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Abstract

This paper deals wityh the robust control of time-delay non-integer order plants by means of standard non-
integer order controllers. Precisely, a method for determining the parameter regions where a PI* D* controller
ensures a given modulus margin (inverse of the H., norm of the sensitivity function) is presented. This method,
which is conceptually simple and intuitive, extends to the aforementioned general classes of controllers and plants
the approach recently followed by the present authors in the integer order case. A Matlab program to plot the loci
of constant modulus margin and those of constant crossover frequency has been developed and applied to some
numerical examples taken from the literature.

I. INTRODUCTION

Non-integer order systems have been considered with increasing interest in the recent control literature
because many plants can be described more satisfactorily by models of this kind [1], [2] or because
non-integer order controllers provide a better performance than classic integer order ones [3]. In fact, it
has been shown that in many instances fractional order PID controllers outperform the best integer order
PID controllers [4], [5], [6]. In the following, we consider the most general situation where the order of
the controller is non—integer and the plant is described by a non—integer order model plus a time delay .
Obviously, the other cases are but special instances of this one.

Robustness plays a fundamental role in non-integer order control, too {7], [8], [9], [10]. In particular, it
is very important to determine the set of 21" D* controllers that satisfy certain stability margins. Among
these margins, the modulus margin (also called f,, margin because it is the inverse of the H,, norm of
the sensitivity function) seems to be the most meaningful {11], [12], [13]. Determining the controllers
that ensure a given modulus margin, however, is not an easy task even for integer order systems. Such
problem has been tackled, e.g., in [14] and [15] for integer order time-delay plants and PID controllers
using different approaches. Here, we extend the essentially graphic method in [15] to the aforementioned
general case of PI* D" controllers and non-integer order time-delay plants. The entire stability region in
the controller parameter space has already been determined in [16], [17] and, for particular classes of
fractional order controllers and time—delay plants, in [18], [19] where, however, no indication is given
regarding the loci of constant modulus margin. In [20], drawing on the procedure described in [21] for
integer order systems, a design technique based on shaping the sensitivity function has been proposed for
minimum—phase commensurate order plants without time delay.




The remainder of this paper is organized as follows. Section 11 specifies the adopted plant and controller
representations, and formulates the problem to be solved. The equation of the stability boundary in the
controller parameter space is derived in Section III along the lines followed in [15] for the integer order
case. Section IV gives the equations of the loci of constant gain and phase crossover frequency. The loci
of constant modulus margin are determined in Section V. The use of these loci for controller synthesis
is illustrated in Section VI by means of numerical examples taken from the literature. A few concluding
remarks are made in Section VII. To plot the aforementioned loci, the Matlab program described in the
Appendix has been developed.

1I. PROBLEM STATEMENT
Consider a unity—feedback control system and assume that the controlled plant is described by the
transfer function:
. bosn 4 b, st 4 4 b8P 4 bys™ .
Gls) = n(s) o=Ts _ buS + b8 + 51871 + bys o T o
d(s) A + Gp_ 181 4+ ..+ @180 + aps™o
where: 3, > Jp1 > > 01> 530> 0,an >y > - >a; > ap>0,and 7 > 0 is a time delay.
1t is also assumed that plant is controlled by means of a standard PI* D" controller described by the
transfer function:

1
Cls) = ky + ks + k,,;, ¥

where A > 0, 1 > 0, and k,, k;, k, are the proportional, integral and derivative gain, respectively.

Clearly, this setting encompasses any combination of integer or non—integer time—delay plant and integer
or non—integer controller. Moreover, both aq and 4, can be equal to zero, i.e., ap = /3y = 0, even if this
case has no particular interest.

The problem we refer to is that of finding a controller of form (2) in such a way that the overall
unity—feedback control system is stable with a modulus margin greater than a prescribed value.

In the usual case of integer order controllers, there are three design parameters, i.e., k,, k; and kq,
whereas the aforementioned control problem allows for two more design parameters, i.e., A and /i, and
this greater flexibility can be exploited to achieve a better performance.

