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Abstract 

The paper proposes a method for solving systems of linear inequaliti es. 
This met.hod establishes in finite number of it.erations if a given system 
of linear inequali ties has a solution. If it does, the solution for the given 
system of linear inequalities is provided. T he computational complexity 
of the proposed method is locally-polynomial and in the worst case it has 
a geometric convergence rate. 

Keywords: linear programming, system of linear inequalities, computational 
complexity, locally-polynomial algorithm, convergence rate. 

1 Introduction 

Let us consider a system of linear inequalities: 

A· x-b S Om, (1) 

where A, is an m x n matrix, A= {aij }, x E Rn, x = {x.,}, b E R m, b = {bj}, 
where i = 1, ... , n, j = l, . . . m, Om - m dimensional vector of zeroes. 

T he goal of t his paper is to establish if there is a solution for (1) attainable 
in a finite number of iterations, with reasonable computational effort. In the 
case when the set of solutions: 

X = { X E R n [ A · X - b S Om } (2) 



is not empty, at least one solution of (1) will be established. 
Solving systems of linear inequalities is important from both theoretical and 

practical points of view. Systems of linear inequalities are often used for mod­
elling and solving complex practical problems from very different domains, e.g. 
having economical or technological origins, and many others. The well-known 
linear programming problem is to optimize, i.e. find a maximum or minimum 
value of a so-called objective function subject to a number of constraints on the 
variables, which are usually in the form of linear inequalities ( cf. Angel and 
Porter [l]). Therefore, it is very important to first establish whether a given 
system of linear inequalities has a non-empty set of solutions X and, if so, to 
find at least one of them, x E X. There is a well-known list of eighteen unsolved 
problems in mathematics that was presented by Smale in 1998 [13]. The prob­
lem of finding strongly-polynomial time algorithm which decides whether there 
exists a solution of (1) or, equivalent, is set X in (2) non empty, is the 9th of 
the Smale's problems and is still not solved. 

In this paper, the method for establishing whether there exists a solution for 
(1) is proposed, and moreover, the number of iterations (equivalent to compu­
tational complexity), with respect tom and n, is locally polynomial and in the 
worst case it has a geometric convergence rate . 

Let us define the set of pseudo-solutions of (1) as follows: 

X* = { x* Ix•= argx~j.r,, ll(A · x -bl+ll 2
}, where c+ = max{c,O}. (3) 

If some point, sufficiently close to the set X* of solutions of (3) is known, 
then it is possible to a find a pseudo-solution of (1) in the polynomial number 
of computational iterations of the order of O(m3 • n3 ). It should be emphasized 
that the solution for (3) always exists and when X cf 0, it will be a solution 
for (1). 

Many methods for solving (1) have been proposed (cf. Karmanov [8], Golikov 
and Evtushenko [7], Evtushenko and Golikov [4], Tretyakov [15], Tretyakov 
and Tyrtyshnikov [17]). All of those methods have reasonable computational 
complexity but, as mentioned above, up to date, no strongly-polynomial time 
algorithm for solving (1) was proposed. In Tretyakov and Tyrtyshnikov [16] 
and Mangasarian [9] linear programming problems are solved by reducing to 
the unconditional minimization of strongly convex piecewise quadratic function. 
A solution will be obtained in the finite polynomial number of iterations if the 
starting point of the algorithm belongs to the sufficiently close neighborhood of 
the unique solution of the problem. Unfortunately, there are severe limitations 
imposed on the function to be minimized. Namely, it should be strongly convex 
and t he eigenvalues of the Hessian matrix should fulfill specific conditions, etc. 

This results in substantial limitations on t he classes of problems which could 
be solved, e.g. it is required that (1) has only unique solution etc. Solution 
methods described in Tretyakov and Tyrtyshnikov [16] and Mangasarian [9] are 
based on exploiting information on the problem being solved by analyzing suf­
ficiently small neighborhood of the unique solution of (1). Analogous methods 
were proposed in Facchinei et al. [5] for the forecast (identification) of the 
active constraints in the sufficiently close neighborhood of the solution of the 
problem. In Mangasarian [10] a 2-factor method for solving degenerated sys­
tems of nonlinear equations was proposed. Similar approaches were exploited 
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for constructing computational methods aimed at solving degenerated prob­
lems in nonlinear programming, cf. Belash and Tretyakov [2] , Brezneva and 
Tretyakov [3] and Szczepanik and Tretyakov [14]. In the papers by Tretyakov 
and Tyrtyshnikov [17] and Wright [18], locally polynomial methods for solving 
quadratic programming problems, based on the similar ideas, are presented. It 
was proven in Coffin [6] that the well-known ellipsoid method is not polyno­
mial in the worst case. Tretyakov [15] proposed the gradient projection method 
for solving (1); this method is finding solution of (1) in the finite number of 
iterations and is a combination of iterational and straightforward (e.g. Gauss) 
methods. 

