5 

100 200 300 400 100 200 300 400 100 200 300 400 

h::2.5 MO h:50 

A/•:;:. A_ ..... : .... 
~ :. ·. . 

. 
',,:J ' ~ • 

.-, .. :,. ·:.: ..... .' .'. : ···;•.'.: ... A 
100 200 300 400 100 200 300 400 100 200 300 400 

Figure A.3. Varying the smoothing parameter and illustrating its impact on 95% prediction intervals 
(green dashed lines): examples of the NWKEs fitted (red solid lines) to the data fol lowing sinusoida! 
trend (from Section 4.3.5) given by g(x) = sin(0.018 x (x - 100)), with standard deviation of noise 
u= O.Ol x (maxg - min g) , where n=400, for various values of h, and using the Gaussian kernel. 

1 

In generał, h depends on the sample size n, and asymptotically h ex n -s. The 
fonnulas for optimal h, are different, for various kernel methods. For instance, the 

59 see Section A.2.2 
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optima! value of the smoothing parameter60 in the case of the NWKE satisfies the 
following formula61 

1 

h = ( a2 t: K2 (x)dx c: f(x)- 1 dx )s 
n r 00 x 2K(x)dx r 00 (r"(x) + f'(x/'(x)) 2 dx 

-oo - 00 f(x) 

while for the LLKE62 

(A. 2) 

1 

h --( a2 f~= K2 (x)dx f~= f(x)- 1 dx ) 5 

n J~;: x 2 K(x)dx J~;:(r"(x)/dx 
(A.3) 

The values t: K2 (x)dx and J~;: x 2 K(x)dx depend on the kernel used. For the 
Gaussian kernel r:;: K 2 (x)dx = 0.28, while the latter one represents the variance of the 

standard norma! distribution, i.e. J~;: x 2 K(x)dx=l. But formulas (A.2) and (A.3) also 
involve unknown regression function f(x), that needs to be estimated, unknown 
variance er, as we!! as f(x), i.e. the PDF of the explanatory variable. The methods to 
estimate them, depend on problem requirements, the data to be analysed, and on the KE 
considered. In particular, for the LLKE or the GMKE, er can be estimated by 
(asymptotically unbiased) estimator of the form (Gajek & Kal uszka 1993) 

n-2 

~2 - 1 " 2 a- - 6 (n _ 2) L, CYt+2 - 21-';+1 + Yi) 
t=l 

For the NWKE, also much simpler 
n-1 

~2_ 1 " 2 a- - 2(n - 1) L, CYt+1 - r;) 
!=1 

can be used. However, both formulas work well mostly for large samples. 
The density function of the explanatory variable can be estimated using 

nonparametric methods, like kernel density estimation (Silverman 1986), or (less often) 
parametric (e.g. MLE, provided that, we have additional information on that variable 
and its distribution). In complicated cases, semiparametric methods can also be used e.g. 

(Jarnicka 2009). To estimate f"(x) and J~;:(r" (x) / dx additional information on the 
data is required, since the latter one corresponds to the curvature of the estimated 
regression curve, or approximation by the curvature of some known curve can be used. 

Similarly the term f' (x) ~c~;, which is responsible for the bias. 

For some estimators, like the NWKE, there exist a few 'rules of thumbs' for finding 
reasonable value of h, working we!! in most cases, especially for large samples (but 
being less useful, when applied to time series data or in the case of correlated errors). 

Moreover, the smoothing parameter can also be chosen by the cross-validation (CV) 
criterion63 

60 see e.g. (Wasserman 2006), (Green & Silverman 1994), etc. 

61 The term r' (x) r'CCxl in (A.2) denotes the design bias, typical for the NWKE (it is not present for the 
f x) 

LLKE) 
62 see e.g. (Ruppert & Wand 1994), (Fan & Gijbels 1997), etc. 
63 see e.g. (Wasserman 2006), etc. 
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n 

CV(h) = _L (Yi - f(xJ)2 e(z(xJ ), 
i=l 

where 
K(D) 

z(x;) = x- -x- . 
L. j=l,j,•i K ( y) 

The penalizing function 0(.) takes various forms, e.g., B(z) = ci~z)Z' (generalized CV), 

and 0(z) = e 22 (AIC - Akaike's Information Criterion), etc. and ensures various 
properties (i.e. possibly small bias or variance)64. The values of h obtained using the CV 
criteria are usually close to the MSE optimal ones. The problem starts with violation of 
independence assumption on residuals, as correlation may decrease the bandwidth 
indicated by the CV criterion, so the curve obtained is undersmoothed (Opsomer et al. 
2001), (De Brabanter et at 2011), etc. 

