

An Inexact Bundle Approach to Cutting-Stock Problems
Krzysztof C. Kiwiel

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland, kiwiel@ibspan. waw.p}

We show that the LP relaxation of the cutting-stock problem can be solved efficiently by the
recently proposed inexact bundle method. This method saves work by allowing inaccurate
solutions to knapsack subproblems. With suitable rounding heuristics, our method solves

almost all the cutting-stock instances from the literature.

Key words: nondifferentiable convex optimization, Lagrangian relaxation, integer prograui-
ming, bundle methods, knapsack problens, cutting-stock

History: Initial version April 2005; revised May 2006; October 2006; September 2008.

1. Introduction

The classic Gilmore and Gomory (1961) formulation of the cutting-stock problem (CSP) is
usually solved by LP-based column generation, rounding heuristics and branch-and-bound;
see, e.g., (Belov and Scheithauer, 2002, 2006; Degraeve and Peeters, 2003; Degraeve and
Sclirage, 1999; Vance, 1998; Vanderbeck, 1999). Since column generation (CG) applied to
its LP relaxation may converge slowly, there is interest in stabilized variants based on LP or
QP (Ben Amor et al., 2004; Ben Amor and Valério de Carvalho, 2005; Briant et al., 2007).
Alternatively, the highly efficient hybrid approach of Degraeve and Peeters (2003) generates
additional columns by applying subgradient optimization to its Lagrangian relaxation.

I this paper we show that its LP relaxation can also be solved efficiently by the inexact
bundle method of Kiwiel (2006a). This QP-based method saves work by allowing inaccurate
solutions to Lagrangian subproblems. For the CSP, each subproblem is a knapsack problem
(IP). We give a simple test for inezact KP solutions (see §2.2 below) that works well iu
practice for a standard branch-and-bound KP solver of Martello and Toth (1990). Further, to
avoid the difficulties arising when a bounded KP is transformed into a 0-1 KP (Vanderbeck,
2002), we use relaved bounds. Next, by adapting the ideas of (Belov and Sclieithauer, 2002;
Holthaus, 2002; Stadtler, 1990; Wascher and Gau, 1996) to our inexact framework, we give
rounding heuristics that solve almost ell the CSP instances from the literature; in particular,

they perform better than the best heuristics of Wéscher and Gau (1996). In effect, our

1

inexact NP solutions, bound relaxation and rounding heuristics should be of interest also for
other, more traditional CG-based approaches to the CSP.

We now provide a historical perspective for our contributions. Our work was inspired by
Briant et al. (2007), where (together with four other applications) the LP relaxation of the
CSP was solved by several wariants of CG and a standard bundle method. On some CSP
instances, bundle was much slower than CG, mostly because its subproblems were more
difficult for the IXP solver of Vanderbeck (2002). Hence Claude Lemaréchal suggested the
CSP as a testing example for our inexact bundle (Kiwiel, 2006a). For technical reasons,
instead of the KP solver of Vanderbeck (2002), we used the MTIR procedure of Martello
and Toth (1990). Our initial quite disappointing results improved greatly once we used
relaxed KP bounds and inexact solutions: our method became much faster in practice than
all the algorithms tested in (Briant et al., 2007, §2.2) (see §5.8). Next, we collected more
test instances and adapted some rounding heuristics from the literature. The main ainm was
to appraise our inexact bundle solutions: they are deemed accurate enough if the heuristics
solve almost all instances.

We now sumunarize our findings on admissible inexactness. The relative accuracy in dual
function evaluations is controlled by the tolerance e, of our I(P solver (cf. §2.2). First, for
¢, = 0 (i.e., exact bundle), the average computing times are much greater than those for
€, = 1073 (usnally by factors of 30 or more), although the iteration numbers and the heuristic
performance are almost the same. Second, the iteration numbers and timings are close for
€, = 107, 107 and 1075 however, relative to ¢, = 1073 our heuristics perform much worse
for ¢, = 1073, and just marginally worse for ¢, = 1071 Third, further experiments (not
reported here for brevity) gave very close results for ¢, = 1075, 1078 1077 and 1078 To
sum up, €, = 107° seems to be a good borderline choice. On the other hand, since in the
CSP the gap between the primal value and the relaxed dnal value is usually less than 1, and
either rounding heuristics or branch-and-bound should “close” this gap, it may seem more
appropriate to ensure a given absolute accuracy €, < 1 in dual function evaluations (see
§5.6.3). Quite suprisingly, our results for a fairly large ¢, = 0.01 are very close to those for
€, = 1073, whereas for ¢, = 0.05 our heuristics perform slightly worse.

We thus present the first successful application of owr inexact bundle method. Our
approach is also useful for the conic bundle variant of I{iwiel and Lemaréchal (2007).

The paper is organized as follows. In §2 we recall the classic CSP model of Gilmore

and Gomory (1961) and introduce inexact ICP solutions for its Lagrangian relaxation. Our

rounding heuristics are given in §3 in a general form suitable for other CSP solvers. The

inexact bundle method is reviewed in §4. Our computational results are presented in §5.

2. Lagrangian relaxation of the CSP

Tlhe one-dimensional cutting-stock problem (CSP) is to minimize the number of stock pieces
of width W used to meet the demands d; for items to be cut at their widths w, € (0, 1¥],

for i = 1,...,m. The bin-packing problem (BPP) is a special case of the CSP with unit

demands.

2.1. The Gilmore-Gomory model

This classic model is formulated as follows. Denote the set of cutting patterns by
Pi={peZ wp<W} (1)
Let z, be the number of times pattern p is used. The original model has the form

min Z 2 s.b szp >d, z € Z’fl. (2a)
peP peP
For Lagrangian relaxation we augment this model with the redundant constraint
Do <N, (2b)

peP

where N is an upper bound on the optimal value of (2a) (e.g., N = ¥;d;); this ensures
boundeduess of the ground set Z := {z € Zf' : ¥y % < N}, Relaxing the demand constraint
Y5 = d with a price vector w yields the Lagrangian L(z;u) = 3, z, +u(d — %, pz,) and

the dual function
O(w) = 12116%1 {L(z; u) = ud + Zpep(l - up),:p} . (3)

The Lagrangian subproblem above may be solved by finding a solution p(u) of the KP
p{u) € Argmax{up : p € P} = Argmax{up : wp < W,p € Z7'} (4)
and taking z,qy = N and z, = 0 for p # p(u) if up(u) > 1, z = 0 otherwise, thus producing

O(u) =ud+ N[1—up(u)]_, (5)

where [-]_ := min{-, 0}. Let v, and v p denote the optimal values of (2) and its LP relaxation,

respectively. It is well known that vy p coincides with the dual optimal value
0, := max { f(u) - u € RT } . (6)

Experiments show that @ := w/W is a good initial estimate of solutions to the Lagrangian
dual (6) (Ben Amor and Valério de Carvalho, 2005, §4), (Briant et al., 2007, §2). In fact %
minimizes the relaxed dual function

Orp(u) = ud + N1 —up(u)]_, (7)

where p(u) solves the LP relaxation of (4). (Since 0rp(i) = 4d < v, < N, we see that
f

—d = =N(id/N){d/ud)} is a subgradient of the second term of (7) at a: 0 € 90, p(7).)