This paper proposes a computational method which establishes the existence 
of a solution of (1) and finds it, if the solution exists. When the starting point for 
the proposed method is sufficiently close to the set X* , of pseudo-solutions for 
(1), as defined in (3), then its computational complexity is locally polynomial, 
namely of the order O(m3 • n3 ). 

2 Definitions and theoretical results 

Let 
1 2 

cp(x) = 2 · ll(A · x -b)+II , where c+ = max{c,O}. (4) 

Theorem 1 Function cp(x) is convex and has a non-empty set of minimal val-
ues 

,Y* = {x• E Rn I 'P(x*) = min 'P(x)}. 
:cER.n 

(5) 

Proof. Theorem 1 follows immediately from the well-known features of the 
quadratic type convex functions. • 

It is obvious that elements x* of the set X*, x* E X*, cf. (5) will fulfill: 

'P'(x*) = L)(ai,x*) -bi)+· ai =On= AT· (A-x* -b)+. (6) 
i= l 

Therefore, in the general case, our goal is to solve the following equation: 

m 
I '\""' T n 'P (x) = L., ((ai,x) - bi)+ · ai = A ·(A· x - b)+ = On, where x ER . (7) 

i=l 

It is obvious that if A· x* - b ::;'. Om holds, then X fc 0. Otherwise, if 
A· x* - bf Om, then X = 0. Let us denote: 

fi(x ) = (ai,x) -bi,i ED= {l, ... m}, 

and 

Jo{iED lfi(x)=O}, L{iED lf,(x)<O}, J+{iED lfi(x)>O}. (8) 

According to (6) and the above notations, x* should fulfill the following 
equations: 

( (ai, x*) - b;)+ · a; = On. (9) 
iE.Jo(x•) u .J+(:r.•) 
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This in turn means that in the general case we should solve the following 
equations: 

or 

L ((ai,x) - b;)+ · ai = On, 
iEJo(x)UJ+(x) 

L ((ai,x) - bi)+ · ai = 0,, , 
iE J+(x) 

(ai, x) - b = 0, i E Jo(x). 

Without loss of generality we may denote: 

1-(x*) = {1, .. . ,l}, Jo(x*) = {l + 1, ... ,p} , J+(x*) = {p+ 1, ... ,m}, 

where l:::; p:::; m. 

(10) 

(11) 

If the rank of a matrix B of sizer x n is equal to r, then the pseudo inverse 
matrix (operator) B+ may be defined as B + = BT• (B • BT) - 1 . We will 
denote the quadratic matrix n x n orthogonally projected on the space of rows 
of matrix B as (BT)" = BT (B • BT) - 1 • B = B + • B, and projection on the 

orthogonal complement as (Br) 1- = I - (BT)", where I is an all-ones matrix of 
the size n x n. The main idea exploited in this paper is based on the following 
Lemma. 

Lemma 1 Let x* E X* be the pseudo-solution of (1). For every sufficiently 
small c > 0 there exist x E Ue(x* ), Ue(x*) = {x E Rn lllx - x*II:::; c }, such that 
if f;(x) :::: 0 then f;(x*) :::: 0. 

Proof. From the construction of the set X* , cf (5), it follows that either 
(ai, x*) - bi :::: 0 or (ai, x*) - bi < 0, x* E X *. In the first case, the Lemma 
proposition holds. In the second case, from the well-known features of the linear 
functions we obtain: 

f;(x):::; f;(x*) + llx - x*ll · llaill. 

From O < c < - 1
1
•
1
~:~) it follows that fi(x) < 0, which is contradictory to 

the Lemma proposition that in Ue(x*) there are points for which f;(x) :::: 0. 
Therefore, i E Jo(x*) U J+(x*). • 

Due to the above, in the sufficiently small neighborhood of some fixed point 
x* EX* for every x E Ue:(x* ), the following will hold 

Jo(x) <;; Jo(x*) and J+(x) <;; Jo(x*) U J+(x*) , 1-(x) <;; Jo(x*) U 1-(x*). 