III. STABILITY REGIONS
The Nyquist diagram of the loop function:

L(s) = C(s)G(s) 3
crosses the unit circle centred at the origin with a phase equal to m,, — 7, where m,, is the phase margin,
if:

L(jwa) = ™, @

where w, denotes the gain crossover frequency and 7 denotes the imaginary unit.
Taking into account (1) and (2), the interpolation condition (4) can be written as

[k (wa)* + ki + ka(000)* ] 1(g0) = () (o) T 470770, ®
Decomposing n(jw,) and d(jw,) into their real and imaginary parts, ie.,
n(jwa) = nr(wa) + 11(Wa),  d(iwa) = dr(wa) + 7 di(wa), (©)

and expressing (jw,)* as
(jwa)® = wt 7 = ) ( cos )\g + gsin /\g), 0




eqn. (5) can be rewritten as

A r in A~ . At il i il _ ] -
[k,,wa (cos)\Z +7 Sm/\Q) + ki + kaw, (cos(/\ +/1,)2 + 7 sin(A + /¢)2>J [n,(wa) +ani(we)| =

[dr(wﬂ) —+ ]d,-(w,,)]w;\ [cos (wﬂT +my, + )\g — 7r) + 7 sin (wﬂT+ m, + /\g - w)} ®)
which can be split into the following two equations relating the real and imaginary parts on both its sides:

e -

{k,, W) cos /\7_2r + &y + kgw)t cos(\ + /l)g] nr(w,) — [k,, W) sin /\g + kgwi P sin(\ + 1)
—wid.(w,) cos (waT +my, + /\g) + wid;(w,) sin (w,,T +m, + /\g), ®
[k,, w) cos /\g + ki 4 kqw) T cos(\ + /,L)g] nilwa) + [k,, w) sin /\g + kgwt sin(\ + /l,)g:l Ny (w,) =

—wid,(w,) sin (wﬂT +m, + Ag) — wid;(w,) cos (w,,T +m, + /\g—), (10)

leading to
T

kp sin /\g + kgl sin(A + /J,)g = —A(w,) sin (waT +my, + /\er—) + B(w,) cos (waT+ my, + /\2), an

k; sin /\g — kqwtsin ,ug =w) [A(wa) sin (w“T + mLP) — B(w,) cos (w“T + mw)], (12)
where
dr(w)n, (W) + d;(w)n;(w)
A = T ew a9
B((L)) _ d’r(w)nl(]w) — dl(]w)nf(w) (1 4)

For k,; = const, eqns. (11) and (12) supply the parametric equations (with parameter w,) of a curve in
the cross section ky =const of the (kp, k;, kq)-space, whereas, for either k, = const or k; = const, they
describe a curve on the plane (k;, k;) or, respectively, (ky, ka).

When m, = 0, at each point of these curves 1 + L{jw,) = 0, i.e., the characteristic equation has
purely imaginary roots . Therefore, on the aforementioned parameter planes, these curves separate regions
characterized by different numbers of RHP and LHP roots of the system characteristic equation, and some
of these regions may correspond to a stable behaviour. This property was proved in [15] for integer order
systems and controllers. The set of all stabilizing fractional order PID controllers has also been determined
in [22].

For A = 1 = 1 (integer order PID controller) eqns. (11) and (12) simplify to

kp = —A{w,) cos (w,,T + mtp) — B(w,) sin (waT + mw), (15)

ki — kgw? = w, [A(w,,) sin (woT" + my) — B(wa) cos (w1 + mga)], (16)

which of course coincide with egns. (10) and (11) in [15].

The particular cases of P2D* and PI* controllers can simply be obtained from (11)~(12) by setting
k; = 0 or, respectively, ko = 0 and then climinating either A or ;2 from the resulting equations. For
example, setting k; = 0 in (11)-(12) (>D* controller) leads to

T

kp sin /\g + kqwh sin(A + /1,)% = —A(w,) sin (wﬂT+ ™y + /\g) + B(w,) cos (w,,T +my + /\2) , (A7)




—kqwit# sinug =uw} [A(wﬂ) sin (waT' + my,) — Blwa) cos (waT + m,,)]. (18)

To eliminate A from (17) and (18), it is enough to multiply (17) by sin 25 and ( 18) by sin(A + )7, and
then combine the resulting two equations, thus arriving at

. ™ . m m
k, sm/z,E = A(w,) sin (waT +my, — /1,5) — B(wg) cos (waT +my, — /1,5) , (19)
kgwl! sin;zg = ~A(w,) sin (wT +my,) + Blw,) cos (w,T + my,) . (20)

As an example, Fig. ?? shows some curves (19)-(20) for various values of m, when the plant is described
by (43) (see Section VI) and the exponential of the I>D# controller is j» = 0.5. Clearly, the stability region
is obtained for m,, = 0.