2.2. Inexact KP solutions

To strengthen our relaxation, we may consider only proper patterns p such that
p<b with b :=min{d, |W/w]}, i=1m. (8)

Indeed, adding the bound p < b to (1) and (4) does not change v,, but it may raise vpp
(Nirsche et al., 1999). Then the CG subproblem (4} becomes a bounded KP, which can be
turned into a 0~1 KP via the transformation of (Martello and Toth, 1990, §3.2). However,
this transformation may duplicate solution representations, thus creating difficulties for 0-1

KP solvers (Vanderbeck, 2002). To avoid duplicates, we may use the relazed bound
p<b with b :=2fee®aDl 1 = 1. (9)

whicl corresponds to replacing d, in (8) by the smallest number of the form 2/ — 1 with j > 1
such that 27 — 1 > d; (2d; — 1 in the worst case); the nunber of transformed variables is the
same. We solve the transformed KP by a double precision version of the branch-and-bound
procedure MT1R of Martello and Toth (1990). To reduce its work, we allow MTIR to find
an approximate solution for a given refative accuracy tolerance €,. Namely, the backtracking
step exits if ¢ > (1 —¢,)¢, where ¢ := up for the incumbent p and ¢ is MT1R’s upper bound

on the optimal value up(u). Hence, by (5), we have the accuracy estimates
O(u) = ud+ N(1—C)_ <0(u) <O0(u)=ud +N(1-¢)_, (10a)
Au) - 8(u) < N({—¢) < Nel (10Db)

4

For a normal exit with an optimal p = p(u)}, we may replace ¢ by ¢ and ¢, by 0 in (10).

As for our choice of MTIR, we add that Valério de Carvalho (2005) used MTIR as
well, Belov and Scheithauer (2006} employed a similar branch-and-bound solver, whereas
Vanderbeck (1999) and Briant et al. (2007) used the more specialized branch-and-bound
solver of Vanderbeck (2002). On the other hand, Degraeve and Peeters {2003) employed
a similar branch-and-bound solver but with prices multiplied by 10,000 and rounded to
integers, without discussing the effects of inexact IKP solutions. Further, more recent IKP
solvers (I ellerer et al., 2004) accept integer data only; hence their use with suitable price
roundings is left open for a future study. To sum up, MT1R is outdated, but we could not
find anything better, and we believe that the current results will serve as a useful yardstick

for future work with modern KP solvers.

3. Heuristic rounding of relaxed solutions

Typical rounding heuristics for the CSP proceed as follows; cf. (Belov and Scheithauer, 2002,
2006; Degraeve and Peeters, 2003; Holthaus, 2002; Scheithauer et al., 2001; Stadtler, 1990;
Wisclier and Gau, 1996). A solution Z of the LP relaxation is rounded down into an integer
solution Z := [2]. Next, a sequential hewristic applied to the residual problem (2) with d
replaced by d' := d — ¥, pZ, delivers a residual solution 2. Then the sum Z + 7 serves as
a possibly inexact solution of (2) (which is exact if its value is equal to a lower bound on
vy e.g., [vgp]). Since for simple rounding down (z = |£]), the residual problem may be
too large to be solved optimally by a heuristic, some components of Z may be increased
(Holthaus, 2002; Scheitliauer et al., 2001); however, if the residual problem becomes too
small to produce a solution to the original problem, some components of Z may be decreased
(Belov and Scheithauer, 2002).

In §3.1 we give a general rounding procedure, which auguients the ideas of Belov and
Scheithauer (2002) and Holthaus (2002) with the oversupply reduction of Stadtler (1990).
As for sequential heuristics, in §3.2 we describe minor (but useful) modificatious of the first-
fit-decreasing (FFD) of Chvatal (1983) and the heuristics of Belov and Scheithauer (2007)
and Holthaus (2002). Since it pays to call lighter heuristics first, useful combinations of
rounding and sequential heuristics are detailed in §3.3.

We add that the rounding procedures of (Vanderbeck, 1999, §3.7) and (Wascher and Gau,

1996, RSUC) would be difficult to implement in our context. As for sequential heuristics, we

also tried the best-fit-decreasing of Chvétal (1983) and the fill bin heuristics of Vanderbeck

{1999), but they did not perform significantly better than FFD in our trials.

3.1. A general rounding procedure
Numbering the patterns so that P = {p’}7_,, we may write (2a) as
min Yz st > py>d z€ZL (11)
J=1 =1

Given an incumbent solution z* of (11) (e.g., found by FFD) and a point 2 € R} (e.g., found
by LP relaxation), the following procedure attempts to improve z* by calling a heuristic on
residual problems derived from rounded variants of 2. Let e :=(1,...,1) € R"
Procedure 1 (Rounding procedure).
Step 1 (Rounding down). Set 7 := (2] and d’ := d — 3, p’Z,. Sort the fractional parts
7y =2, — Z, so that v, > ... 2y, and set 7 := {{j : v, > 0}].
Step 2 (Oversupply reduction). While d' 2 0, pick 7 to maximize

> w min{ p!, —d’ } (12)

id[<0

over js.t. Z; > 0, set Z =7 — 1 and & :=d' + p.
Step 3 (Partial rounding up). Set [:= . For ¢ = 1:7, if p»* < &, set %, = Z;, + 1,
d'=d —ph I :=TuU{5}.
Step 4 (Heuristic smprovement). Using a heuristic, find a feasible point # for the residual
problem (11} with d replaced by d'. If ez + eZ < ez, set 2* := Z 4 2.
Step 5 (Residual problem extension). If I 5 (), remove from I its last entry 7, set 2, := =, — 1,
d':=d' 4 p’ and return to Step 4.

If 2 solves the LP relaxation of an equality-constrained CSP, our procedure reduces to
the one in (Belov and Scheithauer, 2002, §2.5); otherwise Step 2 (due to (Stadtler, 1990, Fig.
3)) helps. Following (Belov and Scheithauer, 2002, §5.2), our implementation allows at most

ten returns from Step 5.
One of our heuristics uses the following modification of Step 3, based on the ideas in

(Holthaus, 2002, §3.2).

Step 3’ (Partial rounding up). Set I :=0, & = {j:p’ < d,r; > 0}. While & # §, pick
7 to maximize Y, pl over j € K, set 5, =%+ 1, d =d —p), I =TU{j}, K :={j e IV :
P d g # g}

3.2. Sequential heuristics

We now describe our heuristics for the residual problem (2a) with d replaced by d' > 0. We
assuiie that wy > ... > w,,.

Our implementation of FFD works as follows. Set z := 0, d” := d'. While d" # 0,

generate the next pattern p by setting

pio=mind & U {W =S wips | fws for i = 1:m, (13)
i Wili

set n = min{|d{/p:] : pi > 0}, %, :== %, + k, d" := d" — kp. The version of (Chvétal, 1983,
p- 208) employs & = 1, and hence is less efficient for large demands.

