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Abstract. The paper is concerned with the analysis and numerical so­
lution of multimaterial structural optimization problems for bodies in 
unilateral contact. Contact phenomenon is governed by the elliptic vari­
ational inequality. The structural optimization problem consists in find­
ing such topology of the domain occupied by the body that the normal 
contact stress along the boundary of the body is minimized. The cost 
functional is regularized by the multiphase volume constrained Ginzburg­
Landau energy functional. The first order necessary optimality condition 
is formulated. The optimal topology is obtained as the steady state of 
the phase transition governed by the generalized Allen-Cahn equation. 
The optimization problem is solved numerically using operator split ting 
approach combined with the projection gradient method. Numerical ex­
amples are provided and discussed. 

Keywords: topology optimization, unilateral contact problems, multi­
materials, phase field regularization 

1 Introduction 

Multimaterial topology optimization aims to find the optimal distr ibution of 
several elastic materials in a given design domain to minimize a criterion de­
scribing the mechanical or thermal properties of the structure or its cost under 
constraints imposed on the volume or the mass of the structure [l). In recent 
years mnltiple phases topology optimization problems have become subject of 
the growing interest [l, 4, 7, 14, 18, 21). The use of multiple number of phases dur­
ing design of engineering structures opens a new opportunities in the design of 
smart and advanced structures in material science and/or industry. In contrast 
to single material design the use of multiple number of materials extends the 
design space and may lead to better design solutions. 

Analytical and numerical aspects of the multimaterial structural optimiza­
t ion are subject of intensive research (see references in [1, 7, 14, 18, 21)). Many 
methods including the homogenization method [2), the Solid Isotropic Mate­
rial Penalization (SIMP) method [20) or different methods based on the level 
set approach [9, 12, 13, 20), successful in single material optimization, have been 
extended to deal with the multimaterial optimization. The extension of these 
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methods faces several challenges. A crucial issue in the solution of the multima­
terial optimization problems is the lack of physically based parametrization of 
the phases mixture [l, 18]. Although different material interpolation schemes are 
proposed in the literature, in general, they may influence the optimization path 
in terms of the computational efficiency and the final design. The level set meth­
ods can eliminate the need of the material interpolation schemes provided that 
inter-phase interfaces are actually tracked explicitly [l]. Among others the level 
set method has been used in [l] to solve this problem. The elasticity tensor has 
been smeared out using the signed distance function and Hadamard derivative 
of the shape functional has been calculated. A generalized Cahn-Hilliard model 
of multiphase transition has been used in [21] to solve the multimaterial struc­
tural optimization problem. In [18] using phase field approach the optimality 
condition has been formulated as a generalized Allen-Cahn equation. 

The paper is concerned with the structural topology optimization of sys­
tems governed by the variational inequalities. The class of such systems includes 
among others unilateral contact phenomenon [11] between the surfaces of the 
elastic bodies. This optimization problem consists in finding such topology of the 
domain occupied by the body that the normal contact stress along the boundary 
of the body is minimized. In literature [1 2] this problem usually is considered 
as two-phase material optimization problem with voids treated as one of the 
materials. In the paper the domain occupied by the body is assumed to consist 
from several elastic materials rather than two materials. Material fraction func­
tion is a variable subject to optimization. The regularization of the objective 
functional by the multiphase volume constrained Ginzburg-Landau energy func­
tional is used. The derivative formula of the cost functional with respect to the 
material density function is calculated and is employed to formulate a necessary 
optimality condition for the topology optimization problem. This necessary op­
timality condition takes the form of the generalized Allen-Cahn equation. The 
derivative of the cost functional appears in the right hand side of this equation. 
Two step operator splitting approach [18] is used to solved this gradient flow 
equation. Finite difference and element methods are used as the approximation 
method. Numerical examples are reported and discussed. 

2 Problem Formulation 

Consider deformations of an elastic body occupying two-dimensional domain 
rJ with the smooth boundary I' (see Fig. 1). Assume n C D where D is a 
bounded smooth hold-all subset of R2. The body is subject to body forces 
J(x) = (Ji(x), h(x)), x ED. Moreover, surface tractions p(x) = (P1(x),P2(x)), 
x E I', are applied to a portion I'1 of the boundary I'. We assume, that the 
body is clamped along the portion I'0 of the boundary I', and that the contact 
conditions are prescribed on the portion I'2 , where I';nI'; = 0, i ,p j, i, j = 0, l, 2, 
I'= I'o U f"i U f2. 

