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prof. dr hab. inż. Zbigniew Nahorski

Zadanie:

Opracowanie algorytmów dla agentów reprezentujących poszczególne
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Modeling electricity generation potential
of a micro hydroelectric power plant

Zbigniew Nahorski, Weronika Radziszewska, Marzena Osuch

Abstract The report focuses on elaborating and testing a method suitable for a syn-
thesis of streamflows, which can be used for simulating large number of streamflows
of stochastic nature to be used in statistical examinations of a computer simulation
system. The stream inflows to a reservoir, which gathers water in producing elec-
trical energy by a micro hydroelectric power plant. This renewable energy source
is connected to an electrical microgrid located in few buildings being premises of
a research and education center. The proposed methods of synthesis have been also
adopted to generation of wind speed and insolation sequences, another media used
in producing renewable energy. A matched block bootstrap method has been cho-
sen to form synthetic sequences. Lall & Sharma method and its modification have
been used. Both methods were found to produce synthetic sequences with satisfac-
tory statistical properties as compared to real measured data gathered in periods of
several to some dozen of years. Several modifications of the methods are proposed.

Keywords: simulation, renewable energy devices, synthesis of weather data, matched
block bootstrap, streamflow, wind speed, irradiation

1 Introduction

Microl hydroelectric power plants are quite frequently used as electricity generation
units in microgrids. They use a renewable energy source which can be well predicted
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in a horizon of several hours to few days, depending on localization of the plant and
the volume of the reservoir gathering water from an inflowing stream. Quite often
also some yearly probabilistic characteristics of the stremflows are known, which
enables approximate planning of the energy production with even longer horizons.
However, the energy produced depends not only on the amount of water flowing
into the reservoir, which in some seasons may be low, but also on the amount of
water gathered there. Thus, besides modeling of the inflow to the reservoir, a simple
reservoir operation model is needed to predict possible energy that can be produced
from the plant.

Synthetic generation of streamflow is a problem that has been discussed from
early 1970s. But it is of a vivid interest in the recent literature due to its usefulness
in planing, design, and management of water resources systems. Different methods
have been proposed for this purpose. They can be classified as follows.

• Stochastic hydrological models. Statistical data to estimate distributions, as
well as regression or classic ARMA type models are standard tools applied here.
This direction of research was started by the report by Yevjevich [52] in 1972.
See also the book by Kottegota [21]. A good example of these approaches is also
presented in [22]

• Nonlinear stochastic parameter models. Artifitial neural networks have been
used [30], as well as different nonlinear time series models, including the thresh-
old autoregression ones, see [43] or [17].

• Nonparametric models. The most popular approach here has been application
of the bootstrap methods. The main idea of these methods, which were origi-
nally invented by Efron [13], is to resample the historical records with replace-
ments. This may be done either directly, shuffling the historical data, or through a
model fitted to historical data, which then provides new samples of data, see e.g.
[11, 13]. Random resampling in the hydrology has been considered in [28, 42].
The dependent data, more appropriate for the stream flow records, has been con-
sidered in [25, 26, 35, 39, 40, 41, 45]. One of main problems here is to recover the
statistical characteristics of the series. This is connected with problems of choice
of the block lengths and of the way of resampling. The resampling is then usually
bounded to a corresponding nearest neighboring blocks [26], with an appropriate
measure of neighboring. In particular, the matched-block bootstrap technique has
been proposed for it [41]. The choice of the block length has been discussed in
[39, 40, 45]. It has been selected from extensive simulations with different block
length, being mainly a multiplicity of 1 month. The final choice was 3 month.
It should be remembered, however, that this length may depend very much on a
river considered, and for a small river, like the one described in this report, the
best length may be much smaller.

• Model based resampling. The matched-block bootstrap technique is a very con-
venient and simple method. The resampling idea has been, however, also applied
in connection with modeling. The idea of using it in connection with classical
modeling techniques aroused in 1980s, [14, 15, 16], and consists in bootstrap-
ping residuals of a model, istead of original data. In particular, it has been used
for modeling streamflows in [39, 40]. The final synthetic series is constructed
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by summing up corresponding values of the time series model and bootstrapped
residuals.

• Wavelet transform models. Wavelet analysis is a popular method of modeling
non-stationary and nonlinear time series. It has been therefore quite widely uti-
lized in hydrological modeling [4, 5, 24, 38, 31, 46, 47, 49, 50]. The wavelet
transformation is particularly useful in analysis of different variabilities appear-
ing in the series [5, 46, 50].

