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Abstract 

A computationally simple method for generating reduced-order models 
that minimise the L2 norm of the approximation error while retaining a 
number of second-order information indices ( energies of the resolvent kernel) 
is presented. The method exploits the energy-retention property peculiar 
to the Routh reduction method as well as the interpolation property of L2-

optimal approximations. The method can be adapted to the case in which the 
steady-state response to step inputs must also be preserved. Two examples 
taken from the relevant literature show that the suggested techniques may 
lead to approximations that are not worse than those afforded by alternative 
techniques. 

Keywords: Model reduction, L2 norm, Routh approximation, 
Impulse-response energy, Asymptotic response 

1. Introduction 

The model reduction problem has aroused a continual interest in t he 
engineering community since the dawn of control and system theory [33], [62], 
its importance being evident not only in system simulation and controller 
synthesis but also in many problems related to robustness and uncertainty 
issues. Indeed, despite the dramatic increase of computing capabilities that 
reduce the need for simplified models, the new challenges facing the control 
engineer have recently led to a revival of studies on this topic with particular 
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emphasis on optimisation and algorithmic efficiency (see, e.g., [l, 2), [4], [7), 
[10, 11), [12]-[51], [53), [56], [60, 61]) . 

Besides the reduction methods based on the retention of first-order in­
formation indices (e.g., coefficients of suitable series expansions), such as 
the classic Pade technique and its numerous variants [8, 9] that are charac­
terised by remarkable computational simplicity and ease of implementation, 
the methods based on second-order information indices, such as Hankel sin­
gular values and impulse-response energies [14]-[l 7), [24), [26, 27], [36], [38], 
[52], [55), and on suitable quadratic criteria, such as the £ 2 norm of the 
error [7], [12], [19]-[22], [25], [28]-[30), [42), [54], [57]-[59], [61], [63], have 
enjoyed an increasing popularity since the late Seventies and early Eighties, 
and dedicated software has been developed for their implementation. 

The advantages of the aforementioned methods are related to an intu­
itively meaningful definition of the reduction criterion, to the possibility of 
determining bounds on some error norms (e.g., H00 norm [16]). However, 
their computational complexity increases rapidly with the dimensionality of 
the original system [18], which has stimulated research on efficient numerical 
algorithms, especially in view of the very high order of certain circuits and 
structures ( see, e.g. , [15], [28]). This paper presents a computationally effi­
cient model reduction technique that combines the advantages of the Routh 
approximation in terms of retention of the resolvent- kernel energies [6] with 
those of the L2-optimal rational approximation. Essentially, the reduction 
algorithm requires: (i) the construction of a Routh table, (ii) the solution 
of an algebraic equation of degree equal to the order of the approximating 
model, and (ii) the satisfaction of a set of interpolation conditions ( condi­
tions for L2 optimality [19], [25], [30]). It is also shown how the algorithm 
can be adapted to obtain the desired asymptotic behaviour in the response to 
step inputs, a characteristic that is not exhibited by most popular reduction 
techniques such as the balanced truncation method. 

The paper is organized as follows. Section 2 recalls briefly the basic recur­
sion of the Routh algorithm and the energy- retention property of the Routh 
approximation, while Section 3 reviews briefly the interpolation conditions 
that are satisfied by the L2-optimal reduced models. Section 4 presents the 
suggested reduction algorithms and discusses their computational complex­
ity. Section 5 shows the results of the application of the algorithm to a pair 
of examples taken from the literature on model reduction. 

2. Routh's algorithm and its use 

This section recalls the properties of the Routh algorithm that are rele­
vant to the reduction procedure described in Section 4 (for other interesting 
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properties of this remarkable algorithm see [3], [6], [23] and [43]). 
The Routh algorithm generates a sequence of polynomials of descending 

degree starting from the even and odd parts of a given real polynomial of 
degree n 

(1) 

according to the recursion 

(2) 

where 
li/2J 

Q;(s) = L ri,i-2ksi-2k, 0 :Si :Sn, (3) 
k=D 

and qi-I is the ratio of the leading coefficients of Q;(s) and Qi-I(s), respec­
tively, i.e., 

qi-I = ~, 1 :Si :S n. 
ri-I,i-1 

( 4) 

The entries of the row of order i in the standard Routh table for Pn(s) are 
precisely the coefficients of the decreasing powers of s in (3). As is well 
known, if and only if Pn(s) is a Hurwitz polynomial, the leading coefficients 
ri,i, like all the other coefficients in the table, are different from zero and 
have the same sign, so that the entire sequence of n + 1 polynomials Qi(s), 
j = n, n - 1, ... , 1, 0, containing only even or only odd powers of s, can be 
constructed and all then quotients (4) are positive (Routh criterion). 