1t is even simpler is to find the equations for a PI* controller from (11)~(12): essentially, it is enough
to set k; = 0 in (11) and (12).

A procedure similar to that adopted for finding the loci of constant m,, can be followed to determine
the locus of the (k,, k;, ka)—points cnsuring that the diagram of L(jw) crosses the real axis at —1/m, + 0,
mg > 0, for some angular frequency w;, (phase crossover frequency), i.e.:

L) = ——. @n

Mg

It turns out thal this locus is defined by the parametric equations (with parameter wy):

1

k, sin /\g + kaw) sin(A + /A)g = Eg [B(w;,) cos (wa + /\g) — A(wp) sin (wa + Ag)], (22)

A
k;sin AL kq w,’)”“ sin/l,I - % [ — B(wy) coswpT + A(ws) sin wa], 23)

2 2 my

which, in the case of an integer order controller (A = ;2 = 1), simplify to
k, = L [A(w,,) coswyT + B(wy) sin w,,T], 24)
My
2 Wh .

ki — kawi = — [A(wb) sinwy7 — B(wp) cos wa} . 25)

o
Again, the equations for either a PD* or a PI* controller can immediately be obtained from (22)—(23).
Precisely, the equations for the former are:

kp Sinug = mig [A(wb) sin (wa - /¢g) ~ B(ws) cos (wa - /Ag)], (26)

1
kg wl) SiH/J.g = — [ — A(wy) sinw,T + B(wy) cos wa], 27
My

whereas the equations for the PI* controller can be found simply by setting k; = 0 in (22)~(23).




IV. LOCI OF CONSTANT CROSSOVER FREQUENCY
At the gain crossover frequency w,, the square magnitude of the loop function is equal to 1, i.e.,

|L(ga)? = [C(wa) PIG (wa)|* = 1, (28)
where
2 _ 12 (wa) 4 1} (wa)
[G(wa)|* = B(wn) + Blwn) 29
and
A X A2
IC(]UJ")P _ ,kp(.]wn) + k‘::; Ky (jwa ) (30)

which, according to (7), can be rewritten as
kol (cos A 4+ 78in AZ) + ki + kpwy i (cos AS + gsin AT
= e =

|C(gwa)P?

1
(w4 k24 (hgw ™) 4 2k ko cos /\E+2k,,-kdw”" cos(A+t T rok Wkt n:os/f,z . (3D
wz)‘ Pa ] a a 9 a 2 P 2

Using (29) and (31), eqn. (28) leads to:
(k,,wé)z + k2 + (lcdwj“‘)z + 2k;kpw cos /\g + 2k;k g cos(A + /L)g + 2w kg cos ug

_ . 2a d?_(wﬂ) +afz;(wn)
T ) + () ¢

T
which is independent of the time delay 7.
It is easily verified that the last equation represents an ellipsoid in the parameter space (excluding
degenerate cases). It follows that its intersections with the planes k; = const, k; = const and k, = const

are ellipses.
In particular, to find the intersections with the planes kg = const, eqn. (32) can conveniently be written

2 2
in(A+1)% inpZ
[k A L 81 ( / )2 kdw;\Jr“:i + [k,, - Sin fig kdw:)—{»u:l +

)
™a - ™ : m
sin A 3 sin A 3

sin(A + 1) sin/iZ m B(wa) + dF(wa)
20k A Zk At ki — 2 - At S A= — 24 Yrita i \a 33
l: e T T in AL 4 sin AZ hawy ™| cos A 2 = e n2(wa) + ni(w,) 33)
which is the equation of an ellipse on the plane (&, k;) centred at

B sin(A + )5

= 2k ;
i sin AL ¢ T sinAg

Lo ST 34)

a

For A = ;1 = 1 the coordinates of the centre are simply Ihc,, =0, k= W2k
By plotting the ellipses for a number of gain crossover frequencies, it is possible to assign the value of
w, to the points of the curve (11)—(I12) on the considered plane and, thus, evaluate the feedback system
passband.