Assume that n is occupied by .s ;:: 2 distinct isotropic elastic materials. The 
void is considered as a separate phase. The materials distribution is described by 
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Fig. 1. Elastic body occupying domain n in unilateral contact with the foundation. 

a phase field vector p = {Pi}l= 1 where the local fraction field Pi = Pi(X) : [2--+ R, 
i = 1, ... , s, corresponds to the contributing phase. The phase field approach 
allows for a certain mixing between materials and between materials and void. 
This mixing is restricted only to a small interfacial region. In order to ensure 
that the phase field vector describes the fractions the following pointwise bound 
constraints are imposed on every Pi 

s 

Cl'i ::; Pi ::; /3i, for i = 1, ... , s, and L Pi= 1, 
i=l 

(1) 

where constants O < Cl'i ~ /3i ~ 1 are given and the summation operator is 
understood componentwise. The second condition in (1) ensures that no overlap 
and gap of fractions are allowed in the expected optimal domain. In material 
science field [4, 18] the intersection of the constraints (1) is called the Gibbs 
simplex. Moreover the total spatial amount of material fractions s_atisfies 

{ Pi(x)dx=m,[r2[, O:<omi:<ol,fori=l, ... ,s, and fm,=l, (2) 
k = 

where m; are user defined parameters and I [2 I denotes the volume of domain f2. 
The elastic tensor A of the material body is assumed to be a function depending 
on the fraction function p: 

A(p) = Lg(p,)A;, A.= {a:,,;k1}:'n,;,k,l=l• (3) 
i=l 

with g(p;) = pf as chosen function [3, 5, 17] and A; is the constant stiffness ten­
sor corresponding to the i - th phase. For discussion of the interpolation of the 
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elasticity tensor see [3, 19). It is assumed, that elements a:njkl (x), m, j, k, l = 1, 2, 
i = 1, ... , s of the elasticity tensor A, satisfy [11) usual symmetry, boundedness 
and ellipticity conditions. Denote by u = (u1 , u2 ), u = u(x), x E D, the dis­
placement of the body and by u(x) = {a,,(u(x))}, i,j = 1, 2, the stress field 
in the body. Consider elastic bodies obeying Hooke's law, i.e., for x E D and 
i,j,k,l = 1,2, 

( def 1 
a,, u(x)) = A(x)ek1(u(x)), ek1(u(x)) = 2(uk,1(x) + u1,k(x)), (4) 

where Uk,1(x) = 8~~(,x). We use here and throughout the paper the summation 
convention over repeated indices [11). The stress field a satisfies the system of 
equations in the domain n [11) 

() f() () aa,,(x) n . . 2 
-aij x ,j = ix aij x ,j = ~' x Eu, i,J = 1) , 

J 

The following boundary conditions are imposed on the boundary an 

(5) 

u,(x) = 0 on I'o , a,,(x)n, = p, on I'1, i,j = 1, 2, (6) 

(uN + v) :,; 0, "N :,; 0, (uN + v)aN = 0 on I'2, (7) 

I ar I:, 1, urar+ I ur I= 0 on I'2, (8) 

where n = (n1, n2) is the unit outward versor to the boundary I'. Here UN= u;n; 
and aN = aijninj, i,j = 1, 21 represent [llJ the normal components of displace­
ment u and stress a, respectively. The tangential components of displacement 
u and stress a are given [11) by (ur), = u; - uNn, and (ar); = a,,n, - <7Nn;, 
i, j = 1, 2, respectively. I ur I denotes the Euclidean norm in R2 of the tangent 
vector ur. Gap between the bodies is described by a given function v. 