Conditions, which should be fulfilled in the point x* are as follows: 

((a;,x*) - bi)+ · ai = ( (ai, x*) - bi) · a;= On, 
iEJo(x•)u J +(x·) 

(12) 

(ai,x*) - bi< 0, i E 1-(x*). 

In (12), it is taken into account that 

((ai,x*) - b;)+ = (a;,x*) - bi, i E Jo(x*) U J+(x*). 
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Now, our goal is to correctly define the sets Jo (x*), J+(x*), based on the 
information gained in point x E Ue(x*). Let us denote 

lo(x) := Jo(x), l +(x) := J+(x), J _ (x) := J _(x), 

M(x) = { x E Rn I. _ L_ ((ai,x) - bi )· ai = On and (aJ,x) - bj = o}, 
i E.fo(x )U.l+(x ) 

(13) 

where j E lo(x). 

Let point z(x) be the projection of point x on the set M(x). Let us observe 
that x* E M(x) if x E U0 (x*) and c: is sufficiently small. 

Moreover, if at point z(x) the constraints f;(z(x)) :::; 0 for a certain 
i E l+(x), then we will define the set Lin the following way: 

L = {i El+(x) I f;(z(x)):::; O}; L <;; Jo(x*). 

Otherwise, if at point z(x) the constraints f;(z(x)) 2'. 0 for a certain i E J _(x), 
we will define the set I + in the analogous way: 

I+= {i El_ (x) I f;(z(x)) 2'. O}; I+<;; Jo(x*). 

Now, we will redefine lo(x), l+(x) and J _ (x) as follows: 

J 0 (x) := J 0 (x) u Lu I+, l+(x) := l+(x) \ L, J _(x) := J _(x) \I+· (14) 

Next, we will again project point x on the new set M(x), cf. (13), and the new 
point z(x) will be obtained. Let denote as A(x) and b(x) the matrix and vector 
obtained thereby from A and b, respectively. The rows of A(x) and coefficients 
of b(x) correspond to the index set, defined by lo (x) U l +(x). In this case, 
equations (10)-(11) may be rewritten as: 

AT(x) · (A(x) · x - b(x)) = On 

(a;,x) - bi= 0, i E lo(x). 

(15) 

Let A(x) denote the matrix in the equations in (15), corresponding to the max­
imum set of linearly independent rows and let b(x) denote the corresponding 
vector of constant terms in (15). 

Equations in (15) may be formulated in the following way: 

A(x) . X - b(x) = On, 

Let: 
z(x) = PM(x)(x) = (AT(x)) _j_ • x + A+(x) • b(x) 

define the operator of the projection of point x on set M(x). 

Let us observe that at point x* the following holds 

AT(x*) · (A(x*) · x* - b(x*))+ = On, 

which, in turn, means that: 

.A(x*) · x* - b(x*) = On, 
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3 Algorithm for finding the pseudo-solution of (1) 

In this section, the algorithm designed to find the pseudo-solution for (1) is 
presented. The main idea of this algorithm is based on information related to 
a current point x, belonging to the sufficiently small neighborhood of the point 
x* E X*. We will also show how to find such a point. 

Algorithm 1 

Initialization Step: For the current point x, the sets of indexes Jo(x), J_ (x) 
and J+(x) will be defined according to (8). If set J+(x) = 0 then x is the 
solution of (1) and Algorithm 1 is terminated. Otherwise, the Main Recursive 
Step will be performed. 

Main Recursive Step: Let z(x), the projection of point x on the set M(x), 
be defined according to (17). We will check if the following condition is fulfilled: 

I+ =0 andL =0. (20) 

Checking Step: If (20) holds, then z(x) E X*, equation (9) is fulfilled; z(x) 
is the pseudo-solution of (1), as defined in (3), and Algorithm 1 is terminated. 
Otherwise, if for certain i ED the condition (20) is violated, we will define lo(x) , 
] +(x) and J _ (x) according to (14), and M(x) will be redefined according to 
(13), and the Main R ecursive Step will be repeated. 

Set D is finite , IDI = m, and therefore the number of changes in index sets 
lo(x),] +(x) and J _ (x) does not exceed m, and finally the point z(x) fulfilling 
(10) will be established. This means that z(x) is the pseudo-solution of (1), as 
defined in (3). 

