
Raport Badawczy 

Research Report 
RB/20/2010 

Bracketing methods 
for the continuous quadratic 

knapsack problem 

K.C. Kiwiel 

Instytut Badań Systemowych 
Polska Akademia Nauk 

Systems Research Institute 
Polish Academy of Sciences 



POLSKA AKADEMIA NAUK 

Instytut Badań Systemowych 

ul. Newelska 6 

01-447 Warszawa 

tel.: (+48) (22) 3810100 

fax: (+48) (22) 3810105 

Kierownik Pracowni zgłaszający pracę: 
Prof. dr hab. inż. Krzysztof C. Kiwiel 

Warszawa 2010 



Bracketing methods for the continuous quadratic 
knapsack problem 

Krzysztof C. Kiwiel* 

December 10, 2010 

Abstract 

We show that breakpoint searching and variable fixing methods for the continuous 
quadratic knapsack problem fit a common bracketing framework. This allows us to 
develop severa! more efficient versions. Extensive computational results are given. 

Key words. Nonlinear programming, convex programming, quadratic pro
gramming, separable programming, singly constrained quadratic program. 

1 Introduction 

The continuous quadratic knapsack problem is defined by 

P: min J(x):=½xTDx-arx s.t. brx=r, l~x~u, (1.1) 

where x is an n-vector of variables, a, b, l, u E JR.n, r E JR., D = diag(d) with d > O, so that 
the objective f is strictly convex. Assuming P is feasible , Jet x' denote its unique solution. 

Problem P has applications in resource allocation [BiH81, BrS97, HoH95], hierarchical 
production planning [BiH81], network flows [Ven91], transporta.tion problems [CoH94], 
multicommodity network flows [HI<L80, NiZ92, ShM90], constrained matrix problems 
[CDZ86], integer quadratic kna.psack problems [BSS95, BSS96], integer and continuous 
qua.dratic optimization over submodula.r constraints [HoH95], Lagrangian rela.xation via 
subgradient optimization [HWC74], and quasi-Newton updates with bounds [CaM87]. 

Specialized algorithms for P employ either breakpoint searching or variable fixing. 
Breakpoint searching methods solve the dual of P by finding a Lagrange multiplier t, that 
solves the equation g( t) = r, where g is a monotone piecewise linear function with 2n 
breakpoints (cf. §2). The earliest O(nlogn) methods [HWC74, HKL80] sort the break
points initially, whereas the O(n) algorithms [Bru84, CaM87, MdP89, PaK90, CoH94, 
HoH95 , MMP97, MSMJ03] use medians of breakpoint subsets. A generał framework for 
such methods was recently given in [Kiw08a], together with various modifications. 
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The variable fixing methods of [BiH81, Ven91, RJL92, BSS96] determine at each itera
tion the optima! value of at least one variable; such variables are fixed and hence effectively 
removed for the next iteration. Our recent paper [Kiw08b] clarified some convergence is
sues of these methods and gave more efficient versions. Although these methods have 
worst-case performance of O(n2 ), they may be competitive in practice [Ven91, RJL92], 
since they don 't need sorting or median calculations. 

This paper shows that both classes of methods fit a unified bracketing framework , in 
which the optima! multiplier is localized by a shrinking interval [tL, tu] that is updated by 
evaluating gat a trial multiplier i E (tL, tu). Specific methods differ in two aspects: (1) the 
updates of auxiliary quantities used for evaluating g(i), and (2) the selection of the next 
multiplier i. As for the first aspect, extending the earlier work of [Bru84 , CaM87, Kiw08a], 
we identify three updates which seem to be most efficient with respect to the numbers of 
arithmetic operations and comparisons, as well as their simplified variants that access 
memory in more efficient ways at the price of making more comparisons. Concerning the 
second aspect, we discuss severa! effi.cient multiplier selections in addition to those given 
in [Kiw08a]. First, we may choose i as the median of a certain superset of the set T of 
breakpoints in (tL, tu) (which may be easier to handle than T itself; cf. §4.1), or as the 
median of a small randomly chosen subset of T , or simply as the average of T (this choice 
is quite competitive; cf. §7). Second, we may select i as in the variable fixing methods; 
this leads to breakpoint versions of variable fixing methods that seem to be most efficient 
in practice (cf. §7). We also give an initial problem transformation which reduces work per 
iteration. Last but not least, we present extensive numerical comparisons of more than 
forty versions of our methods on Jarge-scale problems. 

The paper is organized as follows. In §2 we review some properties of P and introduce 
a generał bracketing method. Efficient g-evaluations are described in §3. Multiplier se
Jections inspired by breakpoint searching and variable fixing are discussed in §§4 and 5, 
respectively. Initial problem transformations are the subject of §6. Finally, our computa
tional results are reported in §7. 

2 The bracketing method 

Viewing t E IR as a multiplier for the equality constraint of P in (1.1), consider the 
Lagrangian primal solution (the minimizer of f(x) + t(bT x - r) s.t. l :S x :Su) 

x(t) := min{ max[ ł, D- 1 (a - tb)], u} 

(where the min and max are taken componentwise) and its constraint vałue 

g(t) := bT x(t). 

Solving P amounts to solving g(t) = r for a multiplier lying in the optimał dual set 

T, := { t: g(t) = r}. 

(2.1) 

(2.2) 

(2.3) 

Indeed, invoking the Karush-Kuhn-Tucker conditions for P as in [CaM87, Thm. 2.1], 
[HKLS0, §2], [NiZ92, §1.2], [PaK90, Thm. 2.1] gives the following result. 
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Figure 2.1: (a) Illustration of x,(t) := min{max[ł,, (a, - tb,)/d,],u,}. (b) Illustration of 
b;x,(t) = min{max[b,ł,, (a,b; - tbl)/d,], b,u,}. 

Fact 2.1. x• = x(t) iff t ET •. Pu.rther, the set T. is nonempty. 

As in [Bru84], we assume for simplicity that b > O, because if b; = O, x, may be 
eliminated (x; = min{max[ł;, a;/d,], u,}), whereas if b, < O, we may replace {x;, a,, b,, l,, u;} 
by -{x,, a,, b,, u,, l.} (in fact, this transformation may be implicit). 