In our simulation model of electricity production it is not crucial to have a high
precision of streamflow generation. It is enough to keep the average yearly variabil-
ity, and reflect a distribution of the streamflows in different years. In this report we
use the matched block bootstrap approach, which is a simple and quick technique,
giving quite good synthesised sequences coming from real data. Some modifica-
tions of a method proposed earlier are introduced in the report. The applied method
of streamflow synthesis is presented in Sec. 2.

The inflowing water is stored in a small reservoir. Its model consists basically
of a simple balance equation. Some problems may be encounted in modeling the
height of the water level or the area of the water surface, needed for example in
modeling evaporation. The model is described in Sec. 3.

Section 4 concludes. In the appendix some results of using matched-block boot-
strap techniques for synthesiszing wind speed and insolation data are presented.

2 Streamflow synthesis

2.1 Real river historical streamflows

The analyzed flow data were measured at a water gauge at Wólka Mlądzka, on a
small river called Świder. It is a right tributary of Vistula river. It has its sources in
the Żelechów Heights near the town Stoczek Łukowski, at the altitude 178 meters
above see level. Its mouth is located south of Warsaw between the towns Józefów
and Otwock, at the altitude 85 meters above see level. The length of Świder is 89.1
km and its basin is 1161,5 km2. The river is meandering, its valley is rather narrow
and not deep. The bottom and banks are mostly sandy.

Świder is a typical lowland river with the maximal flows in springs, caused by
melting the snow cover. Additional spates are observed in summers (June, July) due
to tempest rains and also in late autumns due to frequent rainy days. The low flows
are usual in late summers and early autumns. The streamflows have been measured
once a day and the record include 18262 measurements from 50 consecutive years,
starting from the beginning of November 1960 and ending at the end of October
2010. The flows are statistically characterized in Figures 1 and 2. Evidently, the
flows are highly non-stationary and their distribution is skewed.
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Fig. 1 Yearly minimal, median and maximal flows of Świder river from 1960/11/01 to 2010/10/31.

Fig. 2 Percentiles 2.5%, 25%, 50%. 75%, 97.5% of yearly smoothed flows of Świder river from
1960/11/01 to 2010/10/31.
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Fig. 3 Correlation of the water data.

2.2 Match block bootstrap resampling scheme

The method of generating flows described in this report is a modification of the
matched block bootstrap method invented in [8] and applied for the streamflows in
[41]. A general idea of the matched block bootstrap is as follows. The historical
flowstream data are divided into non-overlapping subsequent time blocks, i.e. time
intervals within a year. The intervals with the same dates from all historical years
form sets, which are resampled consequently one by one to obtain a new series of
flowstreams. This way each anew generated sequence of streamflows is different,
and more exactly a probability of repetition of a sequence is very small (it depends
on the lengths of intervals, number of the historical data years, and the way of re-
sampling). Two problems are connected with this method:

• How to choose the blocks (intervals) length?
• How to resample the blocks (intervals) from the sets of the corresponding histor-

ical intervals?

Although choice of the block lengths should be prior to the second step, we start
discussion with the resampling algorithm. The algorithm used in [41] is based on
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the k-NN bootstrap method proposed by Lall & Sharma [26]. In their method only
k nearest neighbors within the set are only considered for the resampling. The near
neighbors are those whose values of so-called ’feature vector’ are close. In [41]
only one feature was considered, that was the distance between the last and first
measurements of flow in the concurrent blocks. The idea behind such choice of
a feature is to keep the continuity of the flows between subsequent blocks in the
generated sequence. Two strategies of resampling from the k nearest neighbors was
considered, pure random, and inverse proportional to the ranks. In the latter case k
nearest neighbors are ordered according to the distance from the considered block
(in the sense of the distance between the last measurements in the blocks). Assume
that the blocks are ordered as j = 1,2, . . . ,k. Then the probability of choosing a j-th
block is equal to

Pj =
1/ j

∑
k
i=1 1/i

That is, the probability of the choice of a year is inversely proportional to the dis-
tance between blocks. This is called in the sequel ’the inversion method’.

A modification of the above algorithm has been introduced and examined in this
report. In the modified algorithm, all years are considered in choosing the block
instead of the k nearest neighbors. Moreover, the probability of choosing a j-th
block is calculated as follows

Pj = 1−
D j

∑
N
i=1 Di

where D j is the distance between blocks. To allow for choosing the next block from
the presently considered year (continuation of the sequence) the next block is se-
lected prior to considering the other years, with the probability equal to the correla-
tion coefficient of the present and the next block in the considered year. In all cases
the roulette wheel method is used for the selection with given probabilities.