It is of utmost importance that x should belong to the sufficiently small 
neighborhood of the point x*, because otherwise z(x) may not fulfill (10). If 
this is not the case, it is necessary to find another point x that is closer to x*. 
How we accomplish this is described below. 

Theorem 2 Fo r sufficiently small E > 0 and for every x E U0 (x*) Algorithm 1 
provides z* = z(x) as the solution for 

r.p'(x) = AT(x) · (A(x) · x - b)+ = On, (21) 

which is equivalent to finding the solution for (10) in the number iterations of 
the order O(m3 . n 3 ). 

Proof. Proof is based on the observation that for x belonging to a sufficiently 
small neighborhood of the point x* the constraints fi(x) c:: 0, according to 
Lemma 1, will correspond to constraints f;(x*) c:: 0. Therefore 

lo(x) Ul+(x) <;;; Jo(x*) U J+(x*). 

Let us determine z(x) as the projection of the point x on the set M(x), defined 
according to (13). It may happen that the set lo (x) will be enlarged. However, 
the number of iterations when lo(x) may be enlarged does not exceed m, the 
number of elements of the set D. Therefore, at some iteration , (20) will be 
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fulfilled. This means that z(x) satisfies (10) or, equivalently, cp1(z(x)) = On, 
This demonstrates t hat z(x) is the pseudo-solution for (1), as defined in (3). 
The computational complexity of establishing each projection z(x) is of order 
0( m 2 • n 3 ), taking into account computational effort related to multiplications of 
matrices. The number of iterations does not exceed m and therefore the overall 
computational complexity is of order O(m3 • n3 ) . • 

To complement the presentation of this chapter, the gradient method for 
establishing x belonging to the sufficiently small neighborhood U,(x*) of some 
fixed solution x• E X* of (1) will be described. This gradient method has the 
following scheme: 

Xk+l = Xk - °'' <p1(Xk) 

where gradient cp'(xk) fulfills the Lipschitz condition 

(22) 

Jcp1(xk+1) - cp'(xk)I::; L · Jxk+ 1) - xkl where L = 2 · IIAT ·All· 
Convergence of the gradient method (22) is considered in the following theorem, 
cf. Karmanov [8]. 

Theorem 3 Let x 0 E Rn and sequence {xk}, k = 0, 1, 2 ... , be constructed 

according to {22}, where a= IIAT · All- Then 

xk ----> x•, x* E X*, where k----> oo and JJxk+1 - yJJ < Jlxk - yJJ Vy E X*. 

Proof. Scheme (22) produces a sequence, which will converge to a certain 
x* E X*. Moreover, for every sufficiently small c: > 0 there exists k = k( c:) such 
that {xk} E U,(x*) , for all k 2'. k. This, in turn, means that on iteration k the 
hypothesis of Theorem 2 will be fulfilled and we will obtain a pseudo-solution 
of (1). • 

Now we have all necessary prerequisites to present the solving algorithm 
for (7). 

Algorithm 2 

Initialization Step: Let k = 0 and xo be an arbitrary point in R". 
Main Recursive Step: Let 

Xk+l = Xk - Cl'.· <p1(Xk) , 

Checking Step: If z(xk) is the solution for (7), then Algorithm 2 is terminated. 
Otherwise, we put k := k + 1 and the Main Recursive Step is repeated. 

Theorem 4 There exists finite k such that z(x,.J E X* and z(x,;;) is the solution 
for (7). 

Proof. The sequence { xk} is converging to fixed x* E X* and therefore in 
a certain iteration k the hypothesis of Theorem 2 wi ll be fulfilled and we will 
obtain the solution z* = PAl(xc) E X*. • 

Theorem 4 allows us to establish whether (1) has a solution or not. 