A.2.2 100%(1-a)-Prediction Jntervals 

Choosing the right h is of great importance, due to the expected estimation result. Since 
this is a compromise between minimizing the variation of the KE and its bias, when 
choosing a bandwidth, we can put emphasis on that of them, which is more important 
for a particular application. In this report, we focus primarily on the variance (analysing 
it, but not trying to make it as small as it gets, as it may affect the EO), which 
determines the prediction intervals. 

According to the Central Limit Theorem (CLT), regression estimates r(x) in (A.I) 
have an asymptotic normal distribution 

r(x) - bias(r(x)) 
• N(0,1) 

jvar(r(x)) 

Assuming no bias, the asymptotic 100%(1-a) - prediction interval is of the form 

P(x) ± z1_Ijvar(r(x)) + a(x)2 

where z1 _~ denotes the (1 - ~ )th quanti le of the standard norm al distribution. For in-
z 

sample points, i.e. for points from the LB, r(x) denotes the KE, and cY(x) an estimate 
of the variance of residuals (corresponding to the standard error), while for new 
observations x*, r(x*) denotes the prediction at x*, and a(x*) 2 prediction error. For 
the NWKE and the LLKE the variance is asymptotically equal 

cY (x) r 00 K 2(t)dt 
Var(r(x)) "" nhf(x) , 

which gives the in-sample prediction bands (PB) of the form 

(A.4) 

64 This refers to finite samples, as they all guarantee the same asyrnptotic properties. 
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and 

Ln 7/(x•) J+00 K2 (t)dt 
~( *) l -oo -;:;,r *)2 
r X ± z1-; . nhf (x*) + v~X 

!=l 

(A. 5) 

for a new observation x* (Green & Silverman 1994). 
Formula (A.4) was used to construct the prediction intervals in Figure A.3. It is 

worth mentioning that, the approximately optima! value of the smoothing param eter is 
h= 7. 72, while for the LLKE applied to the same data h=8. 06 (see Figure A.4 for 95% 
in-sample PBs). Formula (A.5) will in tum be used to construct the EO in the procedure 
described in Section 3.2. 

-~-------~ -~-------~ 

1()0 200 300 400 100 200 300 400 

Figure A.4. 95% in-sample (LB) prediction bands (dashed) for the NWKE (left) and the LLKE (right) 
with the Gaussian kernel and approximately optima! bandwidths h=7.72 and h=B.06 for NWKE and 
LLKE respectively; Thanks to a large sample (18=400 ,data set from Figure A.2 and A.3) and 
independent observations the results are almost identical. The residua! standard error is equal 0.094 and 
0.093 for NWKE and LLKE respectively. 

A.3 Kern el estimation of time series data 

In this section we focus on the time series case, where the time points are fixed and 
equally spaced. Following notation from Section 3. I, !et the learning błock (LB) contain 

n observations X1, X2, ... , Xn , taken at the time points t1, ... , tn, where t; = !:.., i= 1, ... n. 
n 

Consider 
x(t) = f(t) + Et, 

where x(t) = Xi is a value of the observation taken at time t, and the noise term Et is 
normally distributed with zero mean and standard deviation a> 0.65 We assume that 

65 Assumptions on residuals, when compared to parametric regression techniques can be relaxed. Two 
scenarios are considered in the literature: (I) allowing non-norma! distribution, but ensuring covariance 
stationarity and possibly weak correlation ((Brabanten et al. 2011 ), (Opsomer et al. 200 I)), or (2) 
ensuring normality and analyzing correlation structure e.g.(Li & Li , 2009). Both lead to problems with 
appropriate bandwidth selection, the second one however allows for asymptotically better results, in 
particular in view ofpredictions and the EO. 
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residuals Et, t = O, I, 2, ... , are correlated and their correlation decreases in inverse 
proportion to the distance between them 66• 

When analysing a time series, one has to deal with specific nature of the data, 
resulting in a need for modifications in optima! bandwidth selection methods. 
Moreover, the problem with applying the kernel methods to time series data is also 
connected with discrete distribution of explanatory variable t (discrete time), which has 
to be approximated by a continuous estimate. 

