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ABSTRACT. In the paper the shape optimization problem for the static, com­
pressible Navier- Stokes equations is analyzed. The drag m in imizing of an 
obstacle immersed in the gas stream is considered. The continuous gradi­
ent of the drag is obtained by application of the sensitivity formu las derived 
in the works of one of th e co-authors. The numerical approximation scheme 

uses mixed F inite Volume - Finite Element formulation. The novelty of our 
numerical method is a particular choice of the regularizing term for the non­
homogeneous Stokes boundary value problem, which may be tuned to obtain 
the best accuracy. The convergence of the d iscrete solut ions for the model 
under considerations is proved. The non-linearity of the model is treated by 
means of the fixed point procedure. The numerical example of an optimal 
shape is given. 

1. Introduction. One of the main applications of the theory of compressible vis­
cous flows [27] is the optimal shape design in aerodynamics. The classical example 
is the minimization problem of the drag of an airfo il travelling in the atmosphere 
with uniform speed. 

In the paper we present numerical computations for a simple geometry in t he 
plane. The theory leading to the formulas for t he shape derivatives is based on a 
series of papers by P.I. Plotnikov and J. Sokolowski [n]-[2fi], while computational 
scheme is based on [28]. For t he approximation of solutions t he method of F inite 
Volumes is used, what required supplementing t he reBults of [10],[7] with some 
additional analysis. This analysis constitutes the main novelty of t he paper. 
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Finite Volume Method, F inite Element Method . 



2 ANNA KAZMIERCZAK, JAN SOKOLOWSKI AND ANTONI ZOCHOWSKI 

The optimal control of compressible flows is still poorly investigated, in contrast 
to incompressible flows. We can cite here see e.g. [6], [29) or a more recent work [5] 
where the dynamic version of the problem was considered. 

2. Mathematical model. Let B C JR2 be a doubly connected, bounded hold all 
domain with a smooth boundary I: = 8B. We denote two connected components 
o[ 8B by I:;n and I:out, I: = I:;n U I:out· Suppose that B contains an obstacle S, 
which is a compact set with a sufficiently smooth boundary r. Suppose also that 
the volume of S is given and small with respect to the volume of B and the obstacle 
is far from the boundary of B. We define the computational domain as n = B \ S. 
Thus the boundary of n consists of three parts: an = I:;n U I:uut Ur. We assume 
that a viscous, compressible fluid is flowing across n. Fluid enters n through I:;n 

and leaves through I:uut· T he computational domain is presented in Fig. 1. 

® 
r 

Figure 1. Computational domain n = B \ S 

We restrict our consideration to stationary flows in the framework of the existence 
theory established in [27], Theorem 11.2.6 on page 311 . In fact we need the existence 
of unique strong solutions to the model under considerations in order to assure the 
weak differentiability of solutions with respect to small parameter. 

The dynamics of the fluid is determined by three functions: the velocity field u, 
the density Q and the pressure p(Q), where p = p(Q) is a smooth, strictly monotone 
function of the density with p(O) = 0. In computational experiments we set p = 
p0 (f;;) 0 , with Po = 1 and 0 = ~- The quantities: Ma , Re and .\ are physical 
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constants, denoting respectively the Mach number (defined as a proportion of the 
speed of a fluid to the speed of sound) , the Reynolds number (which is a proportion 
of Auid's inertial forces to its friction forces), and the viscosity coefficient. The 
quantity g0 , present in the boundary condition for g, is a constant, in computations 
we set g0 = 1.2. Finally, U : l!!.2 -+ l!!.2 is a given smooth vector field, satisfying 
certain compatibility conditions, see Section 9.2. 

2.1. General theory in three spatial dimensions. The stationary boundary 
value problem for compressible Navier-Stokes equations in three spatial dimensions 
can be formulated as follows. 

Problem. Assume that a gas occupies lhe flow domain n = B \ S, where B C !Rn , 
n = 3 in _general case, is a bounded hold-all domain, with an obstacle S in its 
interior. 