Owr modification of the sequential heuristic procedure (SHP) of (Holthaus, 2002, §3.2),
given a price vector ¢ € R™ (e.g., an approximate solution of (6)) and a price tolerance
o > 0 for rounding errors (we use o = 10’12), sets i; := max{l;, wol} for i = Lim and

replaces the FFD formula (13} by the bounded KP
p€Argmax{tp wp < W,p<d' ,peZl} (14)

Ouwr implementation of the sequential value correction (SVC) hewistic of (Belov and
Schieithaner, 2007, §2) records the best solution found by calling SHP at most thirty times
with & modified as follows. Initially @; := max{l, W&}, ¢ = Lim. If wd” £ W, then after

solving (14) and updating d”, for ¢ such that p; > 0, set
Oy o= [y + (W/wphwi®™]/ (v + 1) with 5 = Q (d) + d)) /pi, (15)

for ; picked randomly in [1/€, £, where €] is chosen at random in [1,1.5]. An early exit
occwrs if SHP finds Z such that ez + ez = [6(4)], in which case z* := Z + 2 is optimal.

3.3. Combinations of rounding and sequential heuristics

We now give more details on the five heuristics used i our experiments. The heuristics are
described as if being called by a general solver for the LP relaxation of (11), which could be
any variant of the CG procedure or the bundle method given in §4.

Our nitial heuristic HO calls FFD with d' = d (i.e., on the original problem) to initialize

the incumbent z* := 2, the upper bound N = ez and the lower bound §; := —oo.

Suppose at iteration k > 1 of the solver, the following quantities are available: z* is an

incumbent solution of (11), #* € R} and @* € RY are tentative primal and dual solutions

7

of the LP relaxation, and 8, is a lower bound on 8, = vpp (cf. (6)). If ez* = [§,.], the solver
may stop (since z* is optimal). Otherwise, for iterations & specified below, the remaining
heuristics consist in calling an extension of Procedure 1 with a copy of Step 4 inserted after
Step 1; the sequential heuristics employed at these steps are listed below.

Our periodic heuristic H1 is called by the solver every twentieth iteration, starting from
iteration k = m+1 (i.e., for k = m+1,m+21,...), with the current relaxed solution 3 := #*
and the lower bound 8, < 8,. H1 employs FFD in Procedure 1, exiting if ez* = [4,,].

Our final heuristics H2, H3 and H4 are called successively wpon termination of the solver,
using the final 2 := 2% 4 := 4F and g, H2 employs both FFD and SHP, H3 just SHP and
the modified Step 3’, whereas H4 uses SVC. Of course, H3 and H4 (or just H4) are not called
it H2 (or H3) exits with ez* = [#,], whereas SVC exits when ez + ez = [§,]. The impact of

the various heuristics will be discussed in §5.7.

4. The inexact proximal bundle method

We now sketch the main features of the inexact bundle method of Kiwiel (2006a).

Our method generates trial points u* € R7Y, k= 1,2,.. ., at which the dual function 8
is evaluated (possibly inexactly) as described in §2.2. Specifically, for each k, set p* to the
(possibly inaccurate) KP solution p satisfying the bounds of (10) for u = u*, and let ¢, := (|

G = (. Recalling (3), define the associated Lagrangian solution 2* by setting

e {N if ¢ > 1, (16)

o O
= Ofora# 5 A 0 otherwise.
Thus we have the lower bound 8(u*) < (u*) and L(2*;«*) = 8(x) in (10); in particular,
L{z*; by — 0(u®) < N(G — ¢.) < Ne(.. (17)

Further, by (3), the following linearization of § at u* majorizes f(u) for all u:

N(1 —up®) if 28 £ 0, (18)

0 otherwise.

Op(u) := L(z";u) = ud + {

[teration & uses the polyhedral cutting-plane model of 6

0() == Illijlgaj(') with ke Jvc{1,...,k} (19)
je
for finding
= argmax { O (u) — ﬁ!u — P e R } , (20)

8

where . > 0 is a stepsize that controls the size of [u**! — @¥| and the prox center % :=u®

has the value 0% := g, (u*') for some &' < k (usnally 05 = max¥_, #;(w?)). Due to evaluation

errors, we may have g% > ék(ﬂ“'), in which case the predicted increase
vy = Oy (uFFY) — gF (21)

may be nonpositive; then t; is increased and w**! is recomputed to increase g, (uF*+1) until

v > Jub Tt — 05|22t An ascent step to @l = w1 with &' ;= k + 1 ocowrs if
9k+1(uk“) - (91{: > KUk (22)

for a fixed / € (0,1) (we use » = 0.1). Otherwise, a null step @*!' ;= @* improves the next
model ék+1 with the new linearization 6y, as stipulated in (19).

If we omitted the quadratic term in {20), the resulting cutting-plane method could
generate u**! far from the previous points, and it would require storing all linearizations
(J% = {1,...,k} in (19)). In contrast, the quadratic term usually keeps u**! close enough
to the best point found so far, and it allows limiting the number of stored linearizations.

We solve subproblem (20) with the QP routine of Kiwiel (1994), which finds its multipliers
{v/},er C Ry, also known as convex weights, such that ;e vf = 1 and the set JE =
{j € J*: v} # 0} has at most m + 1 elements. We set J*** := J* U {k + 1} and then, if
necessary, drop from J**! an index j € J* \ J* with the largest 6,(a*) to keep [J**Y < M
for a fixed M > m + 2.

Combining the accumulated Lagrangian solutions {2/ }ies with their weights {1/]"}3‘E Ik,

we may estimate solutions to the LP relaxation of (2) via the aggregate primal solution

o= 3 r/;’zj. (23)

jEJK

In other words (cf. (16)), 2;"]- = N} for nontrivial patterns p’ indexed by Jp = {j € Jk
2 5 0} (which need not be stored, since they can be recovered from V6; = d — Np/; see
(18)). Our hewristics also use the lower bound 8, := max;<, 8(u’) on 0. = vy p (cf. (6)).

We now point out some useful consequences of the convergence analysis in (I<iwiel, 2006a,
§5). The LP relaxation of (2) may be written as

vppi=min Yo(z) = 3 2 st Y(z):=d- Y pz, <0, z € conv Z. (24)

peP peP

Let ¢ := sup, [0 (u*) — 8(u*)] be the maximum evaluation error; by (17), we have € < € :=

Ne, sup,, (. Consider the set of e-optimal solutions of the LP relaxation (24):

Zei={z€convZ :iho(z) <wrp+e,d(z) <O} (25)
The limits 82° := limy, 0%, 0, = lin, 8, satisly 02° € {vpp, vip + €], Oy € [0 — €, vrp], and

ST

there exists & C {1,2,...} such that limuer o(2%) = 2 and limper maxiZ, ¥, (2%) < 0;
in particular, the hounded sequence {5"'}kel< converges to the e-optimal set Z.. 1If €, is
small enough, the accuracy observed in practice corresponds to such estimates with € and €
determined by the maximum errors 8y, (u*) — 6(u*) and 8(u*) — 8(u*) that occur for large k;
since both errors are at most N({j, — (x), where the KP gap Ce — (i, is usually tiny for large

ke, small values of € and € can be attained if the algorithm runs long enough.
k

We stop if min{uy, |74 + cn} < eopi(1 + 105]), where vy is given by (21), 7% = (it
wFT) /b, cy = vy — te (% and e > 0 is ant optimality tolerance {cf. (Kiwiel, 2006a, §4.2)).