As for the first two upper rows, a complete polynomial P;(s) can be asso­
ciated with every pair of consecutive polynomials in this sequence according 
to 

P;(s) = Q;(s) + Q;-I(s), (5) 

thus forming a sequence of real polynomials {Pj(s),j = n, ... , 1}. Clearly, 
two consecutive polynomials P;(s) and F\-I(s) share the same even or odd 
part Q;-I(s), and the Routh table for P;-I(s) coincides with the tail of the 
Routh tables for Pi ( s), j = i, i + 1, ... , n. As a consequence, all polynomials 
in the sequence are Hurwitz if Pn(s) is so. From (2) and (5), the following 
recursive relation between two consecutive complete polynomials is obtained: 

(6) 

which is the two-term form of Routh 's algorithm as opposed to the usual 
three-term (or split) form (2) [31] . It is also called step-down form because 
it generates polynomials of descending degree. 
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The Routh approximation method (cf., e.g., [6]) uses as the denominator 
of the reduced-order transfer function a polynomial P;(s) in the sequence 
generated from the original denominator Pn(s), which ensures the stability 
of the reduced model if the original model is stable. Quite interestingly, 
besides stability, the reduced- order model obtained in this way retains a 
number of second-order information indices related to the impulse-response 
energies. To show this, consider the function 

1 . 
K;(s) = P;(s), i < n, (7) 

and denote by k?)(t) the h-th derivative of its impulse response k;(t), which 
is the so-called resolvent kernel of the convolution integral that determines 
the forced response YJ,;(t) to an input u(t) of an i- th order LTI system with 
transfer function 

N;(s) 
G;(s) = P;(s) = N;(s) K;(s), (8) 

where N;(s) = n;,o + n;,rs + ... + n;,;-rsi-1, that is, 

(9) 

where 
du di-Iu 

n;(t) = n;,ou(t) + n;,1 dt + .. • + ni,i-I dti-i (10) 

is the right-hand side of the standard form of the differential equation de­
scribing the input- output behaviour of this system. 

Denoting by 

(11) 

the energy of the k- th derivative kt\t) of k;(t), it may be proved [6] that 

Ei,h = En,h, h = 0, 1, . .. , i - 1. (12) 

In other words, the i-th order model whose denominator is formed from 
the original denominator Pn(s) according to the Routh recursion (6) retains 
the first i kernel energies of the n-th order (original) system with transfer 
function Gn(s). Also, these energies may be computed recursively using only 
the entries of the Routh table for Pn(s) [6]. From the kernel energies and the 
coefficients of N; ( s), the impulse-response energy for the system with transfer 
function G;(s) can easily be determined and equated to the impulse-response 
energy of Gn(s) (see, e.g., [27]). Of course, matching these energies does not 
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entail minimising the L2 norm of the difference between the original and 
reduced impulse responses (approximation error) . 

The next section reviews briefly the conditions under which an i-th order 
transfer function minimises the L2 norm of the approximation error subject 
to the retention of the energies (12) . 

3. Conditions for L2 optimality 

The unconstrained L2- optimal rational approximation satisfies a set of 
interpolation conditions ( at points that are not available a priori) that have 
been known to the control community for quite some time in the s-domain 
SISO case [33] and have more recently been extended to MIMO systems 
represented by transfer function matrices in [25]. By exploiting these inter­
polation conditions, some efficient reduction algorithms that avoid the direct 
computation of the gradient of the objective function (L2 norm of the er­
ror) have been developed (see, e.g., [19, 20], [30], [54], [57] in a state-space 
setting and [28] in an input- output setting). However, these procedures are 
intrinsically nonlinear, strongly depend on the initial conditions, do not even 
retain the steady-state value of the step response and, in some cases, might 
give rise to unstable models of stable systems [61]. These drawbacks justify 
the search for alternative simpler and more robust techniques, even if they 
lead to constrained optima or near-optima in the L2 sense [22], [42], [59]. 
Such an attempt is made in this paper. Specifically, the transform of the 
reduced-model kernel is chosen as in (7) with P;(s) obtained from the origi­
nal denominator using the Routh recursion (6), thus ensuring the retention of 
a number of kernel energies; then, the numerator parameters are determined 
so as to minimise the L2 error norm. Note, in this regard, that the same 
kernel energies characterise all responses, and not only the impulse response. 