Let us formulate contact problem (5)-(8) in the variational form. Denote by 
11,p and K the space and the set of kinematically admissible displacements and 
by A the set of tangential tractions on I'2 : 

V,p = {z E H 1 (D; R2) z; = 0 on I'o, i = l, 2}, (9) 

K = {z E 11,p : ZN:,; 0 on I'2}, A= {( E L2(I',; R2 ) : I (I:,; l}. (10) 

Variational formulation of problem (5)-(8) has the form: for given (J,p,p) E 
L2(D; R2) x L2(I'2; R2) x L00 (D; R') find a pair (u, >.) E K x A satisfying 

lA~~M~~ -0&-ln~-0&-
J, p(~ - u)ds + J, >-(~T - ur)ds c'. 0 \/~EK, 

I'1 I'2 
(11) 

J, (( ->-)urds :,; 0 \I( EA, 
r, 

(12) 

i, j, k, l = 1, 2. Function >, is interpreted as a Lagrange multiplier corresponding 
to term I ur I in equality constraint in (8) [11). This function is equal to tangent 
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stress along the boundary I'2, i.e., .\ = ur, r, . Function .\ belongs to the space 
H- 112(I'2; R2). Here following [ll] function .\ is assumed to be more regular, 
i.e., .\ E L2(I'2; R 2). Recall from [ll, 17] by standard arguments there exists a 
unique solution (u, .\) E K x A to the system (ll)-(12). 

3 Phase field based topology optimization problem 

Before formulating a structural optimization problem for (ll)-(12) let us intro­
duce the set u:d of admissible fraction functions. This set has the form 

s-1 

UP = {p E £ 00 (!2- R'- 1 ): 1 - /3 < ~p- < 1 - a ad , s _ L--J i _ s 

i=l 

a,5,p;-5,/3,, J,,p,dx=m,1!11 for i=l.,,,,s-1.} (13) 

The set u:d is assumed to be nonempty. Recall from [1 2] the cost functional 
approximating the normal contact stress on the contact boundary 

J0 (u(!1)) = f D"N(U)1)N(x)ds, lr, (14) 

depending on the auxiliary given bounded function 7J(x) E M st . The auxiliary 
set M st = {'1 = ('11, '12) E H 1 (D; R2 ) : 1), 5, 0 on D, i = l, 2, 11 '7 ll{H'(D)J' 

5, l}. Functions O"N and 1)N are the normal components of the stress field u 
corresponding to a solution u satisfying system (5) - (8) and the function 1), 
respectively. The cost functional (14) approximates the normal contact stress 
and is associated with the elastic energy functional [7]. Let us introduce the 
regularized cost functional J (p, u) in the form: 

J(p, u) = J0 (u) + E(p), (15) 

where the functional J0 (u) is given by (14). The Ginzburg-Landau free energy 
functional E(p) is expressed as 

E(p) = t !,, ,p(p,)d!1, ,p(p,) = 2; I Vp, 12 +~'PB(p,), (16) 

where , > 0 is a constant, , > 0 is a parameter related to the interfacial 
energy density. Function 'PB(Pi) = pf (1- pt) is a double-well potential [8] which 
characterizes the phases [18]. 

The structural optimization problem for system (ll)-(12) takes the form: find 
p* E u:d such that 

J(p*,u*) = min J(p,u), (17) 
pEU:a 

where u* = u(p*) denotes a solution to the state system (ll)-(12) depending on 
p* and u:d is given by (13). The existence of an optimal solution p* E u:d to 
the problem (17) follows by classical arguments (see [4-6, 17]). 
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4 Necessary optimality condition 

In order to compute the first variation of the cost functional (15) we apply a 
Lagrangian approach combined with Allen-Cahn approach [2, 4, 12, 18]. Let us 
introduce the Lagrangian L(p) = L(p,u,>.,p",q",µ) L00 (!?;R'-1) n u:d x 
H 1(!?;R2) x L2(I'2;R2) x K 1 x A 1 x R•-1 associated to the problem (17): 

L(p,u,>.,p",q",µ) = J,(u) + E(p) + 
s-1 

L { g(p;)amjklem;(u)ekz(p")dx - { J,p,dx - { p;pfds + (18) 
i= 1 ln ln ln 

, - 1 

r >.p}ds + j q"urds + L µ,( r p;(x)dx - m, I J? I), 
lr2 r2 i=l Jn 

where (p" , q") E K1 x A1 denotes an adjoint state defined as follows: 

s-1 

~ l g(p,)am;k1em;(1/ + p")ekz(<p)dx + Ir, q"<prds = 0 V<p E K 1 , (19) 

m,j,k,l = 1,2 and 

j ((p} + 1/T)ds = 0 V( E A1. 
r, 

(20) 