For egp = €, = 1078, ¢, usnally agrees with 4, in at least 8 digits, enough for our purposes.

5. Computational results

5.1. Data sets

In owr computational experiments, for the CSP we use the 28 industrial instances of Vance
(1998), the 10 industrial instances of Vanderbeck (1999), and the 20 industrial instances
of Degraeve and Schrage (1999). In addition, we use the following randomly generated
instances: the 4000 instances of Wascher and Gau (1996), the 3360 instances of Degraeve
and Peeters (2003) and the 120 instances of Vanderbeck (1999). For the BPP, we use the
540 randomly generated instances of Degraeve and Peeters (2003), and the 160 instances
from the BINPACK collection of the OR-Library (Beasley, 1990).

The instances of Wascher and Gau (1996) ave constructed by the CUTGENI1 generator
of Gan and Wischer (1995), using the following parameter values: the number of orders
m = 10,20, 30, 40, 50, the width W = 10,000, the interval fraction ¢ = 0.25,0.5,0.75, 1, and
the average demand d = 10, 50. The widths w; are uniformly distributed integers between 1
and . For m uniform random numbers Ry, ..., R,, € (0, 1), the demands d, := Lﬁgﬁj

for i < m, and d,, = md — ¥,,n d; (in fact slightly more complicated formulas are used

by Gau and Wascher (1995)). Duplicate widths are aggregated by suniming their demands.

10

Combining the different values for m, ¢ and d results in 40 classes; in each class, 100 instances
are generated.

The small-iterm-size instances of Degraeve and Peeters (2003) are generated similarly
for m = 10,20, 30,40, 50, 75,100, ¢ = 0.25,0.5,0.75,1 and d = 10,50, 100, except that
R o R, € (0.1,0.9) for the demand distribution. In the medium-item-size instances
of Degraeve and Peeters (2003), only d = 50 is used and the widths are uniformly dis-
tributed on [wyyin, ¢W], where w,,;, = 500, 1000, 1500. Both cases have 84 data classes, and
20 instances are generated in each class.

The instances of Vanderbeck (1999) comprise 6 classes with m = 50, and 20 instances per
class. The first three classes are generated like those of Wascher and Gau (1996) above with
¢ =10.25,0.5,0.75 and d = 50, the next two classes have widths in {500, 2500} and [500, 5000
with d = 50, and the sixth class has widths in [500, 5000] and d = 100.

In the BPP instances of Degraeve and Peeters (2003), m = 500 or 1000 weights are
uniformly distributed in the intervals [1,100], {20,100}, [50, 100] as in BPPGEN (Schwerin
and Wiéscher, 1997), and the capacity W = 100, 120, 150; identical items are aggregated for
the corresponding CSPs. In each of the 18 resulting classes, 20 instances are generated. The
modified BPP instances of Degraeve and Peeters (2003) use m = 500, the weight intervals
(1, 10000j, [2000, 10000], [5000, 10000], and the capacity ¥/ = 10000, 12000, 15000, again with
20 iustances per class.

The BINPACK instances from the OR-Library (Beasley, 1990) comprise two categories.
The wuniform category has the capacity W = 150, m weights uniformly distributed in the
interval [20,100], and 20 instances generated for each value of m = 120, 250, 500, 1000. (The
classes with #» = 500, 1000 also appear in the BPP category of Degraeve and Peeters (2003),
but with different instances.) In the triplet category, each bin of capacity W = 1000 is filled
with exactly three items (the first item w’ is picked in {380, 490], the second item w” in
[250, (W — w')/2), and the third item equals W — w’ — w”). There are 20 instances for each

value of m = 60,120, 249, 501.

5.2. Implemented variants

Our codes were programmed in Fortrau 77 and run on a notebook PC (Pentiwun M 755 2
GHz, 1.5 GB RAM) under MS Windows XP.
For solving the dual problem (6), we used a general-purpose bundle code that treats

subgradients as dense vectors in double precision. A faster code could exploit the fact that

11

Table 1: Small-item-size instances of Degraeve and Peeters (2003), int = all, d = all

m Mav mh, av imx tav fmx e H1 H2 H3 H4 n,

10 9.99 26.77 15.14 31 0.00 001 113 49 70
20 19.95 53.13 3251 69 0.01 0.04 120 64 64
30 29.91 79.76 5190 91 0.02 0.22 130 85 57
40 39.85 1058.55 70.41 134 0.04 036 134 98 53
50 49.75 132.16 90.20 181 0.08 0.66 134 102 &5
75 7436 197.32 141.82 256 0.24 200 149 122 43
100 98.92 263.36 183.88 311 040 281 165 136 34

O OO O T O
OO O oo
OO DO

each subgradient of 8 has the form V8, = d or V8, = d — Np* (see (18)), with a common
integer part d and an integer sparse knapsack solution p*. Ignoring sparsity, our code requires
m x Al memory locations for storing up to A7 > m+3 subgradients, and additional workspace
of order M? for solving the QP subproblem (20) with the routine of Kiwiel (1994). We used
M = m + 3 to test how “minimal” bundle performs.

The bounded KPs arising in column generation and SHP were solved by the modified
version of MT1R (cf. §2.2) with the accuracy tolerance ¢, = 10~ (other choices are discussed
in §5.6.2); MT1R’s tolerance ¢ was set to 10712, For column generation, we used the relaxed
bounds of (9), because the tighter bounds of (8) produced longer computing times. In
contrast, SHP employed in (14) the natural bounds given by (8) with d replaced by a@”.

Ouwr implementation of the rounding procedure of §3.1 is slower than necessary because

the patterns are recovered as p’ = (d — V;)/N, instead of being stored separately.

5.3. Results for the cutting-stock problem

To case comparisons, we follow closely the presentation of Degraeve and Peeters (2003).
Every data class is identified by three parameters: the number of items m, the interval in
which the widths are distributed denoted by int, and the average demand d. An indicator
“all” for any of these parameters means that the reported results are aggregated over all
relevant values for that particular parameter. If a parameter is constant for all iustances
represented in a table, its value is indicated in the table heading.