By (2.1)-(2.2), the function g has the following breakpoints 

t\ := (a, - l,d,)/b, and tr := (a, - u,d,)/b,, i= 1: n, 

with tf ~ tł (from l, ~ u, and b, > O), and each x,(t) may be expressed as 

{
U; ift~t)', 

x,(t) = (a, - tb;)/d; if tf ~ t ~ tł, 
ł, if tł~ t. 

(2.4) 

(2.5) 

Thus g(t) is a continuous, piecewise linem· and nonincreasing funct ion of t (cf. Fig. 2.1). 
Let T0 := { tl},EN U { tr},EN denote the (multi)set of breakpoints, where N := {l: n}. 

To locate an optima! t. in T., the algorithm below generates a bracketing interval 
[tL , tu] that contains T, by evaluating gat trial multipliers i in [tL, tu] until To n (tL , tu) 
becomes empty; then gis linear on [tL, tul, and t. is found by interpolation. 

Algorithm 2.2. 
Step O (Jnitiation). Set To:= {tl},EN U {t;'},EN , tL := - oo, tu:= cxi. 

Step 1 (Trial multiplier selection). Choose i in [tL, tu] n JR. 

Step 2 (Computing g(i)). Calculate g(i) . 

Step 3 ( Optimality check). If g(i) = r, stop with t, := i. 

Step 4 (Lower bracket updating) . If g(i) > r, set tL := i. 

Step 5 ( Upper bracket updating). If g(i) < r, set tu:= i. 

3 



Step 6 (Stopping criterion). If T := T0 n (tL, tu) f- 0, go to Step l; otherwise, stop with 

(2.6) 

At each iteration in Step 2 we have tL < tu (since g is nonincreasing). Upon termina
tion, x' = x(t,) (cf. Fact 2.1) is recovered via (2.1) in order n operations. Severa] choices 
of i in Step 1 are given later. We first show how to compute g( i) efficiently. 

3 Updates for evaluating g 

3.1 Partitions of the index set 

For the current bracket [tL, tul, we may partition the set N into the following sets 

L:={i:tl·:s:tL}, M:={i:tL,tuE[t;',t\]}, U:={i:tu:s:tn, (3.la) 

I:= {i: t\ E (tL , tu) or tr E (tL, tu)}, (3.lb) 

which are disjoint because tL < tu and tf :S: t) for all i. Further, we have 

l=l1Ulu with /1:={i:t\E(tL,tu)}, lu:={i:trE(tL,tu)}, (3.2) 

and the bracketed breakpoint set T := To n (tL, tu) may be represented as T = {tl};EI, U 
{ tr};Efu. Thus j/j :S: ITI; in particular, at Step 6 we have T = 0 iff / = 0. 

Frequently it is convenient to partition the set I (cf. (3.2)) into the sets 

lm := { i : tL < tr :S: tj <tu}, (3.3a) 

11 := {i: tr :S: tL < t\ <tu} and lu:= {i: tL < t;' < tu :S: t\ }, (3.3b) 

with I = lm U 11 U lu, 11 = lm U 11, lu = lm U lu. Thus lm = 11 n/,,, 11 = 11 \ I„ and 
l,, = I,,\ li index the middle, /ower and upper breakpoints of T = { t)}.omul, U { tr};omul.,. 

To shorten notation, for any subsets M, L, (; of N, we let 

3.2 Classical updates 

Using (2.2), (2.5), (3.1), (3.4) and the fact i E [tL, tul, at Step 2 we have 

where 

g(i) = L b;(a; - i.b;)/d; + s1(L) + s,,(U) + (p- ią) + s, 
iEM 

(3.5) 

M:={iEl:iE[t;',tl]} , i:={iE/:tl<t}, U:={iE/:t<tn, (3.6) 

p := p(M), q := q(M) and s := s1(L) + s,,(U). (3.7) 
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Setting I:= N, p, q, s := O at Step O, at Step 6 we may update I, p, q and s as follows: 

for i E / do 
if t\ ś tL, set I:= I\ {i}, s := s+b,l,; 
if tu ś tf, set I := I\ {i}, s := s + b,u,; 
if tL, tu E [tf, t\], set I:= I\ {i}, p := p + a,b;jd,, q := q + &Ud,. 

This update may be improved as follows. Using the sets (cf. (3.6)) 

(3.8) 

L:= { i EI: t\ ś i}= LU f, with f, := { i E /:tj= i}, (3.9a) 

U:= { i EI: i ś tn =UU fu with fu:= { i E /: tf = i}, (3.9b) 

we have s,(L) = s,(L) + s,(f,), su(U) = su(U) + s-.(fu). Denoting updated quantities with 
superscript +, we have L+ =LU Land u+= U if tt = i, L+ =Land u+= U u U if tu= i (cf. (3.1)). Hence the two middle lines of (3.8) may be replaced by the update 

s := s + { s,(~) + s,(J,1 if gą) > r, 
Su(U) + Su(Iu) if g(t) < r. 

(3.10) 

lnstead of evaluating s,(i,), su(fu) directly, we may use the fact that by (2.4) and (3.4), 

(3.11) 

where p(ii), ą(i,), p(fu), ą(iu) may be computed during the scan of M for (3.5). 
When the set T becomes empty, we have I= 0 and hence ]\![ = L = U= 0 in (3.5) for 

any i E [tL, tu]. Thus g(t) = p - tą+ s 'eft E [tL, tu], so (2.6) may be replaced by 

t, := (p + s - r)/q. 

3.3 Partitioned incrementa! updates 

By (3.4) and (3.5), at Step 2 we have 

g(t) = p(lvl) - tq(Jl,f) + s,(L) + Su(U) + (p - tq) + s. 