The sets K1 and A1 are given by 

K1 ={EE V,p : (N = 0 on A'' }, (21) 

A1 ={(EA: ((x)=OonB1UB2UBtuBt}, (22) 

while the coincidence set A'' = {x E I'2 : UN+ v = O}. Moreover B1 = {x E 
I'2: >.(x) = -1}, B2 = {x E I'2: >.(x) = + l}, B; = {x EB;: uN(x) +v = 0}, 
i = 1, 2, Bt = B, \ iJ,, i = 1, 2. The derivative of the Lagrangian L with respect 
top has the form for all ( E H 1(J?;R'- 1 ) 

l :;(p,u)(dx = l :~(p,u,>.,p",q",µ)(dx = 

~ 1 [-yev'p, · v'( + 'J.,;,~(p,)( + µ,(]dx + (23) 
i=l n € 

s-1 

L 1 [g'(p,)am;klem;(u,)ekz(p" + 11) - f(p" + 11)](dx. 
i=l n 

By standard arguments [2, 11, 16] the necessary optimality condition to the op­
timization problem (17) has the form: 

Theorem 1. Let (p*, u*, ).*,p"*, q"*, µ*) E L00 (J?; R'-1) n u:d X H1(!?; R2) X 

L2(I'2; R) x K 1 x A 1 x R•-1 be an optimal solution to structural optimization 
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problem {17). Than it satisfies {5)-(8), {19)-(20) and for all (p, u, >.,p", q", µ) E 
L00 (f2, Rs-l) n u:d X H'(n; R2) X L2(I'z; R2) X K, X A, X R'-1 it holds 

L(p*,u*,).\p0 *,qa*,µ,) ~ L(p*,u*,).*,p0 \qa*,µ,*) ~ (24) 

L(p, "• >.,p", q", µ*). 

Based on (24) an optimal solution to problem (17) can be found using Uzawa 
method combined with gradient flow equation in primal step (see [12] for details). 
Here the projection technique on the set of admissible fraction functions is used 
rather than Uzawa approach. Assume p = p(x, t), t E [0, T]. Denote by Pu:, the 
orthogonal projection operator on the set u:d and by po;, i = 1, ... , s a given 
functions. Using the projection of the cost functional derivative (23) on the 
admissible set (13) the necessary optimality condition to problem (17) takes the 
form: find sufficiently regular (p*, u*, >.', p0 *, q"*) satisfying (5)-(8), {19)-(20) as 
well as 

l!-'f}P- = Pu:.(P - BJ¥'/)) - P 

'ilp; ·n=O 

p;(0, x) = p;o(x) 

in n, Vt E [O, T), 

on 8!2, Vt E [0, T), i = 1, .. , s - 1, 

in n, t = 0, i = 1, ... , s - 1. 

(25) 

(26) 

(27) 

Remark, for p(x, t) = p*(x, t) the right hand side of equation (25) vanishes, i.e., 
l!-'iJP. = 0 and p* is an optimal solution to the problem (17). Therefore the system 
(25)-(27) is the constrained gradient flow equation for the cost functional (15) 
of Allen-Cahn type. 

4.1 Operator splitting approach 

For the sake of numerical calculations we reformulate the optimality condition 
(25)-(27) using the operator splitting approach [18]. The cost functional (15) is 
sum of two functionals 

J(p, u) = J1(p,u) + Jz(p), (28) 

J,(p,u) = J,(") + ~ L ;,J,s(p,)dn, Jz(p) = ~ L f I 'i7p; 12 dn. (29) 

Based on (23) one can calculate the derivatives iii,:- and ~ of the functionals J1 

and J2, respectively. Assume the time interval [0, T] is divided into N subintervals 
with step Lit = tk+l - tk, k = 0, ... , N and Pk = p(tk) is known. The control 
variable Pk+l at the next time step tk+l is calculated in two steps. First the trial 
value p is calculated from the gradient flow equation (25) for the functional J1 : 

<!£=Pu, (p- BJ,) - p, p(tk) = Pk, tk < t $ tk+I• (30) 
dt •' 8p 
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Next this solution is updated by solving the gradient flow equation for the func­
tional J, with the boundary condition {26) 

dp f)J, -
dt = -75p, p(tk) = Pk+I, tk < t '., /k+l· {31) 