A.3.1 Bandwidth selection in the time series case 

The problem of optima! bandwidth selection, described and illustrated in Section A.2, 
becomes now more visible. The time points are equally spaced, and what is more 
important, the data points (and hence the residuals) are correlated, so the shape of the 
estimated regression function changes considerably, when varying the smoothing 
parameter (see Figures A.5 (NWKE) and A.6 (LLKE) for examples). 

h::0.001 h,0.5 ha2.45 

i------~ i-------, 

:/ ;/ 
10 20 30 40 SO 10 20 30 40 50 10 20 XI 40 50 

h:4.45 h:7.5 h:10 

/ 
, .... ·•··· 

10 20 30 40 50 10 20 30 40 SO 10 20 30 40 50 

Figure A.S. Varying the smoothing parameter: examples of the NWKEs fitted to the data on global CO2 

emissions from technosphere (n =53) for various values of h, and the Gaussian kernel. 

The NWKE is fitted to the data on global CO2 emissions from technosphere. To 
illustrate problems with finding the optima! bandwidth for the time series case, we take 
the whole sample, consisting of n=53 data points and consider six exemplary values of 
h. 

66 This assumption corresponds to the condition Corr ( t:,1, t:,;) = p(ti - tj), based on unknown 

stationary correlation function p( .). This allows for correlation decaying, when n -, oo, and hence better 
results for large samples. We will not however be interested in analysing the correlation structure in 
detail , using only 'independence-like ' approximations . 
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It is easy to observe, that values h=4.45, 7.5, and 10 are too large, resulting in 
oversmoothing, which means that, in practice only a central part of the data is estimated, 
and the result is rather poor. On the other hand, h=0. 001 is too small , showing a perfect 
fit, with no visible uncertainty. Both h=0.5 and 2.45 seem to be quite good. The first 
one, seems to better grasp the behaviour of the data, the latter one however leaves more 
room for possible improvement (and may be better in view of the EO). 

You may notice that, in four of the six examples given, we have to deal with the 
boundary bias, characteristic for the NWKE. It can significantly affect the length of the 
EO, since it cannot be overcome by slightly larger smoothing, and greater variance. 
Therefore, for the EO analysis, also the LLKE is used, as it is free from the boundary 
bias. For comparison, in Figure A.6, the LLKE is fitted to the same data series, using 
the Gaussian kernel , and taking the same exemplary values of h. 

ha0.001 
h•0.5 

h=2.45 

O 10 20 30 40 50 O 10 20 30 40 50 O 10 20 JO 40 SO 

h=4.45 h:7.5 h:10 

O 10 20 30 40 50 O 10 20 30 40 50 O 10 20 JO •O 50 

Figure A.6. Varying the smoothing parameter: examples of the LLKEs fitted to the data on global CO2 

emissions from technosphere (n =53) for various values of h, with Gaussian kernel. 

It is easy to observe that, the application of the LLKE (Figure A.6) gives better 
results than in the case of the NWKE (Figure A.5). This is primarily related to the Jack 
of boundary bias. Due to the fact that, the estimator is fitted to the data locally, even in 
the case when smoothing parameter h is too large (e.g. for h=4.5 or 7.5) the LLKE 
seems to properly grasp the generał shape of the estimated relationship. 

This is also reflected in the variation of the standard error in those cases (Figure A. 7), 
as the standard error (SE) increases much faster in the case of the NWKE. 
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10 10 

Figure A.7. Relationship between the smoothing parameter and the standard error for the NWKE (left) 
and the LLKE (right) considered in Figures A.5 and A.6. 

The results obtained are connected with the type of data. The same analysis conducted 
for the second data set from Chapter 5 i.e. concentration of the CO2 in the atmosphere, 
shows slightly different results (Figures A.8 and A.9). 
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Figure A.8. Varying the smoothing parameter: examples of the NWKEs fitted to the data on 
concentration of the CO2 in the atmosphere (n =53) for various values of h, with Gaussian kernel. 
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Figure A.9. Varying the smoothing parameter: examples of the LLKEs fitted to the data on concentration 
of the CO2 in the atmosphere (n =53) for various values of h, with Gaussian kernel. 

Although varying the smoothing parameter changes the results, thanks to the linear 
trend in the data, the KEs used estimate the regression function seem to work we!!. As 
previously (Figures A.5 and A.6) the LLKE performs better, but the difference is not as 
evident as for the emission data. The main reason is the scale of the standard errors. 
The comparison of standard errors shows that, the results of the NWKE are better 
(Figure A. I O), i.e. the standard errors for the LLKE are small er and the difference is 
significant, as presented in Figure A.7. 