(3.12) 

(3.13) 

Together with the partition I = lm U 11 U lu (cf. (3.3)), we may use the partitions 
!11 = Mm U !V/1 U !Vlu with 

lvlm := { i E lm: tf ś i ś t!}, Jv[, := { i E 1, : i ś t!}, łlfu := { i Elu: tf ś i}, 

L=LmuL, with Lm:={iElm:t\<i}, L,:={iEl,:t\<i}, 

U= Um U Lu with Um := { i E lm : i< tf }, Uu := { i E lu '. i< ą }, 
J, = l;,. Ul, with l;,. := { i E lm: t\ = i}, l, := { i E 11: t\ = i}, 

fu = l;:. U lu with l;:. := { i E lm : tf = i}, lu := { i E lu : tf = i}. 

.Then a s!ngle sca!1 of lm., 11 and. lu suffic~ for co!Ilputin~ the qu~ntities p{lvl) = 
p(Mm) + p(Mi) + p(Mu), q(M) = q(Mm) + q(M1) + q(Mu), s,(L) = s,(Lm) + s,(L,) and 
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s,,,(U) = su,,.(Um) +~v.(U,,,L require? in (3.1~), as well. as the q_uantitie~ p(i1) = p(};,,) +p(l1), 
q(11) = q(l;,,) +ą(l1 ), p(J,,,) = p(l::,) +p(l,,,) and ą(J,,,) = ą(J::,) +ą(l,,,) needed for updating 
s via (3.10)-(3.11). 

Further, it is not difficult to see that M+ \ M = M,,, if t! = i, M+ \ M = M1 if tt = i 
(cf. [KiwO8a, §4]). Hence we may update 

p := p + p(M,,,) and ą := ą + ą(M,,,) if g(t) > r, 
p := p + p(M1) and ą := ą + q(M1) if g(t) < r. 

When Step 4 sets tL := i, a single scan of 11, l,,, and lm suffices for updating 

1/ = { i E 11 : tL <tł} U { i E lm : tr s; tL < tł}, 

1: = {i El,,,: tL < tr} and l;;, = {i E lm: tL < tr}. 

(3.14) 

Similarly, when Step 5 sets tu := i, a single scan of 11, l,,, and lm suffices for finding 

1: = { i E l,,, : tY < tu } U { i E lm : tr < tu $; tł } , 

1/ = { i E 11 : tł <tu} and l;;, = { i E lm : tł <tu}. 

3.4 Decremental updates 

Using the partition I= MUL U(; (cf. (3.6)), (3.4) and (3.7) in (3.13) yields 

g(t) = p ((lu M) \(LU U)) - ią ((lu M) \ (Lu u))+ s1(L) + s,,(U) + s. 

Hence, in terms of the following complement of LU U in N (cf. (3.1), (3.2)) 

K := {i: tL < tł and tf <tu}=/ UM= 11 U/,, UM (3.15) 

and the associated redefined quantities ( employed instead of (3. 7)) 

p := p(K), q := q(K) and s := s1(L) + s,,,(U), (3.16) 

at Step 2 we have 

g(i) = [p - p(L) - p(U) J - i[ ą - ą(L) - ą(U) J + s1(L) + s,,,(u) + s. (3.17) 

For the partitions L = Lm U L1 and U = Um U U„ of §3.3, a single scan of lm U 11 U l,,, 
suf!ices for ?omputing_the qua,:1tities p(L) = p(Lm) + p(L1), ą(L) = ą(Lm) + ą(Li), p(U). = 
p(Um) + p(U,,,) and q(U) = q(Um) + q(U,,,) needed in (3.17), as well as the quantities p(/1), 
ą(i1 ), p(f,,) and ą(ł,,) required for updating s via (3.10)-(3.11). 

Further, using (3.15), (3.1) and (3.9), we have the partitions K = x+uLui1 ift! = i, 
K = K+ U U U i,,, if tt = i (cf. [KiwO8a, §5]). Hence we may update 

p := p - p(L) - p(i1) and ą := ą - ą(L) - q(]i) if g(t) > r, 
p := p - p(U) - p(i,,) and ą := ą - q(U) - ą(ł,,) if g(t) < r. 

(3.18) 

We may stili compute the fina! t. by (3.12) when T becomes empty, because for I= 0 
we have K =Min (3.15) and hence (3.16) coincides with (3.7). 
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3.5 Alternative decremental updates 

Adding and subtracting (3.11) from (3.17) and using (3.9) yields 

g(t) = [p - p(L) - p(U)) - i[ q - q(l,) - q(U)) + s1(L) + Su(U) + s. (3.19) 

Further, in view of (3.9), the updates (3.10)-(3.11) and (3.18) are equivalent to 

p:=p-p(L), ą:=ą-ą(L) 
p := P - p(U), ą := ą - ą(U) 

and s := s + s1(L) if g(i) > r, 
and s := s + su(U) if g(i) < r. 

For i E (tL,tu), Since In lu= un 11 = 0 by (3.3b), we may use the partitions 

l, = Lm U I1 with Lm:= { i E lm: t\::; t}, L1 := { i E Ji: t\::; i}, 

u= Um u Uu with Um := { i E lm : i::; tr }, Uu := { i E lu : i::; tf }. 

(3 .20) 

Then a single scan of lmUl1Ulu suffices for computing the quantities p(L) = p(Lm) +p(L1), 
ą(L} = ą(Lml+ą(L1), sl(L) = s1(Lm)+s1(L1), p(U) = p(Um)-f:p(Uu), q(U) = ą__(Um)+ą(Uu ) , 
s.,(U) = Su(Um) + su(Uu) involved in (3.19). If t = tL (ort= tu), then g(t) is available 
from the iteration that updated tL (or tu). 

3.6 Implicitly partitioned updates 

The updates of §§3.3-3.5 may be implemented by using I alone instead of lm, 11 and l,.. 
In the context of §3.3, a single scan of I suffices for computing s1(L) , su(U), p(lvl1), 

p(M,,.) , p.(lvlm) , p(i1) , e~c.; for efficie1;_1cy, we m~y exploit the, fact tpat li, fu S lvl = 
I \ (LU U) , M1 = {i EM: tf::; tL}, Mu= {i EM: tu::; ta, Mm= M \ (M1 U Mu)

Similarly, in a single scan of I we may compute the quantities involved in (3.11) and 
(3.17), or those in (3.19) via (3.9) and (3.4); the logic is simpler in the latter case. 