Therefore the conceptual algorithm for solving the system {25)-(27) has the form 

Step 1: Choose Po E u:d as well as constants tol > 0 and kmax > 0. Set k = 0. 
Step 2: For given Pk find (uk, Ak) satisfying {11)-(12) and 

(pi, q~) satisfying {19)-(20) . 
Step 3: Compute ¥J: using {23). Next compute ih using {30), i.e., 

Pk= Pk+ Lltk(Pu:)Pk - ~I - Pk)· 
Step 4: For given Pk calculate Pk+l solving {31), i.e. , 

Pk+l =Pk+ Llt .-y<LlPk+l· 
Step 5: If I[ Pk+l - Pk IIL~(n;R• - •)'., tol or k 2: kmax Stop. 

Otherwise go to Step 2. 

5 Numerical results 

The discretized structural optimization problem {17) is solved numerically. Time 
derivatives are approximated by the forward finite difference. Piecewise constant 
and piecewise linear finite element method is used as discretization method in 
space variables. The derivative of the double well potential is linearized with 
respect to p;. Primal-dual active set method has been used to solve state and 
adjoint systems (5)-(8) and {19)-(20). Scheme (30)-(31) has been used to solve 
{25)-(27). The algorithms are programmed in Matlab environment. As an exam­
ple a body occupying 2D domain 

fl= {(x,, x2) E R2 : 0 '., x, '., 8 /I O < v(x,) '., X2 '., 4}, {32) 

is considered. The boundary I' of the domain fl is divided into three pieces 

I'o = {(x,,x2) E R2 : x, = 0,8 /I 0 < v(x,) '., x2 '., 4}, 

r, = {(x1,x2) E R2 : o '., x1 '., 8 11 x2 = 4}, {33) 

I'2 = {(x1,x2) E R2 : 0 '., x, '., 8 /I v(x,) = x2}-

The domain fl and the boundary I'2 depend on the function v(x,) = 0.125{x1 -

4)2. The body is loaded by boundary traction Pl = 0, P2 = -5.6 · 106 N along 
I'1, body forces J, = 0, i = 1, 2. Auxiliary function 7J is selected as piecewise con­
stant ( or linear) on D and is approximated by a piecewise constant ( or bilinear) 
functions. The computational domain D = [0, 8] x [0, 4] is selected. Domain D 
is discretized with a fixed rectangular mesh of 80 x 40. 

Fig. 2 presents the optimal domain obtained by solving structural optimiza­
tion problem {17) in the computational domain Dusing the optimality condition 
{25)-(27). The areas with weak phases appear in the central part of the body and 



Fig. 2. Optimal material distribution 
in domain fl*. 
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,. ... - ------

Fig, 3. Initial and optimal normal con­
tact stress. 

near the fixed edges. The areas with strong phases appear closed to the contact 
zone and along the edges. The rest of the domain is covered with intermediate 
phase. The obtained normal contact stress is almost constant along the optimal 
shape boundary and has been significantly reduced comparing to the initial one 
(see Fig. 3). 

6 Conclusions 

The structural optimization problem for elastic contact problem with Tresca 
friction has been solved numerically in the paper. Obtained numerical results 
indicate that the optimal topologies are qualitatively comparable to the results 
reported in other phase-field topology optimization methods. Since the optimiz!i­
tion problem is non-convex it has possibly many local solutions dependent on 
initial estimate. Gradient flow method employed in H 1 space is more regular 
and efficient than standard Allen-Cahn approach. 

References 

1. Allaire, G., Dapogny, C., Delgado, G., Michailidis, G.: Multi-phase structural 
optimization via a level set method. ESAIM - Control Optimisation and Calculus 
of Variations 20, 576- 611 (2014) 

2. Allaire, G.: Shape optimization by the homogenization method. Springer, New 
York, (2001) 

3. Blank, L., Butz, M., Garcke, H., Sarbu, L., Styles, V.: Allen-Cahn and Cahn­
Hiliard variational inequalities solved with optimization techniques. In: G. Leuger­
ing, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, S. 
Ulbrich (eds.), Constrained Optimization and Optimal Control for Partial Dif­
ferential Equations, International Series of Numerical Mathematics, vol. 160, pp. 
21-35, Birkhiiuser, Basel (2012) 