Lall & Sharma [26] proposed using k equal to the square root of the number of
years considered in the historical data. Srinivas & Srinivasan [41] suggested that k
can be chosen using cross-validation techniques. No simple method has been given
as to the choice of the block lengths. In [41] two values were considered, 1 month
and 2 months. The choice has been based on extensive trials with both values and
some values of k, using historical data of streamflows from few rivers. Several statis-
tics of the historical streamflows has been compared with the corresponding statis-
tics from the synthesized flows to check quality of the bootstrap method.

Figure 4 presents an example of a synthesized stremflow. Figures 5 - 7 show few
results of testing the simulation method.

The above results indicate that the sequences produced by both methods quite
well preserve most of statistics: mean value, median, standard deviation, and skew-
ness. This is also visible when statistics for other weather phenomena, like wind
speed or irradiation, are compared. To support this visual impression, some statisti-
cal tests have been used.
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Fig. 4 An example of streamflow synthetized using match block bootstrap.

Fig. 5 Yearly box-and-whisker plots of streamflows synthetized using match block bootstrap.

Table 1 Comparison of descriptive statistics of real and generated flows

Mean Median Autocorrelation Skewness Std. deviation
Inversion 4.39 2.85 0.88 7.58 6.23
Negation 4.30 2.72 0.87 7.38 5.76

Real measurements 4.25 2.84 0.91 7.28 5.56
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Fig. 6 Box-and-whisker plots of original and synthesized streamflows, for two match block boot-
strap methods.

Fig. 7 Comparison of descriptive statistics of the original and synthetized streamflows.
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First, tests for assessing the statistical significance of the difference between two
sample means was performed. It is assumed that the underlying populations have
normal distributions with the same variances. The null and alternative hypotheses
are

H0 : µ1 = µ2 H1 : µ0 6= µ1

where µ1 and µ2 are the means of the first and the second sequences. This hypothesis
is evaluated with a two-tailed test.

The test statistic for independent samples of equal lengths is

ti =
x̄i− x̄0√

s2
i
n +

s2
0

N

with i = 1 for the inversion method and i = 2 for the negation method. This meaning
of i will be also used in the sequel. The above statistic has the Student’s t distribu-
tion.

It is rather difficult to approve the independency assumption, due to seasonality of
the data. Assuming dependence of the sequences, with other assumptions sustained,
the matched-pairs test can be used. Let us consider the differences din = xin− x0n,
where x0n are the elements of the measurement sequence and xin are elements of a
synthesized sequence. The test statistics in this case is

t =
d̄i

σdi

where d̄i is the mean value of the sequence din,n = 1, . . . ,N and σdi is its standard
deviation. This is a one-tail test.

Results of both tests are presented in Table 2. Only in one case, for the inversion
method and independence assumption, the zero hypothesis on equal mean values is
rejected on the significance level 0.05. In all other cases the tests fail to reject H0.

Table 2 The Student’s t test statistics for comparison of means between the original and two
synthesized sequences under assumption of independent or dependent samples.

independent dependent
t statistic p-value decision t statistic p-value decision

Inversion -2.28 0.023 nonequal 0.018 >0,99 equal
Negation -0.63 0,521 equal 0.005 >0.99 equal

If the normality distribution can not be assumed, Mann-Whitney U test (or
Wilcoxon-Mann-Whitney test) for independent samples is evaluated, while for the
dependent samples the Wilcoxon matched-pairs signed-ranks test can be applied.
Both tests use medians. In the former equality of medians (H0) against inequality
(H1) is tested. In the latter it is tested if the median of the differences is zero (H0) ver-
sus the alterrnative hypothesis that it is different of zero (H1). Both are two-tailed

I li I I li I I I 
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tests. Table 3 presents the test results. In this case H0 is rejected for the negation
method in the Mann-Whitney test, while all other cases fail to reject it.

Table 3 The Mann-Whitney U test and Wilcoxon matched-pairs signed-ranks test statistics for
comparison of medians for the original and two synthesized streamflow sequences.

Mann-Whitney Wilcoxon
statistic p-value decision statistic p-value decision

Inversion 158366885 0.11 equal 78341228 0.53 equal
Negation 162134431 0.024 nonequal 76250087 0.79 equal

It may be concluded that the tests are in favour of equality of the examined
statisctics for real and synthesized sequences. It is often so for the Wilcoxon test
for dependent samples, that can be supposed true from the way of the generation
of the sequences. In some cases where tests for independent samples are used, this
hypothesis is rejected. But the reason may be most posssibly wrong assumption on
independence of the real and synthesized sequences.