When Step 4 sets tL := i, we may update I as follows: 

for i EJ, set I:= I\ {i} if tł::; tL , or tf::; tL and tu ::; tł. (3.21 ) 

Similarly, when Step 5 sets tu := i, we may update I as follows: 

for i EJ, set I:= I\ {i} if tu::; tY, or tu ::; tł and tf::; tL. (3.22) 

Relative to the updates of §§3.3- 3.5, their implicit versions using I as above make 
the same numbers of arithmetic operations, but more comparisons in computing g(i) and 
updating I instead of lm, 11 and lu- On the other hand , when the index sets are maintained 
as linked lists, the values in I and lm are increasing, whereas the values in 11 and lu may 
have any order. Thus the implicit versions access memory in mare regular ways, and this 
may make them faster in practice (see §7) . 
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4 Selecting trial multipliers 

4.1 Exact medians 

In the framework of [Kiw08a], the trial multiplier i is chosen in the bracketed breakpoint 
set T :=Ton (tL, tu). Setting T := {tj};EN U {tr};EN at Step O, we may update 

T := { { t ET: i<:} if g(i) > r, 
{ t E T : t < t } if g( i) < r; 

( 4. 1) 

alternatively we may recover T = {tniEI, u {trhEI.· Since each iteration reduces T, the 
algorithm is finite. Computing g(i) as in §3 takes order III ::S ITI operations. Thus, for an 
arbitrary choice of i in T, Algorithm 2.2 requires order n 2 operations in the worst case. 

The complexity can be improved to order n by selecting i as the median of T, which 
requires order ITI operations; see, e.g., [Knu98, §5.3.3]. Thus the complexity of each 
iteration is O(ITI). Since ITI is originally 2n and is approximately halved at each iteration , 
the algorithm makes O(logn) iterations in time O(n). 

For the median finding routine of [Kiw05], which permutes T to place elements < i 
first, then elements = i, and finally elements > i, the update of (4.1) requires only a change 
of one pointer. For less smart routines, the effort in maintaining T may be mitigated by 
using a slightly larger set T' as follows. Setting T := T0 at Step O and i := median(T') at 
Step 1, set 

T':={ {tE!:i::S:}\{~} ifg(t)>r, 
{ t E T : t '.S t } \ { t} if g( i) < r, 

(4.2) 

without removing from Tall t = i as in (4.1). If the median-finding routine permutes T 
to place elements ::::; i before i and elements 2: i after i, the update ( 4.2) of T requires only 
a change of one pointer. Since l'i'+I ::S ½ITI, linear-time complexity is retained. 

4.2 Random median estimates 

As suggested by [PaK90], to avoid the effort of finding i := median(T), in practice it 
may be preferable to choose i in T at random, with an expected number of iterations of 
O(logn) in an expected time O(n). When the set I is maintained as a linked list, locating 
i requires an additional scan of I (half of I on average). 

4.3 Random sample median estimates 

An obvious extension of the choice of §4.2 is to use i:= median(T') , where T is a randomly 
chosen subset of T. In practice the average performance improves even for fairly small T 
(e.g., ITI = 20), for which the cost of median finding is negligible. However, locating T 
needs an additional scan of I. 
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4.4 A verage median estimates 

Yet another estimate of median(T) is provided by the average i:= m LtET t. The cost of 

finding i is small, since LtET t is easily computed while updating I or Jm, J1 and Ju. Since 
i E [tm;n, tmaxl, where tmin := min,a t and tmax := max,a t, we have IT+I < ITI and hence 
the algorithm is finite. However, in practice cycling may occur when i i/: [tmin, tmax] due 
to rounding errors. Hence if our implementation discovers that IT+I = ITI, then tm;n and 
tmax are computed and the next i is projected onto [tmin, tmax]- This safeguard is cheap, 
because usually it activates only once, when ITI is small. 

5 Variable fixing methods 

5.1 A symmetric variable fixing algorithm 

We first give a slightly unusual description of the algorithm of [Kiw08b, §3], using the 
notation of (3.15)-(3.16) and i:(t) := D- 1(a -tb), so that x(t) = min{max[ł,i:(t)],u}. 

Algorithm 5.1. 
Step O (Jnitiation). Set K := N, p := p(N), q := q(N), s := O, tL := -oo, tu:= oo. 

Step 1 (Trial multiplier selection). Set i:= (p + s - r)/q. 

Step 2 (Computing g(i)). Set g(i) := r + "v - 6., where 

"v := I; b,[ l, - x,(i)] with K, := { i E K: x,(i)::; l;}, (5.la) 
iEK1 

6. := I; b,[ i:,(i) - u.) with Ku := { i E K: i:,(i) 2: u.}. (5. lb) 

Step 3 ( Optimality check). If g(i) = r, stop with t. := i. 

Step 4 (Lower bracket updating ). If g(i) > r, set tL := i, K := K \ K1, p := p - p(K1), 
q := q - q(K1), s := s + s,(J<,). 

Step 5 ( Upper bracket updating). If g(i) < r, set tu := i, K := K \ Ku, p := p - p(Ku) , 
q := q - q(J{u), S := S + Su(K,,). 

Step 6 (Loop). Go to Step 1. 

5.2 Convergence of the variable fixing algorithm 

Algorithm 5.1 may be validated inductively in the following way, which extends the analysis 
of [Kiw08b, §4] by exposing additional properties of the method. 

Suppose (3.15)-(3.16) hold at Step 1 with K /. 0, g( tL) > r if tL > -oo, g(tu) < r if 
tu < oo. Then fj(t) := L,EJ< b,i:,(t) + s is a decreasing function of t (b > O) , expressible as 
fj(t) = p- tq + s thanks to (3.16), with fj(t) = r by the choice of i. If tL > -oo, then, using 
(2.2), (2.5), the partition N= KU LU U (cf. (3.1), (3.15)) and the fact s = s1(L) + su(U) 
(cf. (3.16)), we get g(tL) = LieJ< b,x,(tL) + s with x,(tL) = min{u,,i:,(tL)} ::; i:,(tL) if 
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i ff_ L. Thus g(tL) 2 g(tL) > r and hence tL < i because g(i) = r and g is decreasing. If 
tu < oo, a symmetric argument yields i < tu. 