Let us denote the difference between the impulse responses 9n(t) and gi(t) 
of the systems characterised by the strictly proper transfer functions Gn ( s) 
(original system) and Gi(s) (reduced-order model), respectively, by 

di(t) = 9n(t) - g;(t) (13) 

whose Laplace transform, according to (8), is 

D·( ) = G ( ) _ G·( ) = P;(s)Nn(s) - Pn(s)N;(s) 
' s n s ' s Pn(s)P;(s) . (14) 

The squared L2 norm of (13) induced by the usual scalar product is 

lldi(t)l12 = ["' di(t) d7(t) dt, (15) 
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where the asterisk denotes complex conjugation. Assuming for simplicity 
that the i roots Pi,h, h = l, 2, ... , i, of P;(s) (poles of Gi(s)) are distinct, and 
indicating with 

(16) 

the i-th dimensional vector space generated by the modes of the reduced­
order system, the index (15) is minimum if, and only if, for any function 
f;(t) E F;, the following orthogonality condition holds [32]: 

LX) di(t)ft(t) dt = 0. (17) 

Denoting by F;(s) the Laplace transform of fi(t) and recalling that the 
Laplace transform of Jt(t) is F;*(s*), from (17) and Parseval's theorem we 
obtain 100 1 1+Joo 

di(t)J;'(t) dt = - Di(s)F;*(-s*) ds = 0. 
0 271:J -JOO 

(18) 

Therefore, by Cauchy's integral formula, all the poles of D;(s )F;*( - s*) must 
lie in the left half- plane like those of Di ( s). Since the poles -p; h of all 
functions F;*(-s*) are in the right half-plane, it follows that they ~ust be 
cancelled by the zeros of Di(s) = Gn(s)-Gi(s), that is , Gi(s) must interpolate 
Gn(s) at the negatives of its own poles Pi,h (which are real or in conjugate 
pairs). 

Taking (14) into account, the aforementioned optimality condition can be 
expressed in the compact form of a polynomial identity as: 

i 

Pi(s)Nn(s) - Pn(s)Ni(s) = Mn-1(s) IJ(s +p;,h), (19) 
h=I 

where Mn- i(s) is a (real) polynomial of degree equal, at most, ton - l. By 
equating the coefficients of the equal powers of s on both sides of (19) a 
system of n + i equations linear in the same number of unknown coefficients 
of Ni(s) and Mn_1(s) can be formed. Polynomial Mn_1(s) can then be used, 
if necessary, to compute the value of the index (15) by resorting again to 
Cauchy's integral formula and Parseval's t heorem. Alternatively, by setting 
s = -Pi,h , h = l, 2, ... , i, in (19), the following smaller set of i equations 
linear in the i unknown coefficients of Ni ( s) is formed: 

Nn(-Pi,h) 
Ni(-Pi,h) = P;(-Pi,h) P. (- _ ) , h = l, 2, ... , i. (20) 

n P,,h 

In both cases, it is necessary to preliminarily determine the roots Pi,h of 
polynomial Pi(s). 
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4. Reduction procedure 

On the basis of the previous considerations, the following reduction algo­
rithm can be can conceived. 

Algorithm A 

1. Generate, according to (6), a sequence of polynomials of descending 
degree from the original denominator polynomial Pn(s) down to the 
polynomial P; ( s) of the desired reduced degree i. 

2. Find the roots Pi,h , h = 1, 2, ... , i, of the polynomial equation P; ( s) = 0. 

3. Determine the i coefficients of the ( i - 1 )-th degree numerator polyno­
mial N; ( s) of the transfer function G; ( s) = N; ( s) / P; ( s) approximating 
Gn(s) = Nn(s)/ Pn(s) by solving the system (20) of i linear equations. 