Corollary 1 If 
z* EX 

then z* is the solution of (1) . Otherwise (1) has no solutions. 
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4 Concluding remarks 

As it was already mentioned, the locally-polynomial complexity estimate is valid 
only if the starting point belongs to a sufficiently small neighborhood of the set 
of pseudo-solutions X*. To reach such a desired point, the gradient method 
(22) is used. There are accelerated gradient methods, of, see Nesterov [11] and 
Poliak [12], but these methods do not guarantee monotonic convergence to a 
set of pseudo-solutions X*. Presented in this paper method is monotonically 
converging to a certain point x*, x* E X*. It is obvious that the point x* 
depends on the initial point xo and therefore the number of iterations required 
by the gradient method for entering into the proper neighborhood of point x* 
depends on the position of the initial point xo . Moreover, the E: radius of the 
neighborhood of point x*, where the gradient method should get to, is in the 
general case unknown and depends on the specific problem being considered. 
However, it appears that we can guarantee a geometric convergence rate of 
the gradient method (22) while minimizing piecewise quadratic functions of the 
form (4). 

Namely, for every strongly convex function 1/J(x), the gradient method (22) 
has a geometric convergence rate, i.e. 

1/;(xk) -1/;* S c · ok, where 0 < o < l, c > 0, 

where c is a constant, which is independent of the size of the problem but it 
depends on the initial point xo . In the general case, for the functions not convex 
in the strong sense there is no proof of the geometric convergence of the gradient 
method (22). However, in the case of the function cp(x) given by (4) it is possible 
to prove the geometric convergence of the gradient method (22). Let 

l(xk) = {x* + /3 · (xk - x*), /3?: 0} and M(sk) = {x* + /3 · sk, (3?: 0}, 

Xk - x* 
Sk = . llxk - x*II 

The theorem presented below proves the strong convexity of the function 
cp(x) in the cone of convergence. 

Theorem 5 Elements of the sequence { xk}, defined by (22), belong to the cone 
of strong convexity of the function cp(x), namely \:I x, y E l(xk) the function 
cp(x) will be uniformly strongly convex for the sequence {xk}, i.e. 

cp(.>- · x + (l - >-) · y) S >- · cp(x) + (1 - .>-) · cp(y) - 1 · >- · (l - >-) · llx - Yll 2 (23) 

where.>- E [0, 1], x, y E l(xk), k = 0, l ... , 1 > 0. 

Proof. Let us assume that the Theorem does not hold, i.e. there does not 
exist 1 > 0 such that (23) holds. This means that for 

the following will hold 

l(xk) = {x* + /3. Bk, /3?: O} 

82cp(x*) 
- 8- 2- = ,k --t 0 when k --too, 

sk 
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or 
82cp(x*) T 
- 8 2 = (A ·A· sk, Sk/ = 'Yk--> 0 when k--> oo. 

Sk 

For vectors= lim sk will (AT• A• s, s) = 0 hold, or, due to the construction 
k-oo 

of cp(x), 

cp(x* + /3 · s) = 0 = cp(x*) = min JJ(A · x - b)+JJ 2 , 

where f3 E [O, /3], /3 > 0 is a certain fixed constant . Let xZ be, obviously locally, 
the projection of xk on the set M(s) Ex•. Then, due to sk --> s, k--> oo, we 
have 

llxk - xk II = Ok · llxk - x* II, where ok --> 0, k --> oo. (25) 

Let us set ok sufficiently small and consider points Xk+r, r = l, 2,... Then, 
according to Theorem 3 we have: 

On the other hand, according to (25), when r --> oo: 

llxk+r - x'Z II 2: llx'Z - x* II - llxk+r - x• II 2: 
llxk - x*II - llxk - xi,11 - llxk+,. - x• II 2: 

0
1
k lh - xi,11 - llxk - xZll - llxk+r - x*II > llxk - xi,11-

This is contradictory to (26) and therefore Theorem 5 holds. • 
Theorem 5 allows for the estimation of the convergence rate of the gradient 

method (22). 

Theorem 6 Under the assumptions of Theorem 5 for the sequence { xk} , 
constructed according to (22), the following convergence rates will hold 

(27) 

where T E (0, 1), c1, c2 > 0, the constants c1, c2 being independent of the value 
of k, but depending on the initial point xo. 

Proof. Let us denote 
µk = cp(xk) - cp*. 

For the sequence { xk} and q E ( ½, 1) the following holds 

I 2 1 2 82cp(xk) 
cp(xk) - cp(xk+1) 2: a· q · ll'P (xk) II 2: a· q · (cp (xk), sk) = - 8 2 2: (28) 

or, equivalently, 
µk - µk+l c". a' q' "(2µk, 

Therefore, for TE (0, 1) the following holds: 
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which proves the first part of (27), while the latter part of (27) follows from the 
strong convexity of the function cp(x) in the cone of convergence. • 
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