Consequently, i E (tL, tu). Hence again (2.5) gives g(t) = LiEK bix,(i) + s, whereas 
(5.1) yields Xi(i) = li \/i E Ki, x,(i) = U; \/i E Ku, Xi(i) = x,(i) \/i E K \ (Ki UK,,), SO 

using g(i) = r gives g(i) - r = LiEK b;[x,(i) - x,(i)] = 'il - !::,., as required in Step 2. 
Next, note that (2.4), (5.1) and the fact that x,(i) = (a, - tb;)/d, imply 

Ki= { i E K: tj:::; i} and K,, = { i E K: i:::; tn. (5.2) 

Hence, by (3.1), the updates of Steps 4 and 5 maintain (3.15)-(3.16). If Step 4 produced 
K = 0, (2.5) and (3.1) with J = M = 0 would give g(t) = g(tL) > r \/t E [tL, tu], but for 
t ET. we would have g(t) = r, a contradiction. Similarly, Step 5 produces K -f 0. 

Finally, we observe that Steps 4 and 5 reduce K (e.g., g(i) >rat Step 2 implies 'ił>!::,. 
and hence Ki -f 0). It follows that Algorithm 5.1 is finite. 

5.3 Standard implementation 

A straightforward implementation of Algorithm 5.1 doesn't use the breakpoints. At Step 
2 a single scan of K suffices for computing 'ił x := LiEK, b;x;(i), !::,.x := LiEKu b;x;(i), si(Ki) 
and Su(Ku); then 'ił= si(Ki) - 'ilx and!::,.= !::,.x - Su(Ku) by (5.1) and (3.4). Another 
scan of K is needed for updating K, as well as computing p(Ki) and q(Ki) at Step 4, or 
p(Ku) and q(Ku) at Step 5. Bath seans compute x,(i) for i E K. 

5.4 Breakpoint interpretation and implementation 

A breakpoint-based implementation of Algorithm 5.1 is derived as follows. Since i E 
(tL, tu) implies ą <i< t\ \/i EM (cf. (3.la)), we may replace K := I UM by I in (5.2), 
so Ki =Land Ku= (; by (3.9). Hence Algorithm 5.1 is a special case of Algorithm 2.2 
which uses i:= (p+ s- r)/q, computes g(i) via (3.17) (or (3.19)) and employs the updates 
of §3.4 (or §3.5), except that when Algorithm 2.2 terminates at Step 6 with t. given by 
(3.12), Algorithm 5.1 makes an additional iteration with i= t •. 

6 Initial problem transformations 

6.1 A generał breakpoint-preserving transformation 

To reduce work per iteration, changing the variables via x = Hx+ D-1a with H := diag(h) 
and h > O, we may initially transform P into the equivalent problem 

P: min l(x) := ½xr Dx - arx - eo s.t. F7x = r, l:::; x:::; u, (6.1) 

where D := diag(d) with cl:= H 2d, a := O, eo := ½aT D-1a, li := Hb , f := r - bT D-1a, 
ł:= H- 1(l-D- 1a), u:= H- 1(u-D- 1a). Then x(t) := min{max[ł,-tb- 1 li],u} (cf. (2.1)), 
and g(t) := liTx(t) has the breakpoints Ę := -ł;d./b; = tL ly := -u,d./b; = tf, i E N (cf. 
(2 .4)), i.e., the breakpoints are preserved by this transformation. 
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/ :slope -(b;jd,)/h, ' ' ' ' ' ' ' ' 
/ :slope -b~/d, 

"" : : ' ' 
x,(t) b,x,(t): 

' 

-t)b;j(d,hi) --------------'---- b,l, - a,b;jd, ---------------~--

(a) (b) 

Figure 6.1: (a) Illustration of x;(t) produced by the transformation of §6.l. (b) Illustration 
of li,xi(t) produced by the transformation of §6.l. 

More insight into this transformation stems from the facts that bix;(t) = b,x,(t) -
a,b;jd,, i E N, and g(t) - f = g(t) - r with f = r - p(N) (cf. (3.4)); thus g(t) = r is 
transformed naturally into g(t) = f (cf. Figs. 2.1 and 6.1). Further, (3.4) becomes: p(·) = O, 
ą(·) := LiE b;/di = q(·), s1(·) := LiE- liJ; = s1(·) - p(·), Su(·) := LiE li,u, = Su(·) - p(·). 

These properties imply that each multiplier selection from §§4-5 produces the same 
sequence of multipliers for both Pand P. This is elear for the breakpoint-based selections 
of §4, whereas for i:= (p(K) + s1(L) + s,.(U) - r)/q(K) as in §5 we have p(N) = p(K) + 
p(L) + p(U) from the partition N= KUL U U, soi= (p(K) + s1(L) + su(U) - r)/q(l(). 

We consider two choices of H below. Lete:= (1, ... , 1) E IR". 

6.2 The Robinson-Jiang-Lerme transformation 

The choice H = n-112 of [RJL92, BSS96] yields d = e and li= n-112b in (6.1). Thus , 
regarding P as an instance of P with d = e, a= O, we have p(·) = O and ą(·) = I:,E- b; in 
(3.4), so p disappears and ą in (3.7) and (3.16) is updated with less effort. Further, the 
form of i:(t) = -tb needs less work in the variable fixing implementation of §5.3. 

6.3 A more refined transformation 

The choice of H = n-1B with B := diag(b) (h, = b.jdi) yields d, =bi= b;/di, l; = -tL 
u,= -t)', Ę = -I;, t)' = -u; , i EN. Note that f = r - p(N), whereas the cost of forming 
d = li is comparable to that of finding q(N) (cf. (3.4)). In terms of Fig. 6.1, the offsets 
a;b;/d; are removed and the slopes -li;= -bf/d, are computed "once for all" . 