In the last test variances of two samples are compared. The hypotheses are:

H0 : σ
2
0 = σ

2
i H1 : σ

2
0 6= σ

2
i

The following statistic is used

F =
s2

i

s2
0

It is assumed that the populations have normal distributions and the sequences are
independent. Then the above statistic has the F Snedecor distribution.

The results of testing are depicted in Table 4. In both cases the zero hypothesis
on equality of variances is rejected. But the assumptions of this test can hardly be
accepted.

Table 4 The F test statistics for comparison of variances between the original and two synthesized
sequences.

F statistic p-value decision
Inversion 0.8004 < 2.2e-16 nonequal
Negation 0.9358 6.762e-06 nonequal

In the sequel, extensions of the method are discussed. The modifications are ex-
pected to improve the autocorrelation properties of the generated sequences. The
main goal of the research described in this report was to elaborate a method of syn-
thesis of streamflows with statistical properties similar to that obtained from the
historical records, and useful for simulation of the electric energy produced by a
hydraulic plant. As the sequences obtained by using the above described methods
have been found to fit well to this purpose, the extensions proposed below have not
been tested, and only recorded for further examination in the future works.

I li I I li I I I 

I I 
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2.3 Two-element feature vector

In their method, Lall & Sharma [26] designed a feature vector, which may consists
of more than one element. Following their idea, two features are considered here,
called v1 and v2. The first feature is, as earlier, the absolute value of the difference
between the last measurement of the previous block and the first measurement of
the consecutive block. The second feature is the absolute value of the difference
between the slopes of the end of the previous block and the beginning of the con-
secutive block. Then, the distance between the blocks is defined as follows

r j =
√

w1v2
1 j +w2v2

2 j

where j is the number of the consecutive block and w1, w2 are weights. Then, the
rest of the procedure is as before.

The problem in the above procedure is in finding the slopes of the curves, known
only by noisy measurements in the discrete times. The method used follows the
Savitzky-Golay idea [33]. It is proposed to fit a linear function

P(t) = b0 +b1t (1)

to the 2L+ 1 last or first measurements of the consecutive blocks, respectively. To
simplify the notation, let us call the consecutive extreme measurements in the blocks
u−L,u−L+1, . . . ,u0, . . . ,uL−1,uL. It is also assumed that the measurements are made
with a constant period of time ∆ .

The parameters b0 and b1 are calculated to minimize the sum of squares

S =
L

∑
l=−L

(ul−b0−b1∆ l)2

Differentiating S with respect to b0 and b1, and equaling them to 0, we get a set of
two linear equations to be solved for b0 and b1

b0

L

∑
l=−L

∆
jl j +b1

L

∑
l=−L

∆
j+1l j+1 =

L

∑
l=−L

∆
jl jul j = 0,1

It is easy to notice that the sums for odd powers of the summands on the left hand
side are equal to zero. Therefore, it is easy to get the following expressions for the
parameters

b0 =
1

2L+1

L

∑
l=−L

ul

b1 =
∆ ∑

L
l=−L lul

∆ 2 ∑
L
l=−L l2

=
3

∆L(L+1)(2L+1)

L

∑
l=−L

lul
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We want to have an estimate of the derivative at the points ∆L and −∆L, respec-
tively for the previous and the next blocks. As the function (1) is linear, its slope is
constant and equal to

dP(t)
dt

= b1

We calculate the slope only for simplest cases of L= 1 or L= 2, that is using extreme
3 or 5 points of the block sequence. It provides the following expressions

dP(t)
dt

=
1

2∆
(−u−1 +u1) for L = 1

dP(t)
dt

=
1

10∆
(−2u−2−u−1 +u1 +2u2) for L = 2

As mentioned earlier, the indices−2,−1,1,2 correspond to the consecutive extreme
measurements in adjacent blocks.

Higher order polynomials can by used as well. Although the derivations are more
complicated then, the final expression is also in a form of the weighted sum of
consecutive measurements. However, the solution may be then more sensitive to
errors and perhaps not suitable for very volatile sequences.

2.4 Model based resampling

Srinivas & Srinivasan [39, 40] developed a model based resampling method, which
was an adaptation of the idea presented in [11], where it has been called the post-
blackening approach. Two time series models have been considered, a classical
ARMA model [39] and periodic ARMA (PARMA) model [40]. To estimate the
model parameters Box-Jenkins [6] procedure is applied.