Find a couple ( u, g) such that 

Re 
.6.u + x•,7 div u = Re {JU. Vu + --2 Vp(g) inn, 

Ma 
div(gu) = 0 in fl , 

u = U on E, u = 0 on as, 
{l = {lo on Ein· 

(la) 

(lb) 

(le) 

(ld) 

where V is a given vector field and E = aB. The inlet Ein and the outlet Eout are 
defined by 

Ein = {x EE: U · n < O}, E011 t. = {x EE: U · n > O}, 

respectively. Here n stands for the outward normal to a(B \ S) = EU as. For 
the sake of simplicity we assume that the mass force equals zero, and {lo is a given 
pos'itive constant. 

2.2. Change of variables in Navier-Stokes equations. We consider the general 
case, the results apply as well in two space dimensions. In order to perform the shape 
sensitivity analysis in three space dimensions we choose a vector field T E C 2 (JR3 ) 3 

vanishing in a neighborhood of E, and introduce the mapping <I>E(x) = x + ET (x), 
which defines the perturbation SE = <I>E(S) of the obstacle S. For small E, the 
mapping <l>E takes diffeomorphically the flow region n = B \ S onto f!0 = B \ SE. 
In the perturbed domain Problem 2.1 reads 

Problem. Find a solution (uE, g0), to the following boundary value problem posed 
in the variable domain DE = B \ SE, for the shape parameter EE (-b, b) w'ith b > 0: 

UE = U on E, UE = 0 on asc, 
ile = {lo on Ein· 

(2c) 

(2d) 

Now, we perform a change of variables in equations (2) in order to reduce Problem 
2.2 in the variable domain f! 0 , depending on a small parameter E, to a problem in 
the fixed domain n, named the reference domain. Denote by M the Jacobi matrix 
of the mapping c;T,c and by g the determinant of M, i.e., 

M(x) = li + ED T(x), g(x) = det(li + ED T(x) ). (3) 
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Further the notation N stands for the adjugate matrix 

N = (detMI) Ml - 1 with detN = g2 . (4) 

Definition 2.1. 

• In shape sensitivity analysis the material der'ivat'ives of solutions to stationary 
Navier-Stokes equations are obtained by t,he differentiation of the mapping 

E-+ (u,(x + eT(x)), 12,(x + eT(x))), x ED. 

• The shape derivatives of solutions to stationary Navier-Stokes equations are 
defined by derivatives of the mapping 

e-+ (u,(y), 12,(y)), y ED,. 

• The shape gradient of the drag functional for stationary Navier-Stokes equa­
tions is given by the derivat ive of the function 

e >-+ J(D,). 

Introduce the functions 

u ,(x) = N(x) u,(x + eT(x)), £!,(x) = [j,(x + eT(x)), x ED. (5) 

The function u , is called the Pio/a transformation of ii,. 

Lemma 2.2. Let (u,(y), 12,(y)) be a solution to Problem 2.2. Then the couple 
(u ,(x) , Q,,(x)) defined by (S) satisfies 

flu, + 'v ( .\g- 1 div u ,, - ::2 p(£?,,)) 

= d(u,) + Re @(£?, , u ,,, u ,) in D, (6a) 

div(Q,,u,,) = 0 in D, (6b) 

u,, = U on E , u , = 0 on as, 
£!, = £/o on Ein· 

Here, lhe linear operator J1i' and lhe trilinear fo rm fJ1J are defined by 

d(u) = flu - N -T div(g - 1NNT'v(N- 1u)), 

&l'(i?, u , w) = QN-T (u'v(N- 1w) ). 