Now, we may regard P as an instance of P with d = b > O and a = O. In this case 
p(·) = O and ą(·) = LiE· bi in (3.4), so p disappears and ą in (3.7) and (3.16) is updated 
with less effort. Further, the breakpoints tł = -1, and tf = -u, needn't be stored. 

Compared to the first choice of §6.2, this transformation saves work in updating ą and 
computing i:(t) = -te, and avoids the square root computations of the first one. 

The updates of §5.3 for the variable fixing method simplify as follows . A single scan 
of I< suffices for computing q(K1), q(Ku), s1(K1), s,.(K,.) with K1 = {i E K : -i::; I.}, 
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Ku = {i E K : U; '.S -i}; then 'ilx = -ią(K1) and Ó.x = -ią(Ku)- Another scan of K 
simply updates J( := {i E K: ł, < -i} at Step 4, or K := {i E K: -i< u,} at Step 5. 

7 N umerical results 

More than forty routines implementing different versions of Algorithms 2.2 and 5.1 were 
programmed in Fortran 77 and run on a notebook PC (Pentium M 755 2 GHz, 1.5 GB 
RAM) under MS Windows XP. For Algorithm 2.2, the routines have names of the form 
klbxyz, where x is m for the median breakpoint selection of §4.1, r for the random selection 
of §4.2, s for the random §ample selection of §4.3 with ITI ::; 20, a for the §,verage selection 
of §4.4, f for the variable fixing selection of §5.4; next, y is o for P in its Qriginal form, r 
for P transformed as in §6.2, t for P .i,_ransformed as in §6.3; finally, z is a, b or c for the 
updates of §3.3, §3.4 or §3.5, respectively, and z is d, e or f for these updates implemented 
implicitly (cf. §3.6). The routines implementing Algorithm 5.1 as in §5.3 have names of 
the form klvfy, where y is o, r ort as above. 

Routines klbmyz computed medians of T via the method of [Kiw05]. 
The sets lm, J1, lu, I and K were maintained as linked lists in an integer*4 array of 

length n. Additional real*S storage varied between 6n and lOn for P in its original form, 
and between 9n and lln for P in its transformed form; in the latter case, the storage may 
be reduced by 3n if some of the original data can be overwritten, as explained below. 

For P in its original form, klvfo uses six real*S arrays of length n (for a, b, d, l, u, x), 
klbaoz, klbfoz, klbroz, klbsoz need an additional array of length 2 * n (for breakpoints), 
whereas klbmoz needs two such arrays (for breakpoints and median finding). For Pin its 
transformed form, klbatz, klbftz, klbrtz, klbstz, klvfr and klvft need three additional 
arrays of Jength n (for b,l,fi), whereas klbmtz also needs an array of length 2 * n (for 
median finding). To save storage, the three arrays holding b, l, u on input may also hold 
li,[, fi on output. To this end, we copy b to x initially, and use this copy for the finał 
computation of x• = x(t.) and g(t,) = bT x•. For the transformation of §6.2, we set x; := 

(d; 12x,(t,) + a,)/d, with x;(t,) := min{max[i;,-t.li,], fi.}, whereas for the transformation 
of §6.3, we set x; := (b,x,(t.) + a.)/d, with x;(t,) := min{max[i;,-t,],fi,}, i EN. 

To account for rounding errors, Step 3 employed the stopping criterion lg(t) - rl ::; 
10-10 max{l, lrl}, with g(i) - f replaced by g(i) - r for P in its original form. 

Our test problems were randomly generated with n ranging between 50000 and 2000000. 
As in [BSS95, §2], all parameters were distributed uniformly in the intervals of the following 
three problem classes: (1) uncorrelated: a,, b;, d; E [10, 25]; (2) weakly correlated: b, E 
[10, 25], a;, d; E [b, - 5, b, + 5]; (3) strongly correlated: b, E [10, 25], a; = d; = b; + 5; 
further, ł,, u; E [1, 15], i E N, r E [bT/, bT u]. For each problem size, 20 instances were 
generated in each class. Table 7.1 gives the average, maximum and minimum numbers of 
free variables ( the fina! I Ml) for the test problems. 

Tables 7.2-7.4 report the average, maximum and minimum run times in seconds over 
the 20 instances for each of the listed problem sizes and classes, as well as overall statistics, 
for the standard implementations of variable fixing methods. The run times include initial 
problem transformations and the finał computations of x(t.) and g(t,) for the original 
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Table 7.1: Numbers of free variables in test problems. 

uncorrelated weakly correl. strongly correl. 
n ,wg max min nvg max min avg max min 

50000 15340 21157 1749 19302 23717 5685 17684 24924 2781 
100000 34021 42831 7031 40320 47331 9920 42068 49847 34653 
500000 152760 211930 44415 183117 237225 74184 217206 248494 121387 

1000000 315116 422942 58172 359899 474184 76174 406475 494977 208761 
1500000 474849 635823 93226 529721 710771 156708 536501 746876 78995 
2000000 649078 848731 127835 735040 944503 67341 771609 995125 116545 

Table 7.2: Run times of klvfo (standard variable fixing, original P). 

uncorrelated weakly correl. strongly correl. overall 
n ,wg max min avg max min avg max min ,wg max min 

50000 0.02 0.02 O.Ol 0.02 0.02 O.Ol 0.02 0.02 O.Ol 0.02 0.02 O.Ol 
100000 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 
500000 0.25 0.28 0.22 0.24 0.27 0.22 0.23 0.25 0.20 0.24 0.28 0.20 

1000000 0.50 0.55 0.45 0.48 0.55 0.44 0.48 0.50 0.44 0.49 0.55 0.44 
1500000 0.72 0.83 0.59 0.72 0.81 0.66 0.71 0.75 0.58 0.72 0.83 0.58 
2000000 0.97 1.08 0.88 0.94 1.04 0.78 0.95 1.00 0.88 0.95 1.08 0.78 

Table 7.3: Run times of klvfr (standard variable fixing, RJL transformation of P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg ma.x min avg max min avg max min 

50000 O.Ol 0.02 O.Ol O.Ol 0.02 O.Ol O.Ol 0.02 O.Ol O.Ol 0.02 O.Ol 
100000 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 
500000 0.20 0.22 0.18 0.19 0.21 0.18 0.19 0.21 0.17 0.19 0.22 0.17 