10 10 

Figure A.JO. Relationship between the smoothing parameter and the standard error for the NWKE (left) 
and the LLKE (right) considered in Figures A.8 and A.9. 

Since in the case of time series data, the smoothing param eter cannot be chosen by the 
CV criterion (usually correlation causes oversmoothing (Opsomer et al. 2001)), 
formulas (A.2) and (A.3) should be used. 

To estimate unknown factors in (A.2) and (A.3), some additional assumptions are 
required. 
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As a kemel function K, we take the Gaussian kemel, so 
+ oo 

J K 2 (x)dx = 0.28, J+ oo 

. -oo x 2 K(x)dx = l. 
-00 

The explanatory variable has discrete uniform distribution, and can therefore be roughly 
approximated by its continuous version. In particular, the PDF of the uniform 
distribution is nonzero only on [a,b}. For simplicity, the factor related to that PDF is 
constant and can therefore be omitted. To estimate the PDF of the explanatory variable 
in PB, we use kernel density estimation with the bandwidth chosen by the Silverman 's 

rule ofthumb h = (1-060)½ (Silverman 1986). 
n 

For simplicity, we assume that, the unknown regression function is close to a straight 

line. The factor J:.: (f" (x) )2 dx is constant and can also by omitted. 

The variance cr'is assumed constant, and is estimated by 
n-2 

-2_ 1 '\' 2 
u - 6(n _ Z) L, (Y; +2 - 2Y;+1 + Y;) 

t = l 

(A. 6) 

Therefore, in Section A.4, to find the bandwidth h, we use the following rule ofthumb 
1 

h = (&2:2s)s (A.7) 

That corresponds to known rules ofthumbs for NWKE (Green & Silverman 1994), and 
is used for both NWKE and the LLKE. In this case formula (A.7) corresponds rather to 
the optima! bandwidth for the LLKE (no design bias factor), but assuming no bias in the 
NWKE and approximating h by the same formula, as for the LLKE leads to a slight 
oversmoothing (and hence that assumption becomes reasonable). · 

A.3.2 In-sample prediction hands - the time series case 

Given the time series data, the independence assumption is not satisfied and, in generał , 

some asymptotic properties of the KE may not be satisfied (Hart 1991 ). However, for 
some cases of correlation structure, in particular, assuming the correlation decays in 
in verse proportion to the distance between observations (Opsomer et al. 200 I), or for 
the AR correlation structure (Li & Li 2009), asymptotic properties of the KE are close 
the ones that hold in the independent case. Moreover, generalized version of the CLT, 
indicates the asymptotic norma! distribution, which allows for the use offormulas (A.4) 
and (A.5) to find the asymptotic prediction bands. 

The construction of the PBs is connected with the choi ce of the smoothing param eter. 
Adding 95% prediction bands helps in illustrating differences between the results 
obtained in Section A.3.1 for various values of h. 
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Figure A.10. Varying the smoothing parameter and illustrating its impact on the variance in terms of 
95% prediction bands (black dashed lines): examples of the NWK.Es fitted to the data on global CO2 

emissions from technosphere (n =53) for various values of h, with Gaussian kernel. 

For h=0.001, prediction bands do not cover all the data points depicted, since the 
variance of the estimated regression function is too small and the prediction interval too 
narrow. Values h=0.5 and 2.45 provide different results - the latter appears to be 
slightly too large, increasing the variance and causing the wider prediction interval. For 
h= i O, the regression estimate is obviously oversmoothed. The shape of the data is not 
properly reflected, and despite the large variance only few data points fali within the 
prediction bands67• 

67 That effect is partly connected with boundary bias of the NWKE. 
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Figure A.11 Varying the smoothing parameter and illustrating its impact on the variance in terms of 95% 
prediction bands (black dashed lines): examples of the LLKEs fitted to the data on global CO, emissions 
from technosphere (n =53) for various values of h. with Gaussian kernel. 
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Figure A.12 Varying the smoothing parameter and illustrating its impact on the variance in terms of 95% 
prediction bands (black dashed lines): examples of the NWKEs fitted to the data on concentration of the 
CO, in the atmosphere (n =53) for various values of h, with Gaussian kernel. 
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Figure A.13 Varying the smoothing parameter and illustrating its impact on the variance in terms of 95% 
prediction bands (black dashed lines) : examples of the LLKEs fitted to the data on concentration of the 
C02 in the atmosphere (n =53) for various values of h, with Gaussian kernel. 