Thus we come to the following problem: 

Problem. Find (u,,, {h) such that 

( 
_ 1 . Re ) flu,,+ 'v .\g div u ,, - Ma 2 p(Q,,) = d(u,,) + Re &l'(Q,, u , , u ,,) 

div(Q,,u,,) = 0 in D, 

u , = U on E, u ,, = 0 on as, 
/?,: = i?o on Ein· 

Here the operators J1i' and fJ1J are defined by (7). 

in D, 

(6c) 

(6d) 

(7) 

(Sa) 

(8b) 

(8c) 

(8d) 

Observe that equations (8) depend only on the matrix N and do not depend on 
e directly. In this framework, the fact that N is the adjugate matrix to the J acobi 
matrix n + eD T is not so important. Hence our task is to show that Problem 
2.2 is well-posed and its solution is differentiable with respect to N. We begin by 
analysing the well-posedness. 
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2.3. Solution scheme for stationary problem in reference domain. In [2 7] 
we use the simple algebraic scheme proposed in [22]. The basic idea is to introduce 
t he effective viscous pressure q, and a large parameter cr0 , 

Re ( _1 . Re 
q, := Ma2 p !?£) - .\g div U,, uo = .\Ma2, 

and write equations (8) in the form 

L'>U, - Vq, = .01(U ,) + Re &i(y,, U ,, U ,) in 0, 

divU, = gcrop(g,) - g.\q in 0 , 

U ,- 'v'{1e + guop(i?e)Q, = 91"e, in 0, 

U , = U i on ~, U, = 0 on as, 
Q, = Qo on ~in, 

(9) 

(lOa) 

(lOb) 

(10c) 

(10d) 

(10e) 

System (IO) consists of perturbed Stokes equations (10a)- (10b) for (u,, q,) and a 
perturbed transport equation (10c) for (2£. It is easy to see that equations (10b) and 
(lOc) are equivalent to (0) and the mass balance equation div(e,u,) = 0. Therefore, 
equations (10) are equivalent to (8). It was shown in [22] and [23] that problem 
(10) has a strong solution if the parameters satisfy the conditions 

.\ » 1, Re « 1, a-0 » 1, 

which are more restrictive than the standard conditions Re « 1, Ma2 « 1 adopted 
in [2], [lfi], and [24]. 
Perturbations. We will look for a local solution to problem (8) which is close to 
an approximate solution (u*, q*, Q*). In order to define such a solution notice that 
for small Mach and Reynolds numbers equations (10a)- (10b) are close to Stokes 
equations and the density Q, is close to Qo- Thus we take 

Q* = Qo (11) 

and choose (u* , q*) as the solution to the following boundary problem for the Stokes 
equation: 

where 

L'>u* - Vq* = 0, div u* = 0 in 0, 

u* = U on ~. u* = 0 on as, ITq* = q*, 

ITq := q -~ { q dx. 
meas" }0 

(12) 

(13) 

The solution to problem (8) is decomposed into the approximate solution ( u*, q*, Q*) 
and small perturbations (v,, 1r,, <.p,, m,), 

u, = u* + v e, Q, = Q* + '-Pe, q, = q* + .\uop(Q*) + 1r, + .\m, , (14) 

with some unknown functions{) = (v, , 1r, , r.p,) and an unknown constant m,. 
We point out that our decomposition (1 4) holds exclusively in the reference 

domain O = B\S. The unknown functions 19 and the unknown constant m, contain 
the necessary and sufficient information on the shape dependence of solutions to the 
equations (8) upon the shape parameter t: --+ 0. This information is used in order to 
determine the material derivatives of thP. solutions to the modP.l (2) with rnspP.ct to 
the shape perturbation. However, the Stokes boundary value problem (1) defined 
in the reference domain O is meaningless for the model (2) defined in the variable 
domain 0 ,. 
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Substituting decomposition (14) into (1()) we obLain the following boundary value 
problem for 1J = (v,,1r,, (f',): 

6.v, - V1r, = .w(u, ) + Re&.?(g, , u,, u, ) inn, (15a) 

divv, = o(:cp,-l!i[1J]-m,) inn, (15b) 

u, · Vcp, + u<p, = l!ii[1J] + m,gg, inn, 

v, = 0 on an, cp, = 0 on :Sin, n1r, = 1r,, 

where 

(15c) 

(15d) 

l!i[1J] = q* + 1r, - -,-u-H(cp,) , 
>- P (g*)g* 

lli1[1J] = o( g,l!i[1J] - : cp;) + U(f),(l - g) , 

and the vector field u, and the function (2, are given by (1 4). 