Our results for the small-item-size instances of Degraeve and Peeters (2003} with it = all,
d = all are reported in Table 1; full details are given in Tables 9-11 in the Online Supplement
to this paper on the journal’s website. The columns m,, and mJ, give the average numbers
of items and variables in the associated 0-1 knapsack subproblems. The colunus 7,, and i,y

12

Table 2: Mediun-item-size instances of Degraeve and Peeters (2003), int = all, d = 50

m My mh, Tay imx tav tmx 7. HI H2 H3 H4 ny
10 9.98 23.09 17.52 29 0.00 0.02 54 48 112 0 1 0
20 19.95 45.68 35.05 58 0.01 010 68 50 114 O 1 0
30 29.84 68.47 53.71 93 0.02 0.16 73 73 105 0 0 0
40 39.78 90.65 69.94 120 0.03 0.58 70 63 110 0 0 0]
50 49.64 113.69 88.76 156 0.06 090 74 65 118 1 1 1
75 74.08 169.10 137.04 232 037 8.60 82 73 105 0 0 1
100 98.45 226.07 184.45 295 1.43 62,18 73 72 117 O 4 0

report the average and maximum numbers of iterations of the bundle code. The columns ¢,
and f,,, vive the average and maximuwm running times in wall-clock seconds. The column
n. lists the numbers of “early” terminations due to discovering that ez* = [6,] for the
incumbent z2* delivered by HO or H1 before bundle terminated on its own. Recall that H1
is called after HO, H2 after H1, etc., unless ez* = [, occurs earlier. The columus labelled
H1 through H4 give the numbers of instances in which the corresponding heuristic found
the best primal value ez* first (for the remaining instances ez* was found by HO); a zero
entry means that heuristic was not called or did not contribute usefully. The final column
n, reports the numbers of instances with a nongero final gap ¢ == ez* — [6,]; we stress that
the final gaps never exceeded one unit in all of our instances. The averages, maxima and
suins in Table 1 are taken over the 240 instances used for each value of m.

From the entries for n., H1 through H4 and n, in Table 1, we see that early termination
occured on between 47% and 69% of problems, HO and H1 solved between 70% and 85%
of problems, H2 solved almost all the remaining problems, H3 and H4 helped in solving 2
problews, and just one out of the 1680 problems was not solved. Note that the best method
LR of Degraeve and Peeters (2003) also could not solve one instance within 15 minutes (two
Instances within 6 minutes), and its FFD-based rounding heuristic solved 91.6% of problems,
whereas our “lighter” heuristics HO through H2 solved 99.8% of problems.

Our results for the medium-item-size instances of Degraeve and Peeters (2003) are pre-
sented in Table 2, where each row gives statistics over the 240 instances used for each value
of i (see Tables 12 and 13 for more details). Early termination occured on between 22% and
35% of problems, HO and H1 solved between 49% and 56% of problems, H2 solved almost all
the remaining problems, H3 solved one problem, H4 solved 7 problems, and just two out of

the 1680 problems were not solved. The rounding heuristic of Degraeve and Peeters (2003)

13

Table 3: CSP instances of Wischer and Gau (1996), int = all, d=all

Mmoo May my, Tav fmx tav tonx Tle H1l H2 H3 H4 n4

10 9.99 25.37 14.27 35 0.00 0.02 449 134 192 0 0 0

20 19.96 50.46 30.73 61 0.01 8.35 485 240 183 O 2 0

30 29.90 75.72 4818 105 0.01 0.13 503 281 161 O 1 0

40 39.84 100.10 65.06 123 0.04 3.31 502 313 160 O 2 2

50 49.73 12522 84.75 171 0.07 0.46 526 341 138 O 4 1

all 29.88 7537 4860 171 0.03 835 2465 1309 834 0O 9 3

Table 4: CSP instances of Vanderbeck (1999), m = 50

d int My mi, Tay tmx tav Imx M. HI H2 H3 Hd4 n,
50 {1,2500] 49.40 185.30 47.40 71 0.03 005 20 18 0 0 0 0
50 [1,5000] 49.65 143.05 114.05 151 0.20 034 13 13 7 0 0 0
50 {1,7500] 49.75 110.00 111.85 144 0.06 0.11 6 5 8 0 0 0
50 [500,2500] 49.40 166.16 57.05 77 0.03 0.05 14 14 6 0 0 0
50 [500,5000] 49.70 128.20 103.65 114 0.14 027 11 11 9 0 0 0
100 [500,5000] 49.70 129.25 10440 131 0.14 0.32 8 g8 12 0 0 0

solved 69.9% of problems, whereas HO through H2 solved 99.4% of problems.

Comparing Tables 1 and 2, we see that the average and maximum solution times are quite
siniilar in the small- and medium-size-item cases for problem sizes m up to 50. However, for
m =75 and 100, in the medinm-size-item case the average solution times grow siguificantly,
and the maximum solution times jump up, most spectacularly on the instances with width
interval [1500, 2500]; see Table 13. This is due to the poor performance of our knapsack
solver on these instances. Similar slowdowns on this interval were reported in (Degraeve and
Peeters, 2003, Tab. 4a) already for m = 20, i.e., even for smaller problems.

To save space, Table 3 presents only aggregate results on the instances of Wascher and
Gau (1996), with each row giving statistics over the 800 instances used for each value of
m. Here our main point is that only three out of 4000 (0.075%) problems were not solved.
Owr “lighter” heuristics HO through H2 solved 99.7% of problems, whereas the two best
(and more complicated) heuristics RSUC and CSTAOPT of Wischer and Gau (1996) solved
98.0% and 92.7% of problems, respectively (99.6% if they had been applied together). The
fairly large maximum solution time b Tab. 3 stemuned from a single knapsack subproblem.

Table 4 gives our results for the 6 data classes of Vanderbeck (1999) with m = 50 and 20

instances per row. Since we used the original instances, the results are not identical to those

Table 5: BPP instances of Degraeve and Peeters (2003)

m W int May m"w Tay fmx tav tmx 1. HlI H2 H3 H4 n,
500 100 (i, 100} 99.35 167.20 184.10 221 0.06 0.09 12 1 1 0 0 0
[20,100] 80.75 116.00 111.50 123 0.02 0.03 10 2 0 0 0 0

[50,100] 51.00 5200 56.60 63 0.00 001 15 0 0 0 0 0

120 [1,100] 99.65 181.85 37.05 195 0.29 3.79 17 1 ¢ 0 0 0
[20,100] 80.85 131.20 132.80 146 003 004 14 6 0 0 0 0]

[50,100] 51.00 62.00 56.55 61 0.00 001 13 0 0 0 0 0

150 [1,100] 99.45 201.55 1.00 1 000 000 20 0 g 0 0 0
{20,100] 80.85 151.65 86.55 102 0.01 0.02 14 14 5 0 1 0

{50,100) 51.00 77.00 6480 72 0.01 0.01 12 0 0 0 0 0

1000 100 [1,100} 100.00 183.65 199.20 230 0.07 0.11 12 1 1 0 0] 0
[20,100] 81.00 117.95 114.256 133 0.02 0.02 14 4 1 0 0 0

[50,100] 51.00 52.00 57.35 64 0.00 0.01 9 4] 0 0 0 0

120 [1,100f 100.00 202.20 2500 181 0.01 0.04 20 3 0 0 0 0
[20,100] 81.00 132.95 143.40 167 0.03 004 10 3 2 0 o 0

[50,100] 51.00 62.00 56.90 62 0.00 0.01 11 0 0 0 0 0]

150 [1,100] 100.00 226.15 7.00 121 0.00 0.03 20 1 0 0 0 0
[20,100] 81.00 15490 86.85 101 001 0.02 11 11 9 0 0 0

[50,100] 51.00 77.00 6725 77 001 0.01 10 0 0 0 0 0

in Tabs. 9 and 13, but the performance of HO through H2 is similar; in fact HO through H2
suffice for solving all the CSP instances used by Vanderbeck (1999).
Quite suprisingly, all the industrial instances we could find in the literature turned out

to be easy for our method: they were solved in a fraction of a second (see Tables 14-16).