The procedure is not computationally demanding. Observe, in particular, 
that the construction of the entire Routh table for a polynomial of degree 
n requires O(n2 /2) elementary operations [6] (but the aforementioned algo­
rithm can be arrested at the i-th row), the computational complexity of the 
Gauss elimination procedure to solve a system of i linear equation is 0( i3) 

[46], while the solution of polynomial equations up to degree 20 does not pose 
any particular problem in terms both numerical robustness and efficiency [39] 
(note that, usually, i « n)). It is also worth mentioning that fraction- free 
Routh tests that increase considerably the numerical accuracy of the classical 
Routh algorithm have been proposed recently [5]. Clearly, if, after N;(s) has 
been determined, it is required to evaluate the integral (15) , e.g., by means of 
(13) and Parseval's theorem, the computational complexity increases, even 
if not substantially. 

As already said, the reduced-order model obtained according to the afore­
mentioned procedure retains i kernel energies and minimises index (15) sub­
ject to the Hurwitz denominator P;(s). However, since index (15) refers to the 
impulse response (that necessarily tends to zero), the asymptotic behaviour 
of the response to any other input u(t) is not equal, in general, to that of 
the original system. A suggestion as to how the method can be adapted to 
the case in which the steady-state response to step inputs need be preserved, 
at the expense of the number of parameters left for optimisation, is outlined 
next. The procedure could be extended to reproduce the asymptotic response 
to more complicated inputs. However, such an extension would entail a fur­
ther reduction of the number of optimisation parameters and is not pursued 
here. 
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Assume again that the reduced- order model denominator P;(s) is ob­
tained from the Routh algorithm (6) , thus ensuring the retention of stability 
and a number of kernel energies, and denote by 

G;(s) = N;(s) 
P;(s) 

(21) 

the transfer function of the strictly-proper reduced- order model whose nu­
merator N;(s) must be determined in such a way that the steady-state re­
sponse to a step input is preserved. 

The Laplace transform of the original system's step response can be de­
composed as 

(22) 

where Tn(s)/ Pn(s) is the Laplace transform of the transient response and K 
is the steady- state value. In order for G;(s) to exhibit the same steady state, 
the transform of its step response should be decomposable as 

(23) 

where the transient component T; ( s) / P; ( s) is strictly proper and the steady­
state component K/s matches the one of (22). From (23) it follows that 

N;(s) = T;(s) s + K P;(s). (24) 

Since the degree of this polynomial identity is i , by equating the coefficients 
of the same powers of s on both sides of (24), a system of i + 1 equations is 
obtained. Therefore, to admit a unique solution, the number of unknowns 
must also be i + 1. Now, if T;(s) is completely determined by minimising the 
£2 norm of the difference between the transient terms: 

ti;(t) = Ytr,n(t) - Ytr,i(t), (25) 

where Ytr,n(t) = LT-1 [Tn(s)/ Pn(s)] and Ytr,i(t) = LT-1[T;(s)/ P;(s)], then the 
number of unknowns in (24) is only i (number of coefficients of N;(s)) and 
no solution exists. 

To overcome this problem, a further unknown should be introduced. One 
way to do this, is to replace T; ( s) / P; ( s) by the sum of the best approximation 
(in the £ 2 sense) of immediately lower order i - 1, i.e., 1;_1 (s)/ ?;_1 (s), plus 
an auxiliary stable first-order term x/(s - q) with unknown gain x and pre­
specified pole q. Not to influence appreciably the system dynamics, this pole 
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could be located far to the left of the roots of P;_ 1 ( s), but other choices are of 
course possible (and even advisable). Taking (21) into account, the Laplace 
transform of the step response of the reduced-order model then becomes: 

- 1 Ni(s) 1 
Y1,;(s) = Gi(s) - = P. ( )( ) -

S i-1 S S - q S 

leading to the polynomial identity 

'.f;_1(s) x k --+--+­
P;_1(s) s-q s 

(26) 

Ni(s) = '.f;_1(s)(s - q) s + x Pi-i(s) s + k P;_1(s)(s - q). (27) 

In this way the number of unknowns (the i coefficients of Ni(s) plus x) 
matches the number of i + 1 equations obtained by equating the coefficients 
of the equal powers of s on both sides of (27). 