10 Andrzej Myslinski 

4. Blank, L., Farshbaf-Shaker, M.H., M., Garcke, H., Rupprecht,C., Styles, V.: Multi­
material Phase Field Approach to Structural Topology Optimization. In: Leuger­
ing, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, 
R., Ulbrich, S.: Trends in PDE Constrained Optimization. International Series of 
Numerical Mathematics 165, pp. 231-246, Birkhii.user, Basel (2014) 

5. Bourdin, B., Chambolle, A.: The phase-field method in optimal design. In: M.P. 
Bendsoe, N. Olhoff, and 0. Sigmund (eds.), IUTAM Symposium on Topological 
Design Optimization of Structures, Machines and Material, Solid Mechanics and 
its Applications, pp. 207-216, Springer (2006) 

6. Burger, M., Stainko, R.: Phase-field relaxation of topology optimization with local 
stress constraints. SIAM J. Control. Optim. 45, 1447-1466 (2006) 

7. Cherkaev, A., Variational method for optimal multimaterial composites and op­
timal design. International Journal of Engineering Science 83, 162-173 (2014) 

8. Dede, L., Boroden, M.J., Hughes, T.J.R.: Isogeometric analysis for topology op­
timization with a phase field model. Archives of Computational Methods in En­
gineering 19(3), 427-465 (2012) 

9. van Dijk, N.P. 1 Maute, K., Langlaar, M. 1 van Keulen, F.: Level-set methods for 
structural topology optimization: a review. Structural and Multidisciplinary Op­
timization 48, 437- 472 (2013) 

10. Gain, A. L., Paulino, G. H.: Phase-field based topology optimization with polyg­
onal elements: a finite volume approach for the evolution equation. Struct. Mul­
tidisc Optim. 46, 327-342 (2012) 

11. Haslinger, J., Miikinen, R.: Introduction to Shape Optimization. Theory, Approx­
imation, and Computation. SIAM Publications, Philadelphia (2003) 

12. MySlillski 1 A.: Piecewise Constant Level Set Method for Topology Optimization of 
Unilateral Contact Problems. Advances in Engineering Software 80, 25-32 (2015) 

13. MySliriski, A.: Level Set Method for Optimization of Contact Problems. Engineer­
ing Analysis with Boundary Elements 32, 986-994 (2008). 

14. Park, J., Sutradhara, A.: A multi-resolution method for 3D multi-material topol­
ogy optimization. Comput. Methods Appl. Mech. Engrg. 285, 571-586 (2015) 

15. Scherzer, M., Denzer, R., Steinmann, P.: A fictitious energy approach for shape 
optimization. International Journal for Numerical Methods in Engineering 82(3), 
269- 302 (2010). 

16. Sokolowski, J. 1 Zochowski, A.: On topological derivative in shape optimization. 
In: T. Lewiriski, 0. Sigmund, J. Sokolowski, A. Zochowski (eds.), Optimal Shape 
Design and Modelling, pp. 55- 143, Academic Printing House EXIT, Warsaw, 
Poland (2004) 

17. Sokolowski, J. 1 Zolesio, J.P.: Introduction to Shape Optimization. Shape Sensitiv­
ity Analysis. Springer, Berlin (1992) 

18. Tavako1i 1 R.: Multimaterial Topology Optimization by Volume Constrained Allen­
Cahn System and Regularized Projected Steepest Descent Method. Comput. 
Meth. Appl. Mech. Eng. 276, 534- 565 (2014) 

19. Wallin, M., Ristinmaa, M.: Boundary effects in a phase-field approach to topology 
optimization. Computer Methods in Applied Mechanics and Engineering 278, 145-
159 (2014) 

20. Yamada, T., Izui, K., Nishiwaki, S., Takezawa, A.: A Topology Optimization 
Method Based on the Level Set Method Incorporating a Fictitious Interface En­
ergy. Comput. Methods Appl. Mech. Engrg. 199(45-48), 2876-2891 (2010) 

21. Zhou, S., Wang, M.: Multi-material structural topology optimization with a gen­
eralized Cahn-Hilliard model of multiphase transition. Struct. Multidisc. Optim. 
32(3), 83- 102 (2007) 