A.4 Real-life case studies 

The methods of prognostic learning from Chapter 3, in particular the procedure for 
assessing the EO, presented in Section 3.3, are applied to real-life case studies, 
considered in Chapter 5: (I) global CO2 emissions from technosphere, and (2) 
concentration of the CO2 in the atmosphere. 

The ability of learning is tested in terms of the EO ( described in Section 3.2) for both 
aforementioned kernel regression estimators: the LLKE and much simpler NWKE. 

The most important problem when using nonparametric methods is their requirement 
of a large sample size. Each of nonparametric methods (including kernel regression) 
depends on the sample size in a different way. Due to the asymptotic properties of 
kernel estimators, the sample should be sufficiently large, although it is difficult to 
specify the threshold above which the results will be good. Conducted analyses and 
simulations (Wasserman 2006), (Green & Silverman 1994) indicate that, this depends 
on the type of data, in particular on their distribution. Also, correlation of data (as in the 
time series case) requires a larger number of test points (Opsomer at al. 2001), (Hart 
1991). It can therefore be expected, that for LBs of25 or slightly more training points, 
the results may not be satisfactory, which in some way will influence the EO. 
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A.4.1. Procedurefor analysing the EO, in the case of the kernel regression 

To test the ability of prognostic learning, the following procedure is considered. 
Given the sample ofn = n1 + n 2 data points, we perform the following steps. 

fillm_l. We take the learning błock (LB) of n1 data points. 
- The unknown variance ofresidual s is estimated by (A.6) 
- The smoothing parameter is fou nd by (A.7) 
- The NWKE and the LLKE are used. 
- The model assumptions are verified. 
- The in-sample 95% prediction bands are found for both NWKE and LLKE, 

using (A.4) 
Step 2. We take the testing sample of n2 data points. 
- The out-of-sample 95% prediction bands are found for both the NWKE and 
LLKE, using (A.5) 
- The length and the score of the EO are found, using the procedure described in 
Section 3.2. 
Step 3. We increase the LB by one and repeat Step I and Step 2. 

A.4. 2. Global C02 emissions from technosphere 

The procedure described in Section A.4.1 is applied, starting with n1 = 25. The six 
exemplary stages are presented in Figures A.14 (for the LLKE) and A.15 (NWKE) . 

. -:: 1/.•,,· 
. . 

. 

Figure A.14. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49) the LLKE 
using the Gaussian kernel. 
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Figure A.15. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49): the NWKE 
using the Gaussian kernel 

For both estimators the 95% out-of-sample predictions bands for the shortest LBs 
open quite fast68, but the PBs for the NWKE, in particular for the shortest LBs, seem to 
stabilize at first, increasing rapidly after a few out-of-sample points. This is connected 
with the boundary bias of the NWKE, present in paiiicular for small sam pies. 

The PBs for the LLKE better reflect the estimated relationship between explanatory 
and response variables, which also results in the longer EO. The prediction inte1vals for 
the NWKE are wider, which is connected with the greater standard errors, and results in 
!ower EO scores (Figure A.17). 

As oppose to the EO lengths presented in Figure 37, as a results of using parametric, 
linear regression, no decreasing trend can be observed, for LB>30. The EO lengths 
decrease and increase, for the LLKE having peaks at LB=32 (!ocal maximum), 34 (!ocal 
minimum), 37 (max), and then 42 (min), 43 (max), 44 (min) and 47 (max). For LB>48, 
all the remaining data points are within the PBs, giving the infinite length. 

It is worth mentioning, that in spite of differences in the EO lengths, the results 
obtained using both estimators show similar monotonie behaviour (Figure A.16). 
Similar effect can be observed for the EO scores (Figure A.17). This means that the EO 
depends on the data. Since in the case of the LLKE standard errors are small er than for 
the NWKE, the prediction intervals for LLKE are narrower, and the data type affects the 
EO outcome stronger. 

68 This is connected with prediction errors, increasing really fast The in-sample errors behaviour is 
completely different (Figures A I O and A. I I), as they seem to be constant. 
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Figure A.16. The EO length as a function of the LB, in the case of the LLKE (left) and the NWKE 
(right). 
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Figure A.17. The EO score as a function of the LB, in the case of the LLKE (left) and the NWKE (right). 