(15e) 

( 15f) 

2.4. Function spaces. To establish existence results for problem (1 5), we begin 
with the definition of an admissible class of solutions to this problem. 

Notice that we a.re looking for strong solutions, which means that in equations 
(1 5) the unknown functions and their derivatives are integrable, i.e., these equations 
are satisfied a.e. in n. To this end it suffices to assume that v E W 2•2(n) and 
(1r , cp , () E W 1•2(n). Next, we a.re looking for solutions such that (1r, (f', () a.re 
continuous and v is continuously differentiable in n. In order to satisfy this demand 
it suffices to take v E ws+l ,r(n) and (1r, cp, () E ws ,r(n) with sr > 3. To address 
both issues we introduce the Banach spaces 

xs,r = ws,r(n) n w1,2(n) , 

ys ,r = ws+l,r(n) n w2,2(n), 

equipped with the norms 

0 < s < l < r < oo , 

[[u [[ x •,r = [[ u[lw•• ' (rl) + [[u[[w1 ,2cn) , [[u[[y,,r = [[u[lw•+ l,r (rl) + [[u[[w2,2 cn)• 

(16) 

Throughout of the rest of this chapter we intensively exploit the fact that the spaces 
xs ,r and ys ,r a.re reflexive. The proof of this fact is nontrivial and follows the line 
given below .. 

It is well known (see [l, Thm. 3.5]) that for any bounded domain n with C 1 

boundary, any integer m 2:: 0 and 1 < r < oo, the Sobolev space wm,r(n) is 
reflexive. The space W~ •r(n) is obviously reflexive as a closed subspace of a reflexive 
Banach space (see [l , Thm. 1.21]). 

Lemma 2.3. Let n be a bounded domain with C 1 boundary and O < s < l < r < oo. 
Then the spaces ws,r(n) and ws+1.r(n) are reflexive. 

Lemma 2 .4 . For any functional f E (xs ,ry there are continuous functionals g E 

(Ws ,r(n))' and h E (W1•2 (n))' such that 

(J, cp) = (g,(f') + (h, (f') for all (f' E xs,r_ 

Lemma 2.5 . Let n be a bounded domain with C 1 boundary and O < s < 1 < r < oo. 
Then the spaces xs,r and ys ,r are reflexive. 

While w s,r(n) and W 1•2(n) are separable, we cannot conclude from this that 
xs ,r is separable. However, the dual spaces (X" ,r)' and (Ys ,ry a.re separable: 
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Lemma 2.6. Let n c 1Rt2 be a bounded domain with C 1 boundary and O < s < l < 
r < oo. Then (xs ,ry and (Ys ,ry are separable. 

Existence theory. Define the Banach space 

(17) 

and denote by BT C Ethe closed ball of radius T centered at 0. Next, note that for 
sr > 3, elements of the ball BT satisfy the inequality 

lfvllc 1 (n) + ll1rllc(n) + ll'Pllc(n) :S: ce(r,s,n)ll'!9IIE :S: CeT, (18) 

where the norm in Eis defined by 

ll19lle = llvlly•,r + ll1rllx•,r + ll'Pllx•.,·. 

Further, c denotes generic constants, which a.re different in different places and 
depend only on n, U, er and r, s. We assume that the flow domain and the given 
data. satisfy the following conditions. 

Condition 1. 

• an is a. closed surface of class C3 and the set r = cl I:;n n I: \ I:;n is a closed 
C3 one-dimensional manifold such that I: = I:;n Ur U I:out· 

• The vector field U E C3 (an) satisfies 

{ V. ndI: = 0 . 
.Ian 

Moreover, we can assume that it is extended to lR~ in such a. way that the 
extension U E C3 (IR3 ) vanishes in a. neighborhood of S. 

• There is a. positive constant c such that 

Ui · 'v(Ui · n) > c > 0 on r. 
Since the vector field Ui is tangent to an on r, the left hand side is well 
defined. 