1000000 0.40 0.42 0.37 0.39 0.42 0.36 0.38 0.40 0.36 0.39 0.42 0.36 
1500000 0.58 0.63 0.55 0.58 0.63 0.54 0.58 0.60 0.50 0.58 0.63 0.50 
2000000 0.79 0.84 0.73 0.76 0.81 0.67 0.77 O.BO 0.73 0.77 0.84 0.67 

Table 7.4: Run times of klvft (standard variable fixing, transformed P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 O.Ol O.Ol O.Ol O.Ol O.Ol O.Ol O.Ol 0.03 0.00 O.Ol 0.03 0.00 
100000 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 
500000 0.16 0.16 0.15 0.15 0.17 0.14 0.15 0.16 0.13 0.15 0.17 0.13 

1000000 0.31 0.33 0.29 0.30 0.33 0.28 0.30 0.31 0.28 0.31 0.33 0.28 
1500000 0.46 0.50 0.43 0.46 0.49 0.43 0.45 0.47 0.39 0.45 0.50 0.39 
2000000 0.62 0.66 0.57 0.60 0.63 0.52 0.60 0.63 0.57 0.60 0.66 0.52 
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Table 7.5: Run times of klbfoe (breakpoint variable fixing, original P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 O.Ol 0.03 O.Ol O.Ol 0.04 O.Ol 0.02 0.05 O.Ol 0.02 0.05 O.Ol 
100000 0.03 0.04 0.02 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.04 0.02 
500000 0.15 0.18 0.14 0.15 0.17 0.13 0.14 0.16 0.14 0.15 0.18 0.13 

1000000 0.31 0.36 0.28 0.30 0.34 0.28 0.29 0.32 0.28 0.30 0.36 0.28 
1500000 0.46 0.54 0.41 0.45 0.50 0.41 0.45 0.53 0.39 0.45 0.54 0.39 
2000000 0.62 0.71 0.57 0.60 0.69 0.53 0.59 0.71 0.54 0.60 0.71 0.53 

Table 7.6: Run times of klbfte (breakpoint variable fixing, transformed P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 O.Ol O.Ol 0.00 O.Ol O.Ol 0.00 O.Ol 0.02 0.00 O.Ol 0.02 0.00 
100000 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02 
500000 0.12 0.14 O.Il 0.12 0.13 0.10 O.Il 0.12 O.Il 0.12 0.14 0.10 

1000000 0.24 0.27 0.22 0.23 0.26 0.22 0.23 0.24 0.21 0.23 0.27 0.21 
1500000 0.35 0.40 0.31 0.34 0.38 0.32 0.34 0.41 0.30 0.35 0.41 0.30 
2000000 0.47 0.53 0.43 0.45 0.52 0.41 0.45 0.54 0.41 0.46 0.54 0.41 

problem P. Tables 7.5 and 7.6 give the run times for the breakpoint implementations of 
§5.4 with the updates of §3.4 implemented implicitly as in §3.6. 

In view of Tables 7.2-7.6 and the discussion of §6, in what follows we ignore the 
first transformation and illustrate only the influence of the second one for exact median 
selections in Tables 7.7-7.8 and for random median selections in Tables 7.9-7.10. 

Tables 7.11-7.12 report the run times for sample and average selections. As can be seen 
from Tables 7.10-7.11, increasing the sample size from 1 to 20 is beneficial; cf. [Grii99]. 
However, further increases needn't bring much improvement. For instance, the run times 
decreased by just 2% for a variation of the strategy of [Pis97, §2] in which the sample size 
was set to min{/Tl 112 , 1000} if /Tl ~ 100, or to 3 otherwise. 

Table 7.7: Run times of klbmoe (exact medians, original P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 0.02 0.03 0.02 0.02 0.05 0.02 0.02 0.04 0.02 0.02 0.05 0.02 
100000 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 
500000 0.24 0.25 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.25 0.23 

1000000 0.48 0.48 0.47 0.48 0.49 0.47 0.48 0.48 0.47 0.48 0.49 0.47 
1500000 0.72 0.72 0.71 0.72 0.72 0.71 0.72 0.72 0.71 0.72 0.72 0.71 
2000000 0.96 0.97 0.95 0.96 0.96 0.95 0.96 0.96 0.95 0.96 0.97 0.95 
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Table 7.8: Run times of klbmte (exact medians, transformed P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 0.02 0.04 O.Ol 0.02 0.06 O.Ol 0.03 0.04 O.Ol 0.02 0.06 O.Ol 
100000 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.04 0.03 0.0<1 0.04 0.03 
500000 0.20 0.20 0.19 0.20 0.20 0.19 0.20 0.20 0.19 0.20 0.20 0.19 

1000000 0.40 0.40 0.39 0.40 0.40 0.39 0.40 0.40 0.39 0.40 0.40 0.39 
1500000 0.59 0.60 0.59 0.60 0.61 0.59 0.59 0.60 0.59 0.59 0.61 0.59 
2000000 0.79 O.BO 0.78 0.79 0.79 0.78 0.79 0.79 0.78 0.79 O.BO 0.78 

Table 7.9: Run times of klbroe (random medians, original P). 

uncorrelated weakly correl. strongly correl. overnll 
n avg max min ,wg max min avg max min avg max min 

50000 0.02 0.04 0.02 0.03 0.06 O.Ol 0.04 0.06 0.02 0.03 0.06 O.Ol 
100000 0.05 0.07 0.03 0.06 0.09 0.04 0.05 0.07 0.03 0.05 0.09 0.03 
500000 0.28 0.35 0.17 0.28 0.39 0.17 0.28 0.46 0.16 0.28 0.46 0.16 

1000000 0.60 0.89 0.35 0.56 0.71 0.32 0.56 0.87 0.26 0.57 0.89 0.26 
1500000 0.85 1.24 0.53 0.81 1.13 0.54 0.89 1.30 0.40 0.85 1.30 0.40 
2000000 1.12 1.65 0.81 1.28 1.91 0.73 1.22 1.95 0.66 1.21 1.95 0.66 

Table 7.13 reports the finał iteration numbers for various methods; here klbfte behaved 
like klvfo, klvfr, klvft and klbfoe, klbmoe like klbmte, and klbroe like klbrte. 