Note that, using the notation: 

P;_1(s) = ai-l,i-li- l + ai-l,i-2i-2 + ... + ai-l,O, (29) 

the unknown parameter x is obtained from the coefficients of si only as: 

X = _ bi-l,i- 2 _ k. 
ai-l ,i-1 

(30) 

Once x has been determined, the computation of the coefficients of Ni ( s) is 
straightforward since all terms at the right-hand side of (27) become known. 
In conclusion, the algorithm for finding an i-th order reduced-order model 
that retains the steady- state value of the original step response can be pre­
sented as follows. 

Algorithm B 

1. Decompose the original step response transform as in (22). 

2. Find the transient component '.f;_1(s)/P;_1(s) that minimises the £ 2 
norm of cL-1(t) = Ytr,n(t) - Ytr,i-1(t) with P;_1(s) obtained from the 
original denominator Pn(s) using the Routh algorithm (6). 

3. Choose q. 

4. Compute x according to (30). 
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5. Determine the coefficients of polynomial N;(s) from (27). 

6. Form the i-th order approximating transfer function as 

• N;(s) 
G;(s) = P. ( )( )" 

i-1 S S - q 

The only demanding step of Algorithm B is clearly the second. It entails the 
same operations as Algorithm A (referred, however, to the transient com­
ponent of the step response instead of the impulse response), namely, the 
construction of a (part of a) Routh table, the solution of a polynomial equa­
tion of degree i - 1, and the solution of a system of i - 1 linear equations 
similar to (20) , i.e.: 

( ) ( ) Tn(-Pi-lh) 
r;_l -Pi-1,h = P;-1 -p;~1,h P. ( ' ) , h = l, 2, ... , i - 1, 

n -Pi-1,h 
(31) 

corresponding to a set of i - 1 interpolation conditions at the negatives of 
the roots Pi-1,h, h = l, 2, ... , i - 1, of P;_1(s). Therefore the computational 
complexity of Algorithm Bis not much greater than that of Algorithm A, at 
least if the auxiliary pole q is arbitrarily placed to the left of the other poles 
of Y1,;(s), as previously suggested. Alternatively, q may be chosen so as to 
minimise IIGn(s)-G;(s)II- This result can be obtained by: (i) repeating Steps 
3 through 6 for a number of different auxiliary poles q, (ii) computing the 
related values of the aforementioned norm, and (iii) picking up the pole q that 
ensures the least value of this norm. Clearly, this alternative choice increases 
the computational complexity of the procedure but might be worthwhile. 

5. Examples 

Two examples taken from the literature on model reduction are worked 
out in this section. The results obtained from the application of Algorithm 
A and Algorithm B are compared with those obtained using the popular 
balanced truncation method as well as the methods employed by authors who 
recently considered the same examples. As commonly done, the comparison 
is essentially based on the visual inspection of the responses to impulse and 
step inputs, on the Bode plots, and on the value of the L2 norm of the 
respective impulse-response errors ( clearly, the norm of the step-response 
error tends to infinity when the steady-state value of the original system is 
not matched exactly). 
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Figure 1: Impulse responses of: (i) the original model (32) (solid line), (ii) the third­
order approximation (33) obtained using Algorithm A (dashed line), (iii) the third-order 
approximation (34) obtained using Algorithm B (solid thin line), (iv) the third-order 
model derived in [10) (dotted line), and (v) the third-order model obtained via balanced 
truncation ( dashdotted line). 

5. 1. Example 1 
Consider first the following 9-th order original transfer function [37] 

G(s) = 
s4 + 35s3 + 291s2 + 1093s + 1700 

s9 + 9s8 + 66s7 + 294s6 + 1029s5 + 2541s4 + 4684s3 + 5856s2 + 4620s + 1700' (32) 

whose poles are -1, -1 ± J, -1 ± J2, -1 ± J3, -1 ± J4. The same original 
system has been used in (10) to find a third-order approximating model by 
means of a "biased stability-equation" technique. Algorithm A in Section 4 
leads to 

G (s) _ 0.1399s2 - 0.8022s + 1.8554 (33) 
3 - s3 + 1.6412s2 + 3.3077s + 1.8601 

whose poles are -0.7024, -0.4694 ± Jl.5582. The squared L2 norm of the 
related impulse-response error turns out to be 0.0184, whereas the squared 
error norm for the model obtained in [10] is 0.1348 and that for the third­
order model obtained from balanced truncation is 0.0158. Algorithm B with 
q = -5.2 (found using the iterative search outlined at the end of Section 4) 
leads to 