The main idea of applying the model is to get a sequence of independent resid-
uals, which can be then simply bootstrapped to form new sequences. Srinivas &
Srinivasan [40] proposed to use a simple autoregressive model of the first order
AR(1) in order to only prewhiten the original sequence, and then using a match
block bootstrap resampling for residuals, which form a much weaker dependent se-
quence.

So, the algorithm is as follows.

1. Standardize the elements of the original sequence yn to form a new sequence

xn =
yn− ȳ

sn

where ȳ is the mean and sn is a ’local’ standard deviation of the sequence yn.
2. Fit an AR(1) model

xn = axn−1
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to the standardized data. The least-squares estimate of the parameter a is given
by the expression

â =
∑

N
n=2 xn ∑

N
n=2 xn−1

(∑N
n=2 xn−1)2

3. Pre-whiten the standardized data xn by calculating the residuals

εn = xn− âxn−1

4. Bootstrap the obtained sequence of residuals {εn−1}N
n=1 using a matched block

bootstrap resampling scheme. The time dependence of the prewhitened sequence
is much weaker, so it should be easier to obtain good statistical properties of the
generated sequences.

5. Post-blacken a bootstrapped series by inverting the earlier pre-whitening calcu-
lations, i.e. use the following expression

zn = âzn−1 + εn

with z0 = 0.
6. Inverse standardization, i.e. calculate

ỹn = snzn + ȳ

to get a new synthesized sequence of stremflows.

It is worth trying to differentiate the sequence before standardization, to get even
a weaker dependent sequence at the start of the post-blackening algorithm. It is
very likely that the mean value of the differentiated series will be close to zero,
and then the standardization and inverse standardization steps may be abandoned.
In any case, the final sequence of the modified procedure is obtained by summing
the consecutive elements of ỹn.

3 Model of a reservoir

In our model a stream inflows to a small reservoir, from which water is fed to a
turbine of a micro hydroelectric power plant of run-of-the-river type. Operation of
reservoir, together with iy modeling, has a long history in the water management
literature, see e.g. [51], but it is mostly connected with large reservoirs and opti-
mization of its water usage. To simplify calculations in our simulation, the reservoir
is modeled as the inverse of a frustrum (parallel cutting) of a wedge (a shape of a
baking pan) sketched in Figure 8, where we assume that a > b. The volume of this
polyhedron is given as follows [7]

Vmax =
h
6
[ab+a1b1 +(a+a1)(b+b1)]
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In futher derivations it will be useful to specify a1 and b1 by angles of the river
bank slope, which is denoted by α , for every riverside. From simple triginometric
conditions in the triangle presented in Figure 9 we have

tanα =
H

b/2
tanα =

H−h
b1/2

Eliminating H we get

b1 = b− 2h
tanα

and similarly

a1 = a− 2h
tanα

Using above, the volume can be expressed as

Vmax = h
[
ab− h

tanα
(a+b)+

4h2

3tan2 α

]
(2)

Fig. 8 A sketch of a wedge being a model of a reservoir, after turning it upside down.

The volume of water in the reservoir is changing due to the inflow from the
stream, inFt , the outflow to the power station or overfilling of the reservoir, outFt ,
evaporation from the reservoir surface, Et , as well as groundwater inflow and out-
flow, precipitation on the reservoir surface, and surface runoff from a watershed into
a lake. It is actually impossible to take into account all these reservoir water budget
components in our modeling due to lack of appropriate data. These data are neither
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Fig. 9 The triangle from Figure 8.

/J 



18 Zbigniew Nahorski, Weronika Radziszewska, Marzena Osuch

available in traditional modeling of reservoir water level, which makes this task to
be quite a big problem, requiring application of sophisticated techniques, see [44].
So, we only consider three first components. Let us denote the net inflow of the
water to the reservoir during a considered period by

∆Ft = inFt −outFt −Et

This value may be positive, negative or equal to zero. The net inflow causes the
change of the water lever, denoted by ∆ pt . The new values of the open water surface
dimensions in the next period are then equal to

at+1 = at −
2∆ pt

tanα
bt+1 = bt −

2∆ pt

tanα

and the corresponding change of the water level in the reservoir ∆ pt can be found
from the equation (2) to be as follows

∆Ft = ∆ pt
[
atbt −

∆ pt

tanα
(at +bt)+

4∆ p2
t

3tan2 α

]
Let us denote ∆ pt

tanα
= x and ∆Ft

tanα
= Yt . Then we get the following expression

Yt =
4
3

x3− (at +bt)x2 +atbtx (3)

This is a dependence of Yt on x. However, we actually need the reverse dependence,
showing how the level changes due to an inflow to the reservoir. This dependence
can be found by solving above third order linear equation in x. Although theoret-
ically possible, solution of this equation is too complicated for practically useful
analysis. So we use another approach.