5.4. Results for the bin-packing problem

Following Degraeve and Peeters (2003), in the next three tables we present our results for
the BPP. Table 5 gives our results for the BPP instances of Degraeve and Peeters (2003) (20
instances per row). All the 360 instances were solved (H4 helped once).

Table 6 reports results for the BINPACK instances from the OR-Library (Beasley, 1990)
(20 instances per row). The first four uniform classes were solved by calling H4 just once.
However, only 19 out of the 80 triplet instances were solved (with H4 helping on one instance).
The remaining instances had unit gaps; the “gap” column gives averages of relative gaps
(ez® — [61])/T0,]. We add that for the CSP instances of §5.3, the running times of H4
were not excessive, and H4 was called quite infrequently anyway. In contrast, ou the triplet
classes t249 and t501, the use of H4 increased the running times substantially, as illustrated
in Table 7 (the influence of H3 could be ignored). Note that the triplet classes are quite

difficult for traditional LP relaxation (Degraeve and Peeters, 2003, Tab. 12).

15

Table 6: BINPACK uniform and triplet instances

name Moy mh, fay imx tav fmx me HI H2 H3 H4 pgap n,
ul2f 63.20 88.75 48.60 83 0.00 0.01 20 14 O 0 0 00% O
u250 77.25 129.00 86.40 122 0.01 0.03 19 19 1 0 0 0.0% 0
ub00 80.80 151.05 85.90 113 0.01 0.04 16 16 3 0 1 0.0% 0
ulfpo 81.00 155.00 86.30 97 0.01 0.02 12 12 8 0 0 00% O
t60 4995 58.80 40.20 56 0.01 0.04 O 1 19 0 0 15% 6
t120 86.15 11075 7270 91 0.06 009 O 1 18 0 1 20% 16
t249 140.10 199.15 126.70 146 0.26 0.37 0 1 19 0 0 1.2% 20
t501 194.25 31540 167.40 189 0.67 1.14 0 0 20 0 0 0.6% 19

Table 7: BINPACK triplet instances without H3 and H4

name May m, fay imx fav tmx me HI H2 gap mny

t60 49.95 5880 40.20 56 0.00 0.01 0 1 19 1.5% 6

t120 86.15 110.75 72,70 91 0.01 0.02 0 1 19 21% 17
t249 140.10 199.15 126.70 146 0.04 0.06 0 1 19 1.2% 20
t501 194.25 31540 167.40 189 0.08 0.10 0 0 20 06% 19

Table 8: Modified BPP instances of Degraeve and Peeters (2003)

T
o
()
=
[V
T

W int May ml, Tav Tmx tav trnx e
10000 [1,10000] 488.65 494.05 148440 1737 34.95 48.35
[2000,10000] 485.15 490.20 800.70 916 7.05 9.87 15
[6000,10000] 474.75 474.80 457.70 480 1.15 1.35 16

12000 {1,10000] 486.95 494.55 817.90 1732 25.89 58.02 18
[2000,10000] 484.75 492.20 1157.90 1328 15.00 21.33 18
[5000,10000] 47595 480.35 520.75 550 2.20 2.64 15

15000 [1, 10000} 487.90 497.15 293.60 1171 8.00 67.00 18
[2000,10000] 482.70 494.25 805.05 1144 16.19 29.37 16
[5000,10000] 475.25 486.95 691.50 786 514 631 13

—
=

—_
CODON IO = w

crmoooRr oo O
coocococooo o
DOF OO0 DO
comococo oo o

Table 8 presents our results for the modified BPP classes of Degraeve and Peeters (2003)
(20 instances per row as described in §5.1). Just one out of the 180 problems was not solved
(H4 helped on one problem). The transformation into a CSP reduced the number of items
by at most 5% on average. For almost 500 variables, the large iteration numbers and running

times are not too suprising.

16

Figure 1: Performance profile for inexact buudle with tight vs. relaxed bounds

y r —~ L ———_ n
09 F 9
08 F B
07 b
06 | bl
0.5 | 4
04 | -
03 - inexact bundie with relaxed hounds

inexact bundle with tighter bounds
0.2 L H L 1 L
1 2 4 8 16 32 64

5.5. Impact of tighter knapsack bounds

The results of §5.3 were obtained for the relaxed bounds of (9). Using the tighter bounds
of (8) allowed us to solve just two more instances at the expense of longer running times
(see Tabs. 17-19). To save space, from now on we employ the standard set of the 7360
instances from Tabs. 1-3 to evaluate our heuristics, and its reduced subset with m > 30
(4800 instances) for performance profiles (Dolan and Moré, 2002), with zero running times
replaced by 0.001 due to the poor resolution of our timer. The performance profile of tighter
vs. relaxed bounds is given in Fig. 1; it plots the portion of instances p.(7) on which a

particular variant was not slower than the fastest variant by more than a given ratio 7.

5.6. Impact of evaluation errors

5.6.1. Comparison with exact bundle

Wlhen the dual objective evaluations happen to be exact, our code runs essentially like the
standard buudle of Feltenmark and Kiwiel (2000). Figure 2 gives the performance profile
of inexact bundle (¢, = 107%) with relaxed bounds vs. exact bundle (¢, = 0) with relaxed
or tighter bounds. Referring to Tabs. 22-27 for details, we only note that the running
tines increased quite dramatically (usually at least 30 times) in the exact case, although the

iteration numbers and the performaince of our heuristics did not change significantly.

Figure 2: Performance profile for inexact bundle with relaxed bounds vs. exact bundle with
tight /relaxed bounds

08 9
inexact eps_r=1 0'5, relaxed bounds
exact eps_r=0, relaxed bounds
exact eps_r=0, lighte{ bounds erseeeee
075 I L (\
1 4 16 64 256 1024 4096

Figure 3: Performance profile for relative error tolerances

T T B T
1| . 1
095 | 4
09 ¢ q
0.85 |3 E
08
inexact bundle eps#r:]Oj
inexact bundle eps_r=107y -~ -
075 |n‘exacl bunjdle eps_lio """ i
1 4 16 64 256 1024

5.6.2. Other choices of the relative error tolerance

In the initial version of this paper we used the accuracy tolerance e, = 10~%; the results were
very close to those in Tabs. 1-18 (where ¢, = 107%). Figure 3 gives the performance profile
for ¢, = 1075, 107" and 107? (see also Tabs. 28-33). Here ¢, = 10~* did not improve on our
standard choice of €, = 1075 (giving one more gap in Tab. 28), whereas ¢, = 10> was too
large, causing owr heuristics to fail more frequently (168 more gaps in Tabs. 31--33).
Further insight may be gained as follows. By (10), the absolute error in evaluating #
is bounded by Ne, once ¢ gets close to 1. The upper bound N := ez* delivered by FFD

(cf. §3.3) is usually close to the optimal primal value v,. Typical instances have the integer

18

Figure 4: Performance profile for absolute error tolerances

0.8 f

relative error tolerance eps_r:ﬂ)’5 —]
absolute error tolerance eps_a=0.01 .
075 absolute error tolerance eps a=0.05 ,o«---
1 2 4 8 16 32 64

round-up property [6.] = v., but our heuristics fail if we can’t find a lower bound 8;, > v, — 1.
Thus we may expect failures when the absolute errors get close to Ne, > 1. Now, in Tables
31-33 the average values of v, and N grow linearly with m, reaching order 5000, 2875 and
1250 for the final classes, where Ne, > 1 for ¢, = 1073; thus the small percentage of failures

suggests that the actual errors tended to be smaller than their upper bounds.