The comparison of the results for the LLKE and NWKE is presented in Table A.2. 
The conducted analysis shows that, the LLKE performs better, giving longer EOs -
between 4 and I 4 data points (Figure A. I 6). 

Moreover, starting with the LB=47, all the remaining data points fali within the PBs. 
The resulted EO lengths for the NWKE are in turn mare stable, giving values between 2 
and 6. 
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Table A.2 Prognostic learning - comparison of the LUCE and NWKE results, when applied to 
the data on C02 emissions from technosphere. 

Results LLKE NWKE 

max length finite: 14 (for LB=32) finite : 6 (for LB=3 l , 32, 

EO oo (for LB~47) and 33) 
oo for LB~S0 

min length 4 (for LB=25, 26, 42 and 44) 2 (for LB=28, 29, 30, 41 , 
44-47, and 49) 

00 for LB~47 all tested data for LB~S0 all tested data 
points fali within the PBs points fal! within the PBs 

score 0.0062 - o.o 163 for LB<47 0.0029 - 0.0113 for 
oo for LB~47 LB<S0 

oo for LB~47 

Residuals nonnality Et normally distributed Et normally distributed 
(Shapiro-Wilk test, (Shapiro-Wilk test, 
p-values>0.2) p-values>0. l) 

zero mean ok (t-test, p-values>0.2) ok (t-test, p-values>0.2) 

correlation autocotTelation at lag I and 2, autocorrelation up to lag 5 
(ACF, Box-Pierce test) or 6 (ACF, Box-Pi erce 

test) 

A.4.2 Concentration of the CO2 in the atmosphere. 

Now the procedure described in Section A.4.1 is applied to the second data set. As 
previously, we stat1 with n1 = 25 and then increase the LB length by one. The six 
exemplary stages of the procedure are presented in Figures A.18 (for the LLKE) and 
A.19 (for the NWKE). 
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Figure A.18. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49 ) the LLKE 
using the Gaussian kernel 
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Figure A.19. Six exemplary stages of the PL procedure (LB lengths: 26, 33, 36, 38, 43, 49): the NWKE 
using the Gaussian kernel 
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Figure A.20. The EO length (left) and EO score (right) as a function of the LB, in the case of the NWK.E. 

The comparison of the results for the LLKE and NWKE is presented in Table A.3. The 
conducted analysis shows that, the prognostic learning method based on LLKE fails to 
establish length of the EO - due to quickly diverging PB all testing points fali within 
them and resulting EO lengths are infinite (i.e. undefined). 

NWKE method on the other hand performs poorly. This is caused by the boundary bias 
resulting in horizontal EO while the testing points continues to follow an increasing 
trend. 

Table A.3 Prognostic learning - comparison of the LLKE and NWKE results, when applied to 
the data on concentration of the CO2 in the atmosphere. 

Results LLKE NWKE 

max length 00 (all tested points fali 4 (for LB=33) 

EO within the PBs) 

min length no finite EO length 2 (for LB=25-3 l ,36-37, 
39-40, 43-44, and 49) 

00 for LB::::25 all tested data for LB::::50 all tested data 
points fali within the PBs points fali within the PBs 

score oo (no finite EO score) finite: 0.287 - 0.517 
or oo (for LB::::50) 

Residua Is norm ality Et no1mally distributed Et normally distributed 
(Shapiro-Wilk test, (Shapiro-Wilk test, 
p-values>0. l) p-values>0.09) 

zero mean ok (t-test, p-values>0.2) ok (t-test, p-values>0.2) 

correlation autocorrelation at most at autocorrelation at lag I (at 
lag I or none (ACF, Box- most 2) or none (ACF, 
Pierce test) Box-Pierce test) 
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A.5 Conclusions 

Analysis of the perfonnance of the prognostic learning method based on nonparametric 
regression applied to real-life data sets of anthropogenic CO2 emissions and 
atmospheric CO2 concentrations leads to the following conclussions: 

• The use of the LLKE regression performs better than the NWKE. Since it does 
not exhibit the boundary bias it has smaller prediction errors. This result in 
longer prediction errors. 

• The method based on nonparametric regression easily adapts to the data 
behaviour, reflecting fluctuations and peaks (for CO2 emissions data set) while 
being mare stable for data exhibiting regular behaviour (as for CO2 

concentrations data set). 
• Autocorrelation of residuals (mare pronounced for NKWE method than for 

LLKE method) has a negative impact on the performance of prognostic learning 
procedure, i.e. results in shorter EOs. 