Tables 7.5- 7.13 give details only for klbxye, i.e., the decremental updates of §3.4 im
plemented implicitly, because they tended to be fastest as illustrated in Table 7.14 for 
large problems, although klbxyd or klbxyf were sometimes marginally faster. To achieve 
comparable performance of all updates, most programming effort went into reducing the 
average number of comparisons while computing g(i) and updating lm, J1, lu or I (our 
first , less sophisticated implementations had been much slower). We add that the improved 
classical updates of §3.2 were slower than klbxye by up to 10%. 

Of course, our limited experiments do not warrant firm conclusions, but it seems safe 
to make the following comments. 

The average run times of all methods grew linearly with the problem size. 
The updates of §§3.3-3.5 (in klbxya, klbxyb, klbxyc) were comparable in speed, but 

slower than their implicit versions of §3.6 (in klbxyd, klbxye, klbxyf). 
The advantages of our more refined problem transformation were elear both for the 

va.riable fixing methods (cf. Tabs. 7.2-7.4 and Tabs. 7.5-7.6) and for the slower versions 
of breakpoint searching methods (cf. Tabs. 7.7-7.8 and Tabs. 7.9-7.10). 

The breakpoint implementations of the variable fixing method (klbfoz and klbftz in 
Tab. 7.14) were faster than the standard implementations (cf. Tabs. 7.2-7.4). 

The relatively good performance of the exact median versions was due to the high 
efficiency of the median finding routine of [Kiw05]. In particular, for problem P in its 
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Table 7.10: Run times of klbrte (random medians, transformed P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 0.03 0.04 O.Ol 0.03 0.04 O.Ol 0.04 0.06 O.Ol 0.03 0.06 O.Ol 
100000 0.03 0.05 0.02 0.03 0.05 0.02 0.03 0.04 0.02 0.03 0.05 0.02 
500000 0.21 0.26 0.14 0.22 0.29 0.14 0.21 0.33 0.14 0.21 0.33 0.14 

1000000 0.44 0.64 0.29 0.42 0.52 0.25 0.41 0.62 0.22 0.42 0.64 0.22 
1500000 0.62 0.87 0.41 0.60 0.81 0.43 0.66 0.93 0.33 0.62 0.93 0.33 
2000000 0.82 1.17 0.61 0.93 1.32 0.59 0.88 1.37 0.51 0.88 1.37 0.51 

Table 7.11: Run times of klbste (median samples of size 20, transformed P). 

uncorrelated weE<kly correl. strongly correl. overnll 
n E<Vg max min avg max min avg max min avg max min 

50000 0.02 0.04 O.Ol 0.02 0.04 O.Ol 0.03 0.06 O.Ol 0.03 0.06 O.Ol 
100000 0.03 0.04 0.02 0.03 0.04 0.03 0.03 0.03 0.02 0.03 0.04 0.02 
500000 0.18 0.21 0.15 0.18 0.21 0.16 0.17 0.20 0.15 0.18 0.21 0.15 

1000000 0.37 0.43 0.29 0.36 0.41 0.30 0.36 0.41 0.30 0.36 0.43 0.29 
1500000 0.54 0.59 0.50 0.54 0.64 0.43 0.52 0.59 0.45 0.53 0.64 0.43 
2000000 0.72 0.86 0.59 0.71 0.78 0.59 0.71 0.82 0.63 0.71 0.86 0.59 

original form, klbmoe was as fast as klvfo (cf. Tabs. 7.2 and 7.7). This contradicts the 
popular belief that variable fixing methods are much faster than median based methods. 
For instance, [RJL92] reported the median-based method of [Bru84] to be about 8 times 
slower than its variable fixing implementation. We add that the median-based methods of 
[Bru84 , CaM87] were slower than klbmoe by about 36%; see [Kiw08a] . 

Relative to the exact medians, single random selections performed quite well on average, 
but exhibited much larger variations in run times. Moderately sized random samples gave 
smaller averages and variations in run times (cf. Tabs. 7.10-7.11). Yet the average median 
estimates were even better; in fact they performed similarly to standard implementations 
of variable fixing methods (cf. Tabs. 7.4 and 7.12). 

Table 7.12: Run times of klbate (average selections, transformed P). 

uncorrelated weakly correl. strongly correl. overall 
n avg max min avg max min avg max min avg max min 

50000 0.02 0.04 O.Ol 0.02 0.04 O.Ol 0.02 0.04 0.00 0.02 0.04 0.00 
100000 0.02 0.03 0.02 0.02 0.03 0.02 0.03 0.03 0.02 O.Q2 0.03 0.02 
500000 0.15 0.16 0.14 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.16 0.14 

1000000 0.31 0.32 0.28 0.31 0.32 0.30 0.31 0.31 0.30 0.31 0.32 0.28 
1500000 0.47 0.48 0.42 0.47 0.47 0.46 0.47 0.47 0.46 0.47 0.48 0.42 
2000000 0.62 0.64 0.56 0.62 0.63 0.58 0.62 0.63 0.60 0.62 0.64 0.56 
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Table 7.13: Iteration numbers for various multiplier selections. 

uncorrelated weak]y correl. strongly correl. 
routine n avg max min avg max min avg max min 
klbate 1000000 21 23 21 21 22 21 21 23 21 

2000000 22 24 21 22 24 21 22 25 22 
kl bfte 1000000 7 10 7 7 9 6 7 8 6 

2000000 7 10 7 7 10 6 7 10 7 
klbmoe 1000000 20 21 20 21 21 21 20 21 20 

2000000 21 22 21 22 22 22 21 22 21 
klbroe 1000000 30 43 19 29 37 20 27 39 16 

2000000 29 40 20 31 41 24 30 43 19 
klbste 1000000 21 25 19 21 25 19 22 26 19 

2000000 22 26 18 22 25 19 22 24 19 
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