5.6.3. Absolute error tolerances

In view of the discussion in §5.6.2, we also considered choosing €. so that the evaluation
errors did not exceed a given absolute error tolerance €, < 1 (with SHP usiug ¢, = 1075 as
in §5.3). Specifically, for evaluating 6 we used ¢, := ¢,/N. Figure 4 gives the performance
profile for €, = 0.01 and 0.05 vs. the standard €, = 1075 (see also Tabs. 34-39). Qur results
for €, = 0.01 were very close to those for e, = 107%, whereas ¢, = 0.05 was too large, causing

our heuristics to fail more frequently (16 more gaps in Tabs. 37-39).

5.6.4. More inexact null steps

We now counsider a modification in which our KP solver exits once at least bkmin backtrack-

ings have occured, for a given parameter bkmin, and the incumbent value ¢ satisfies
C> 1+ (ubtld - 0 — kuy) /N, (26)

0 that (1 = ¢ yields a null step; cf. (22) (normally v**'d > 6% + xvy. and (26) holds

iff (22) fails). Such “more inexact” null steps may save KP work, but shallower cuts may

19

Figure 5: Performance profile for bkmin

inexact bundle, bkmin=infty —— |
inexact bundle, bkmin=1000 ---- -+
inexact bun‘dle, bkr‘ninzo .

8 16 32 64 128

yield slower convergence; see (Iiwiel, 2006b, §4.2) for a general discussion of relaxed null
steps. Figure 5 gives the performance profile for bkmin = 0, 1000 and oo with ¢, = 1073
(see also Tabs. 40-45). Relative to the standard bkmin = oo, for bkmin = 0 the average
iteration numbers grew by 59-114% on the largest instances, and four more gaps occured. In
contrast, for bkmin = 1000 the average iteration numbers grew by only 5-13% on the largest
instances, the solution times decreased noticeably, and three gaps disappeared. On the other
hand, the maximum iteration numbers increased substantially on the larger instances, giving

some cause for concern.

5.6.5. A discussion of error tolerances

Although in general one may expect tradeofts between the accuracy of subproblem solutions
and the speed of convergence, for the CSP such tradeoffs may have little practical impact,
since Tables 9-30 exhibit fairly small variations in iteration numbers and computing times for
“reasonable” accuracy tolerances. Therefore, we would not expect much gain from dynamic
tolerance adjustment: loose at the beginning and progressively decreasing.

We add that dynamic handling of the accuracy may be important in general, especially if
the oracle’s work depends “continuously” on the accuracy required. However, this need not
be the case for owr MT1R, which seents to have the following properties: (1) its work explodes
on some subproblems when the accuracy required is “too high”; and {2) its work does not
vary much otherwise. Thus the main point is to avoid accuracies that are “too high”, or “too

low” for the dual solver to succeed, whereas for all “intermediate” accuracies, the solution

20

time should not vary significantly (unless smaller accuracies affect the iteration numbers
“more than proportionally”). We conjecture that similar effects are likely to hold for other

integer-progranmuning applications with branch-and-bound oracles that deliver relatively good

incumbents quickly.

5.7. Impact of various heuristics

For the 7,538 CSP instances reported in Tabs. 1-4 and 14-16, our heuristics H3 aund H4d
helped inosolving 3 and 21 problems, respectively, and 6 problems were not solved. When
H3 was switched off, Hd solved the three instances previously solved by H3, with the same
timings. Thus H3 could be omitted, but it might become more useful on other instances.
On the other hand, it is worth observing that when both H3 and H4 were switched off, our
“lighter” heuristics H1 and H2 performed quite well, solving 99.64% of problems.

In an attempt to assess the importance of the combination of oversupply reduction (Step
2 of Procedure 1), rounding up (Step 3), and residual problem extension (Step 5), we tested
a version of the residual rounding heuristic named H5 that simiply rounds the final relaxed
primal solution down, and performs FFD on the residual problem to augment the rounded
down solution. With Steps 2, 3, and b of the rounding procedure omitted, this heuristic H5
was able to optimally solve only 87.01% of the standard instances, as opposed to 99.64%
for the default implementation of HO, H1 and H2 (see Tabs. 46-48). Thus these steps (in
tandem) are very important to its overall success.

Ouwr next improvement on H5, named H6, consists in calling Procedure 1 with ouly Step
2 owmitted, aud Step 4 using FFD. HG performs much better than H5, solving 96.00% of
problems (see Tabs. 49-51). Thus the rounding procedure of Belov and Scheithauer {2002)
may yield significant improvements also for FFD.

Finally, we note that H2 and H4 improve on H6 by using Step 2 of Procedure 1 and
either SHP or SVC in addition to FFD at Step 4. Specifically, H1 and H2 solved 99.64% of
problems, and together with H4 they solved 99.92% of problems. To save space, the results

for H2 alone are omitted.

5.8. Comparisons with other procedures from the literature

In view of (5)—(6), our algorithm may be regarded as an exact penalty method for the

constrained problem of maximizing ud s.t. up{u) < 1, u > 0. This problem can also be

21

Figure 6: Performance profile for conic vs. penalty bundle

07} .]
i
0.65 [~ penalty bundle
conic bundle
06

1 2 4 8 16 32 84 128 256

sulved by the conic variant of Kiwiel and Lemaréchal (2007). Figure G gives the performance
profile for the conic vs. penalty variant. The conic variant was slightly slower, and gave one
nore gap on the standard set; cf. Tabs. 52-54.

The comparison in (Kiwiel and Lemaréchal, 2007, §7.4) of the conic variant with the
procedures of Degraeve and Peeters (2003) in terms of the numbers of oracle calls carries
over to the penalty variant as well, since both variants behaved similarly. Although proper
timing comparisons are not available, Table 55 in the supplement suggests that our code may
compete with the procedures of Degraeve and Peeters (2003), at least on some instances.

Finally, we add that Table 60 in the supplement shows that our standard variant (with
€, = 1075 and relaxed hounds) is much faster than the algorithins tested in (Briant et al.,
2007, §2.2), with speedups of at least 8 for the smallest instances, and of order 11-90 for the

larger instances.