Literature 

Altman N.S., Kernel Smoothing of Data with Correlated Errors, J. Amer. Statist. 
Assoc., 1990, 85, 749-759. 

K. De Brabanter, J. De Brabanter, J. A. Bart De Moor, Kernel Regression in the 
Presence of Correlated Errors, J.Machine Learn. Research 12 (2011 ), 1955-1976. 
Eubank R.L. , Nonparametric regression and spline smoothing, Marcel Dekker Inc., 

New York, 1999. 
Fan J., Design-adaptive Nonparametric Regression, Journal of the American Statistical 

Association, Vol. 87, 1992. 
Fan J., Gijbels I., Loca/ Polynomial Mode/ling and lts Applications, Chapman & Hall, 

London, 1997. 

L. Gajek, M. Kałuszka, Wnioskowanie statystyczne: modele i metody, Wydawnictwa 

Naukowo-Techniczne, Warszawa, 1993. 

Gasser T., Miiller H.G, Estimating Regression Functions and Their Derivatives by the 
Kernel Method, Scand. J. Statist., 1984, 11: 171 -185. 

Green P.J., Silverman B.W., Nonparametric Regression and Generalized linear 
Models: a Roughness Pena/ty Approach, Cham pan & Hall, London, 1994. 

Gyorfi L., Kohler M., Krzyżak A., Walk H., A Distribution-Free Theory of 
Nonparametric Regression, Springer, NewYork, 2002. 

Hart J.D., Kernel regression estimation with time series errors, J. Royal Statist. Soc. B. 
1991 , 53(1):251-259. 

Hardle W., Applied Nonparametric Regression, Cambridge University Press, 1990. 
Johnstone I., Silvennan B. W. , Wavelet threshold estimators for data with correlated 

noise, J. Royal Statist. Soc., B., 1997, 59, 319-351. 

88 



Jarnicka J. , Multivariate kernel density estimation with a parametric support, 
Opuscula Math. 29, no. I (2009), 41-55. 

Nadaraya E.A., On estimating regression, Theory Prob. Appl.1964, 9( I): 141-142. 
Nason G.P. , Wavelet shrinkage using cross-validation, J. Royal Statist. Soc. B, 1996, 

58, 463-479. 
Opsomer J., Wang Y, Yang Y., Nonparametric Regression with Correlated Errors, 

Statist. Sci. 2001 , 16(2): 134-153. 
Priestley M.B., Chao M.T., Non-parametricfunctionfitting, J. Royal Statist. Soc. B, 

1972, 34: 385-392. 
Rice J. , Rosenblatt M., Integrated mean squared error of a smoothing spline, J. Approx. 

Theory, 1981, 33, 353-369. 
Rice J. , Rosenblatt M. , Smoothing splines: regression, derivatives and deconvolution, 

Ann. Statist, 1983 , 11, 141-156. 
Ruppert D. , Wand M.P., Multivariate Locally Weighted Least Squares Regression, The 

Annals of Statistics, 1994, Vol. 22, p. 1346-13 70. 
Silvennan B.W., Density Estimationfor Statistics and Data Analysis, Champan & Hall , 

New York, 1986. 
Simonoff J.S ., Smoothing Methods in Statistics, Springer, 1996. 
Stone C.J., The use of polynomial splines and their tensor products in multivariate 

Junction estimation, Ann. Statist., 1994, 22, 118-184. 
Wang Y., Function estimation via wavelet shrinkage for long-memory data. Ann. 

Statist. 24, 1996, 466-484. 
Wasserman L., All of Nonparametric Statistics, Springer Texts in Statistics, New York, 

2006. 
Watson G.S., Smooth regression analysis, Sankhya Ser. A, 1964, 26(4): 359-372. 

Acronyms 
ACF - autocorrelation function 
AR - autoregression 
CLT- central limit theorem 
CV - cross-validation 
GMKE - Gasser-Miiller kernel estimator 
KE - kernel estimator 
k-NNKE - k-nearest neighbour kernel estimator 
LLKE- Loca! linear kernel estimator 
MLE - maximum likelihood estimation 
MSE - mean squared error 
NWKE - Nadaraya-Watson kernel estimator 
PB - prediction bands 
PCKE - Priestley-Chao kernel estimator 
PDF - probability density function 
SE - standard error (i.e. residua! standard error) 
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