Let us consider the function

f (x) =
4
3

x3− (at +bt)x2 +atbtx−Y (4)

Interesting solutions (real ones - there must be at least one real solution) of the
equation (3) are the zeros of the above function. The derivative of this function is

f ′(x) = 4x−2(at +bt)x+atbt

This derivative has two zeros

x1 =
bt

2
x2 =

at

2

It is easily found that f (bt/2)− f (at/2) = (at − bt)
3/12 > 0. That is f (at/2) <

f (bt/2). As we have

f (
at

2
) =

a2
t

4
(
bt −

at

3
)
−Yt

----



Hydroelectric power generation 19

Fig. 10 A cubic function (3) with explanation of an upper bound calculation.

then this function has only one zero when

a2
t

4
(
bt −

a
3
)
> Yt

that is for sufficiently high values of the surface area dimension. We assume in the
sequel that the above condition is true. A function f (x) is sketched in Figure 10.
The zero x0 of this functions can be bound by the condition 0 < x0 < bt/2.

The upper bound can be easily sharpened. Let us draw a line by the points
(0, f (0)) and (bt/2, f (bt/2)), that is (0,−Yt) and (bt/2,b2

t (3at − bt)/12−Yt . The
equation of this line is y = 1

6 bt(3at −bt)x−Yt and therefore it cuts the x axis in the
point

x01 =
6Yt

bt(3at −bt)

which is a sharper upper bound. This bound is used to assess the time period in
modeling. Assuming at = 100m and bt = 40m the denominator is equal to 22400
m2. The streamflow of the river can reach the value of almost 100 m3/s. This gives
the value pt ≈ 27 mm/s or 160 cm per minute. This means that a reasonable period
for modeling changes of the water level in the reservoir would be only dozens of
seconds. On the other hand, for the small streamflow of about 2 m3/s this value is
only 32 mm per minute, so the period can be equal to a dozen of minutes. Taking

• / (:::1 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 

I 

I 
I 

I 

I 

I 

I 

I 

I 
I 

I 
I 

I 



20 Zbigniew Nahorski, Weronika Radziszewska, Marzena Osuch

Fig. 11 An initial part of the the Figure 10 showing accuracy of an upper bound.

into account that the bound is around twice greater than the zero of the function (3),
see Figure 11, the above estimates are perhaps too conservative and can allowed to
be greater.

Evaporation from the reservoir surface is worth to examine as a component of
the water budget in summers. Study of the evaporation has been started by Dalton
[10], who assumed that it is proportional to the difference of the saturation vapour
pressure and the vapour pressure in the air. The proprtionality coefficient has been
assumed in further studies to be dependend on the wind speed, temperatures, humid-
ity, etc., see e.g. [32, 37] for discussions of different formulas. These formulas are
often related to specific conditions or require measurements of different conditions.
In spite of the large documentation, their accuracy may be not sufficiently good, par-
ticularly when they are applied in other sites then those, for which their parameters
were fitted. On the other hand, pan evaporation is often measured, and this result
can be used for estimation of evaporation from the reservoirs after some modifica-
tions. Here, we form a simple model inspired by data for Minnesota presented in [9].
Minnesota State lies on similar lattitude as Poland, slightly more shifted to south.
Average daily evaporation in July, which is the month of highest evaporation, has
been estimated there to be in the range 3.5 - 6 mm/day. The lowest evaporation is in

v.u:z:, 
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December and amounts to about 0.3 - 0.5 mm/day. The shape of average monthly
evaporations resembles a sinusoid. This inspired us to propose a simple model for
daily evaporation in the dth day of the year as

ed = 5
(

sin(
2π

365
d +1

)
+0.5 [mm/day]

It assumes the highest evaporation about 5 mm/day in the days 182 and 183 (1st and
2nd July), and the lowest equal to 0.5 mm/day in the day 365 (31st December). For
the leap years the number 366 instead 365 may be used.

However, even peak evaporation rates are only of the order of few milimiters
per day [9, 32]. This may be meaningful when the net inflow (difference of inflow
and outflow) is close to zero. But it is not much when it is compared to change of
the water level due to inflow from the stream. So, it seems that evaporation can be
ignored in our modeling.