G (s) = 0.0724s2 - 3.1780s + 5.8933 
3 s3 + 6.5248s2 + 8.0224s + 5.8933 

(34) 
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Figure 2: Step responses of: (i) the original model (32) (solid line), (ii) the third-order 
approximation (33) obtained using Algorithm A (dashed line), (iii) the third-order ap­
proximation (34) obtained using Algorithm B (solid thin line), (iv) the third-order model 
derived in [1 0] (dotted line), and (v) the third-order model obtained via balanced trunca­
tion ( dash dotted line). 

i -50 

f-,oo 
f-1!xl 

BodeOlegrem 

1:I -~····1 
~ ~ ~ ~ ~ ~ 

Frequancy(radflec) 

Figure 3: Bode plots of: (i) the original model (32) (solid line) , (ii) the third-order approx­
imation (33) obtained using Algorithm A (dashed line), (iii) the third-order approximation 
(34) obtained using Algorithm B (solid thin line), (iv) the third-order model derived in [10] 
( dotted line), and ( v) the third-order model obtained via balanced truncation ( dashdotted 
line). 
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Figure 4: Impulse responses of: (i) the original model (35) (solid line), (ii) the second­
order approximation (36) obtained using Algorithm A (dashed line), (iii) the second-order 
approximation (37) obtained using Algorithm B (solid thin line), (iv) the second-order 
model derived in [34] (dotted line), and (v) the second-order model obtained via balanced 
truncation ( dashdotted line). 

whose poles are -5.2, -0.6624 ± J0.8334. In this case the squared L2 error 
norm turns out to be 0.0662. Figs. 1, 2 and 3 compare, respectively, the 
impulse responses, the step responses and the Bode plots of (33) and (34) 
with those obtained using the method suggested in [10] and the balanced 
truncation method. 

5. 2. Example 2 

Consider the 10-th order system described by (see [41], (34]) 

G( ) = 540.70748 X 1017 

S 10 ' 
(35) 

IJ (s+b;) 
i=l 

where b1 = 2.04, b2 = 18.3, b3 = 50.13, b4 = 95.15, b5 = 148.85, b6 = 205.16, b1 = 
257.21, b8 = 298.03, b9 = 320.97, b10 = 404.16. Assume, as in (34], that 
a second- order approximating model is needed. Algorithm A in Section 4 
leads to 

G 8 _ -0.6687s + 23.2918 
2 ( ) - s2 + 13.0793s + 23.62 

13 

(36) 



whose poles are -10.9147, -2.1646. The squared L2 norm of the related 
impulse-response error turns out to be 0.0082, whereas the squared error 
norm for the model obtained in [34] is 0.0074 and that obtained via balanced 
truncation is 0.0074. Algorithm B with q = -19.1 (found using the iterative 
search outlined at the end of Section 4) leads to 

G (s) = -0.3521s + 34.5019 
2 s2 + 20.9064s + 34.5019 

(37) 

whose poles are - 19.1 , - 1.8064. In this case the squared L2 error norm 
turns out to be 0.0398. Figs. 4, 5 and 6 compare, respectively, the impulse 
responses, the step responses and the Bode plots of (36) and (37) with those 
obtained using the method suggested in [34] and the balanced truncation 
method. 

6. Conclusions 

A model reduction method has been proposed that: (i) preserves stability, 
(ii) ensures the retention of a number of kernel energies characterising all 
forced responses, and (iii) minimises the L2 norm of the approximation error 
for the desired denominator formed according to the Routh algorithm. The 
method is characterised by remarkable computational simplicity compared 
to alternative techniques that refer to second- order information indices and 
may lead to satisfactory results, as shown by two examples taken from the 
relevant literature, which makes the method worth trying. 

A variant of the method that allows us to reproduce exactly the asymp­
totic response to step inputs has also been outlined. The computational 
burden of this variant, based on the decomposition of the step response into 
the transient and steady- state components, is not appreciably heavier than 
that of the original method, while the accuracy during the transient does not 
deteriorate significantly. 
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