6. Conclusions

For cutting-stock problems, we have shown that an inexact bundle approach to solving the
LP relaxation, coupled with rounding heuristics, is a method that is able to effectively solve
many cutting-stock instances from the literature. By solving the KP? subproblems only to a
relative accuracy of €, = 1075 we get (almost uniformly) speedup of the order of at least 30 in
average on larger instances. Although our heuristics combine several well-known ideas from

the literature, our two “lighter” heuristics H1 and H2 performed suprisingly well, solving

99.64% of standard test problems, and together with our “heavier” heuristic H4 they solved

99.92% of problems.

Acknowledgments

I would like to thank the Associate Editor and the two anonymous referees for helpful
comments. Further, I am grateful to G. Belov, Z. Degraeve, M. Peeters, D. Pisinger, G.
Scheithaver and L. Schrage for extensive discussions, and F. Vanderbeck and G. Wascher
for sharing their instances. Special thanks go to C. Lemaréchal for inspiring this work. This

research was supported by the INRIA New Investigation Graut “Convex Optimization and

Dantzig-Wolfe Decomposition”.

References

Beasley, J. E. 1990. OR-Library: Distributing test problems by electronic mail. J. Oper.
Res. Soc. 41 1069-1072.

Belov, G., G. Scheithauer. 2002. A cutting plane algorithin for the one-dimensional cutting

stock problem with multiple stock lengths. European J. Oper. Res. 141 274-294.

Belov, G., G. Scheithauer. 2006. A branch-and-cut-and-price algorithm for one- and two-

dimensional two-stage cutting problems. European J. Oper. Res. 171 85-106.

Belov, G., G. Scheithauer. 2007. Setup and open stacks minimization in one-dimensional

stock cutting. INFORMS J. Comput. 19 27-35.

Ben Amor, H., J. Desrosiers, A. Frangioni. 2004. Stabilization in column generation. Tech.

Rep. G-2004-62, GERAD, Montreal.

Ben Amor, H., J. M. Valério de Carvallio. 2005. Cutting stock problems. G. Desaulniers,
J. Desrosiers, M. M. Salomon, eds., Column Generation. Springer US, New York, 131-161.

Briant, O., C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, . Vanderbeck. 2007.

Comparison of bundle and classical column generation. Math. Programiming 113 209-344.

Clwiétal, V. 1983. Linear Programming. Freeman, New York, N.Y.

23

Degraeve, Z., M. Peeters. 2003. Optimal integer solutions to industrial cutting stock prob-

lems: Part 2: Benchmark results. INFORMS J. Comput. 15 58-81.

Degraeve, Z., L. Schrage. 1999. Optimal integer solutions to industrial cutting stock prob-

lems. INFORMS J. Comput. 11 406-419.

Dolan, E. D., J. J. Moré. 2002. Benchmarking optimization software with performance
profiles. Math. Programming 91 201-213.
Feltenmark, S., K. C. Kiwiel. 2000. Dual applications of proximal bundle methods, inchiding

Lagrangian relaxation of nonconvex problems. SIAM J. Optim. 10 697-721.

Gau, T., G. Wischer. 1995. CUTGENI1: A problem generator for the standard one-
dimensional cutting stock problem. European J. Oper. Res. 84 572-579.

Gilmore, P. C., R. E. Gomory. 1961. A linear programmming approach to the cutting-stock
problem. Oper. Res. 9 849-859.

Holthaus, O. 2002. Decomposition approaches for solving the integer one-dimensional cutting

stock problem with different types of standard lengths. Furopean J. Oper. Res. 141 295~
312.

Kellerer, Hans, Ulrich Pferschy, David Pisinger. 2004. Knapsack Problems. Springer, Berlin.

Kiwiel, . C. 1994. A Cholesky dual miethod for proximal piecewise linear programming.

Numer. Math. 68 325-340.

Kiwiel, K. C. 2006a. A proximal bundle method with approximate subgradient linearizations.

SIAM J. Optim. 16 1007-1023.

Kiwiel, K. C. 2006b. A proximal-projection bundle method for Lagrangian relaxation, in-

cluding semidefinite programming. STAM J. Optim. 17 1015-1034.

Kiwiel, K. C., C. Lemaréchal. 2007. An inexact bundle variant suited to colunn generation.

Math. Programming 7 DOI 10.1007/s10107-007-0187-4.

Martello, S., P. Toth. 1990. Knapsack Problems: Algorithms and Computer Implementations.
John Wiley & Sons, New York.

Nitsche, C., G. Scheithauer, J. Terno. 1999. Tighter relaxations for the cutting stock problem.

Furopean J. Oper. Res. 112 654-663.

Scheithauer, G., J. Terno, A. Miiller, G. Belov. 2001. Solving one-dimensional cutting stock
problems exactly using a cutting plane algorithm. J. Oper. Res. Soc. 52 1390-1401.

Schwerin, P., G. Wascher. 1997. The bin-packing problem: A problem generator and some
numerical experiments. Int. Trans. Oper. Res. 4 337-389.

Stadtler, H. 1990. One-dimensional cutting stock problem in the aluminium industry and

its solution. Ewropean J. Oper. Res. 44 209-223.

Valério de Carvalho, J. M. 2005. Using extra dual cuts to accelerate column generation.

INFORMS J. Comput. 17 175-182.

Vance, P. H. 1998. Branch and price algorithnis for the one-dimensional cutting stock prob-

lewr. Comput. Optim. Appl. 9 212-228.

Vanderbeck, F. 1999. Computational study of a column generation algorithm for bin packing

and cutting stock problems. Math. Programming 86 565-594.

Vanderbeck, F. 2002. Extending Dantzig's bound to the bounded multiple-class binary
kuapsack problem. Math. Programming 94 125-136.

Wischer, G., T. Gau. 1996. Heuristics for the integer one-dimensional cutting stock probleni.

OR Spectrum 18 131-144.

25

Online Supplement for
An Inexact Bundle Approach to Cutting-Stock Problems

INFORMS Journal on Computing
Krzysztof C. Kiwiel

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland, kiwiel@ibspan.waw.pl

A. Additional tables

A.1. Results for the cutting-stock problem

Tables 9-11 below give details for the small-item-size instances of Degraeve and Peeters
(2003). The averages, maxima and sums in Table 9 are taken over 20 instances for each
interval, and thus over 80 instances for eacli “all” row. In Table 10, there are 60 instances
per interval (i.e., 20 instances for each value of the average demand d = 10, 50, 100), and
each “all” row gives statistics over the 240 instances used for each value of m. Finally, each
row in Table 11 reports statistics over 80 instances (obtained from the 20 instances used for
each of the four width intervals).

Our detailed results for the medium-item-size instances of Degraeve and Peeters (2003)
are presented in Tables 12 and 13, where each “all” row gives statistics over the 240 instances
used for each value of m.

Tables 14-16 give our results for the industrial instances of Vance (1998) (as numbered in
(Degraeve and Peeters, 2003, Tab. 7)), (Vanderbeck, 1999, Tab. 1) and Degraeve and Schrage
(1999) (as named in (Degraeve and Peeters, 2003, Tab. 9)). The final column identifies the
hewristic which delivered the optimal solution; in other words, HO through H2 solved all
these instances except for a single instance solved by H3.