Finally, change of the water volume in the reservoir is given by

Vt+1 =Vt +∆Ft

starting with an assumed initial value V0. Additionally, if Vt+1 > Vmax, then in the
next step the maximum reservoir volume should be taken Vt+1 = Vmax. A minimal
level of water is required for the turbines to work. If it is denoted by hmin, than
the minimal volume is the difference of the maximal volume and the volume corre-
sponding to the change h−hmin

Vmin = h
[
ab− h

tanα
(a+b)+

4h2

3tan2 α

]
−

−(h−hmin)
[
ab− h−hmin

tanα
(a+b)+

4(h−hmin)
2

3tan2 α

]
that is

Vmin = h
[
ab− 2h−hmin

tanα
(a+b)+

4(3h2−3hhmin +h2
min)

3tan2 α

]
(5)

This model requires only inspection of the minimal lever. With the values of a =
100m and b = 40m assumed earlier 1 m3/s of the net inflow causes 16 mm change
of the water level per minute, that is almost 25 cm per quater of hour. As inspection
of the minimal level is important for small inflows, it seems that a quater to half an
hour may be a reasonable time period in modeling.

4 Conclusions

Block matched bootstrap techniques proved to be a powerful tool for synthesizing
large amount of data with statistically similar properties to the original measure-
ments. These techniques do not require learning of a sophisticated theory, nor im-
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plementing of complicated algorithms. The tests presented in this report confirmed
good statistical properties of the synthesized series of streamflows, and to some ex-
tent also of wind speed and insolations. The properties of obtained sequences did
not differ substantially for both applied methods: Lall & Sharma (inversion) and a
novel one (negation), proposed in this report as a modification of the former one.

Synthesized series are often produced to test statistical properties of simulated
objects, either existing ones or designed, to get some better knowledge of their pos-
sible behavior. This was also a main goal of the sequences synthesized using the
methods elaborated in this report. They are to be used as inputs to renewable elec-
tric energy sources: a micro hydroelectric power plant, a wind power generator, and
photovoltaic panels. The electric power produced by them supplies a microgrid,
which is simulated in a computer as a model of a microgrid for a designed research
and education center, with renewable energy units.

Few modifications and extensions of the methods have been proposed in the re-
port. They may be the subjects of further research in order to improve quality of
the methods. However, the sequences obtained up to now are good enough for test-
ing of microgrid behavior. That is why the elaboration of the methods have been
tentatively stopped at this point.

Appendix: Results for wind speed and insolation

Wind speed

Wind speed synthesis has not been as popular subject of research as in the sream-
flow case, as no extensive simulations similar to those required for testing water
systems models were needed. In these applications where the wind speed is needed,
most often historical data have been used. Much more attention has been put to wind
speed prediction and different methods for this purpose have been developed, start-
ing from general weather forecasting methods [27], with possibly downscaling to
a small space grid using different models, like regression, artificial neural network
or support vector machines [18], through different time series forecasting methods
[1, 3, 53], possibly using on-line measurements in nearby weather stations, up to
different wavelet and fuzzy approaches [53]. In many of them diurnal wind speed is
only considered.

In this report the matched block bootstrap methods has been used, applied earlier
for the flowstream syntheses. The measurements used for the modeling were gath-
ered in weather station located at 52◦10‘53“N 20◦52‘13“E in Reguły near Warsaw1.
The wind speed has been measured every 10 minutes by consecutive 10 years, from
2003 to 2012. The total number of data contains 526032 points. The block length
of 5 hours (30 points) has been fixed, following examination of few ad hoc chosen

1 The data on the wind speed and insolation measurements were provided by LAB-EL Elektronika
Laboratoryjna s.j, Reguły, Poland.
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values. The autocorrelation diagram is presented in Fig. 12. Figure 13 shows an ex-
ample of a synthetic wind speed sequence, while Figures 14 - 15 present comparison
of some statistics for the original and synthesized data. The statistics for synthesized
series are similar to the statistics for the original ones.

Fig. 12 Diagram of autocorrelations calculated for lags from 0 to 30, which shows correlation
between measured data and 5 hour shift.

Fig. 13 An example of wind speed synthesized using match block bootstrap.
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Fig. 14 Box-and-whisker plots of original and synthesized wind speed, for two match block boot-
strap methods.

Fig. 15 Comparison of descriptive statistics of the original and synthetized wind speed.
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Finally, Figure 16 depicts fractions of occurrence of wind speeds in the original
and synthesized series. It is clear from it that the fitness proportionate selection with
negation method of determining the probabilities of choosing next block is a bit
more randomized and the most extremely values appear less frequent.