Let us consider the augmented problem of the fo llowing form: 

Problem. Given (u*, q* , {1*) , find (v£, 1r£, 'Pe) and a constant me, depending on E , 

such that 

ti.v£ - 'v1r£ = at(ue) + Re@(,1,,, ue, u£) inn , 

divve = o(:cpe-'1![ri]-me) ·inn, 

U g · 'vcpe + crepe = '111 [r/] + ffie9{h in n, 
ve = 0 on an, 'Pe = 0 on I:;n, II1re = 1rg. 

The constant me is determined from the following relations: 

(19a) 

where the auxiliary function Ce is a solution to the adjoint boundary value problem 

- div(ue(e) + er(£ = erg inn, (e = 0 on I:uut· 

The following existence theorem is the ma.in result of this section. 

(19c) 
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Theorem 2. 7. Assume that the surface ~ and the given vector field U satisfy 
Condition l. Furthermore, let numbers r and s satisfy 

0 < s < 1, 1 < r < ao, 2s - 3r- 1 < 1, sr > 3. (20) 

Then there exists O'• > 1, depending only on U , n and s, r, with the following 
property. For every O' > O'• there are positive y• and c, depending only on U , n, r, 
s, and O', such that whenever 

(21) 

Problem 2.4 has a solution rJ E Br, ( 0 E x s,r, m 0 E JR.. The auxiliary function ( 0 

and the constants x 0 , m 0 admit the estimates 

ll(ollx,., -1- lxol::; c, Imo!::; CT< 1. (22) 

Let eN C BT X w •,r(n) xlR. be the set of all solutions (rJ, (£ , ms) = (v£, 7f£, '/JE, (£, mE) 
corresponding to a matrix-valued fun ction N. Then for every N in the ball B ( T 2 ) = 
{N : !Ill - Nllc2cn) ::; T 2 } there is a nonempty subset 8~ c 8N such that 
UNEB(T2) e~ is relatively compact in w s+l ,r(n) X w •,r(n) 3 X JR. . 

3. Minimization of the shape functional. Now we are going to adopt the gen­
eral theory to the specific problem in two spatial dimensions. Our goal is to propose 
the numerical scheme for drag minimization and obtain numerical results. We re­
fer the reader to e.g., [1:3], [14], [:m], [:)1], [:32) for incompressible modeling and 
numerical methods. The drag minimization is considered also in [12]. 

3.1. Shape functional. It is known that the theory of compressible fluids has 
many essential applications in aerodynamics . For example, it is used in aircraft 
construction. Thus the obstacle S can be identified with an airfoil. We work in the 
reference frame with the fixed obstacle S. (see Fig.l). Aerodynamical force, acting 
on the obstacle S can be expressed as 

F a(rJ = - .f~(Vu -1- (Vu)r -1- (.>- - 1) div u ll - ~pll ) · ndS , (23) 

where n denotes the unit normal field defined on r, pointing outward from S, 
and Il stands for the unit matrix. Similarly as in the case of an airfoil moving 
in the horizontal direction, the drag functional J can be defined as the horizontal 
component of the aerodynamical force Fa· For the horizontal unit vector e 1 = [l, OJ, 
it reads: 

J(f') = e1 · Fa(f' ). (24) 

Then, applying any smooth function r, (in the program r, is a solution to the Laplace 
equation) satisfying suitable boundary conditions, the aerodynamical force can be 
expressed as an integral over n. For r, = 1 on r and r, = 0 on Z:::, integrating (23) 
by parts gives: 

F a(D) = - L (Vu -\- VuT - div(u) Il - qll - Re i:m ® u) · Vr, dx 

-L r,12u · Vudx . (25) 
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In consequence, the drag functional is: 

J(O) = - e 1 · L (Vu+ 'vuT -div(u)ll- qli- Regu ® u) · 'vT7dx 

-e1 · L T/£1U · 'vudx. 