On the plane k; = const, the loci of constant w, are just straight lines through the origin. Precisely,

ym (23) and (22) it follows that:
ks = m(wy) - Ky, (35)

whose slope is

wp [ — B(ws) coswyT + A(ws) sin th] + mgkgwy ¥ sin 2 6

) = [B(wb) cos (wa + \g) — A(wy) sin (wa + /\g)] — mgkgwi sin(A + /1)?

The loci on the planes k; = const and k, = const can be determined in the same way.



V. LOCI OF CONSTANT MODULUS MARGIN

An indicator of system robustness that is more adequate than m,, and m,, is the modulus margin defined

as:
) := min |1+ L(jw)]. 37
w

As is well known, it represents the minimal distance of the Nyquist diagram of the loop function from
the critical point —1 + 30 and corresponds to the reciprocal of the infinity norm of the sensitivity function.
Clearly, the locus of the parameter points where § = const is the envelope of the loci:

|1+ L(jw)] =9, Vw, (38)

which is equivalent to
L{w) + L(w) + [L(w)[* = 6* = 1, (39)

where the overbar denotes complex conjugate, and thus to
k() + ki + ka(w) ™ ne(w) + g1(w) e

() @) +d@) ¢ T
by () + ki + ka(gw) i (w) — gni(w) L 2 _ 52 _
(w)* @) @) T =01 (40)

Recalling (13) and (14), eqn. (40) can be written as
) [k () + b+ Ka(p) | [A@) + 5 B@)] 7+

() [Ic,,(ju.))A + ki + kd(]w)”“] [A(w) - ]B(w)] T4
o L) + ) B0} + E(w)
n2 (@) + n2(@) n2(w) + (@)
which, after some trivial manipulations, leads to

(ko) + k2 + (kg *#)? + 2k (kpw?) cos A—g + 2k; (kaw™™) cos(X + u)% + 2(kpw?) (kg ™) (:OS/Lg

[L(w)|* = w™ 0% -1, @

+2k,w? [A(w) coswT + B(w)sin wT] + 2kw? [A(w) cos(wT + /\g) + B(w) sin(wT + Ag)]
] < £
; R2(w) + 3 (@)

Again, this is the equation of an ellipsoid. To find the center of the ellipses on the cross sections of this
quadric, a procedure similar to that leading from (32) to (33) can be adopted.

+2kqwr [A(w) cos(wT — ug) + B(w)sin(wT — 2 (0 -1). @2

VI. EXAMPLES
(18], [23] [24], [25], [26], [27]

A. Example 1
Assume that the plant transfer function is:
1
G(s) = —e™". 43
() = e @)
Since (43) has already a pole in the origin, it is reasonable to adopt a PD* controller. This simple, yet
meaningful, example has been considered in [18] and then in [23], where the parameters k, and &; of a
PD*# controller have been chosen so as to minimize the Integral of the Absolute Error (IAE).




kd

Fig. 1. Locus described by (19) and (20) for ¢+ = 0.5 and m,, = 0, m,, = /6, my, = 7/4 when the plant transfer function is given by
(43). The stability region lics between the curve for my, = 0 and the kg—axis (kp = 0).

Fig. 2. Stability regions for different values of the cxponent j¢ of the derivative term (regions below the curves corresponding Lo cach value
of p and above the horizontal axis).

VII. CONCLUSIONS

The loci of constant crossover frequency and stability margins in the controller parameter space have
been determined as an aid in the design of non-integer standard controllers for non—integer time—delay
plants. Particular attention has been given to the modulus margin that accounts well for system robustness.
The suggested procedures are simpler and more intuitive than alternative techniques and can easily be
implemented using the Matlab® program illustrated in the Appendix. A couple of examples taken from
the literature have been worked out to show how the aforementioned loci can be exploited to find the
most satisfactory values of the controller parameters.
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