Fig. 16 Fractions of occurrences of wind speeds in two generated and real measurement sequences.

Table 5 Comparison of descriptive statistics of real and generated wind speed

Mean Median Autocorrelation Skewness Std. deviation
Inversion 2.59 2.30 0.95 0.94 1.52
Negation 2.56 2.30 0.93 0.90 1.51

Real measurements 2.60 2.30 0.96 0.98 1.57

As in the case of streamflow data, also here some tests have been performed to
compare distributions of the original and synthesized series. The results are depicted
in Tables 6 and 7. Table 6 contains results of the t-test, under assumption of normal-
ity of the data, for independent and dependent sequences. Table 7 shows results for
the Mann-Whitney and Wilcoxon tests, respectively for the independent and depen-
dent data, without normality assumption. All these results suggest acceptation of
the alternative hypothesis of different distributions of the real and synthesized se-
quences. This conclusion may a little surprising in light of comparison results of
Table 5. Possible reasons of this descrepancy may be relatively short blocks and
lack of regularity in wind speed values accross the years (no clear seasonality). This
question needs, however, more thorough examination.
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Table 6 The Student’s t test statistics for comparison of means between the original and two
synthesized sequences under assumption of independent or dependent samples.

independent dependent
t statistic p-value decision t statistic p-value decision

Inversion 16.51 <0.01 nonequal 16.51 < 2.2 1016 nonequal
Negation 13.26 <0,01 nonequal 0.69 0.489 equal

Table 7 The Mann-Whitney U test and Wilcoxon matched-pairs signed-ranks test statistics for
comparison of medians for the original and two synthesized wind speed sequences.

Mann-Whitney Wilcoxon
statistic p-value decision statistic p-value decision

Inversion 139866932286 < 2.2e-16 nonequal 54979777950 < 2.2e-16 nonequal
Negation 139319528634 1.812e-14 nonequal 54553238682 < 2.2e-16 nonequal

Insolation

To simulate insolation usually astronomical data and physical principles have been
considered, like position of the sun in the sky, the resulting flux of the sunshine com-
ing to the earth surface, etc., see [29]. Up to the knowledge of the present authors,
no influence of the clouding on the running energy production has been considered.
An assessement of insolation in Poland in different months has been presented in
[23]. In this report, matched block bootstrap methods have been used to synthesize
the insolation sequences, together with clouding effect.

The insolation data have been gathered in the same weather station as those for
wind speed. It contains measurements in every 10 minutes from 2004 to 2012. They
form a sequence of 473472 values.

Choice of the block length was self-imposed. One-day-long blocks have been
considered, which means that they cover the length of 24 hours from midnight to
midnight. They include intervals of the zero values connected with the nights. The
length of nonzero values in the days along the year varies: the longest during the
break of the spring and summer, and the shortest at the break of autumn and winter.

Because the adjoining points of all blocks are always the same, equal to zero
insolation, another measure of neighborhood of consecutive blocks have been used.
It was the correlation coefficient of the daily insolation sequences.

Figure 17 present an example of synthetic daily insolation sequence. Figures 18 -
20 show comparison of statistics, similar to those presented earlier. Figure 21 shows
the statistics of the original and generated data but with zero values excluded. As
before, quite good similarity of statistics for the synthetic and real data is observed,
including the autocorrelation coefficients. This suggests satisfactory generation of
synthetic series by both matched block bootstrap methods.

It is obvious that no assumptions on stationarity or normality for these data can be
supposed, which questions any use of standard tests, as performed in for the earlier
data. It seems that other approach is needed to solve this problem.
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Fig. 17 An example of irradiance synthesized using match block bootstrap.

Fig. 18 Box-and-whisker plots of original and synthesized irradiance, for two match block boot-
strap methods.

Table 8 Comparison of decriptive statistics of real and generated irradiance, with excluded 0 val-
ues.

Mean Median Autocorrelation Skewness Std. deviation
Inversion 189.2 118.7 0.958 1.03 190.0
Negation 190.1 120.2 0.956 1.05 190.8

Real measurements 192.0 119.1 0.954 1.09 195.0
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Fig. 19 Comparison of means and standard deviations of the original and synthetized irradiance.

Fig. 20 Comparison of medians, autocorrelation coefficients and skewness of the original and
synthesized irradiance.
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Fig. 21 Comparison of medians, autocorrelation coefficients and skewness of the original and
synthesized irradiance, with exclusion of zero values of irradiance.
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