9 

(26) 

3.2. Discretization of continuous shape gradient. The existence of shape gra­
dient of the drag functional is shown for compressible model in [27]. In the numerical 
procedure we are going to use the material derivatives of the solutions to the gov­
erning equations. The obtained continuous shape gradient is discretized for the 
purposes of numerical method. We point out that the shape derivatives of the con­
tinuous compressible model also lead to the shape gradient of the cost [26]. The 
shape derivatives are obtained by the singular limit procedure in the boundary value 
problem that is formulated for the material derivatives. Formally, the same result 
can be derived by an application of the boundary variations technique to the strong 
formulation of the stationary compressible Navier-Stokes equations. However, it is 
important to remember that even the existence of the weak solutions to the station­
ary model with nonhomogenous boundary conditions is a difficult problem in the 
physical range of parameters. Therefore, the formal considerations for compressible 
model are not in general justified, and are performed in the framework of experimen­
tal mathematics. The results obtained here are proved for almost incompressible 
model. 

3.3. Deformations of rand n. We seek a deformation of r, such that the value of 
the drag functional J is minimal relatively to a certain family of admissible shapes. 
We introduce the family of admissible shapes by defining the set of admissible 
deformations of the initial shaper. The set of admissible deformations of r consists 
of linear combinations of basic transformations of r, defined as bell-shaped smooth 
hat functions (see (109)) depending on the discretization of r. It is assumed that 
h = [h1 , h2 j is a smooth vector field normal to r , that is a deformation of r in 
the normal direction. It defines a transformation <!> 0 (x) = x + c:T(x) of n into 0 0 , 

depending on the vector field T constituting the unique solution to the Laplace 
equation: 

.6.T = 0 in 0, T = 0 on ~, T = h on r. (27) 

Observe that, for h = 0 and consequently T = 0, this transformation reduces to 
identity. Since both boundaries of n and boundary data for h1 and h2 are smooth, 
such Tis a vector field on O of class C00 (0), normal on rand vanishing on~-

The derivative of the functional J(O) in the direction T is given by the limit 

dJ(O ; T) = lim J(O<) - J(O) 
t---t O+ C 

We use T instead of h in the definition of this derivative because such a formulation 
could be used for arbitrary field T as well. 

By applying the same substitutions as in Section 2.2, the shape functional, de­
fined previously as an integral over the domain n<, can be written as an integral 
over 0: 
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J,(D) = - Ree1 · L 1/u "v' (Pr1u")T/dX-

e1 · L [g - 1(!"-lTv' (N- 1u") + v' (N - 1u ' )TN - div u') - q' ll]NT v'T7dx 
(28) 

4. Shape derivative . Differentiating formally the integrand in (28), we obtain the 
formula for the derivative of J , which can be symbolically written as the sum: 

d 
dcJ,(n)l ,=o = Le(T ) +L,,(6u ,61r,6cp), (29) 

where the linear forms Le and Lu are given by the formulas [25] 

where 

Le(T ) = e1 · L TrDT(v'u + (v'u)T - div u ll )v'T7dx-

e1 · k [ll))Tv'u + (v'u)Tll)) - v' (ll))u ) - (v' (ll))u ))T) v'T7dx­

e1 -1 [v'u + (v'u)T - div u - qll) ll))Tv'T7d.T+ 
l! 

Re e1 · k 1mv'(ll))u )T/ - dx, 

(30) 

Lu(bu, 61r, 6cp) = -e1 · L [(v'bu + (v'bu)T - div bu - 61r)v'71 (31) 

+ Re ,C(6u ,6cp)T/] dx, 

!! I <=D = Tr DT = div T (32) 

and (6v ,61r,6cp,6(,6m) denote the material derivatives f,(v,,1r,,cp,,(,,m,)l,=o for 
the solution to the correction system. Since by definition (l) (u* , q*,p*) do not 
vary then, from (14), we have (6u , 6q,6g) = (6v ,61r,6cp) . The material derivatives 
(6v , 61r , 6cp, 6(, 6m) can be derived by formal differentiation of the correction system 
(l 0), which gives the followin g system for derivatives: 

~ 6v - v'61r = C(6cp, 6v ) + D (ll))), (33) 

div6v = b216cp + b2261r + b236m + b20TrDT , (34) 

uv'6cp + r716cp = -6vv'cp + b116cp + b1261r + b1 36m + b10TrDT , (35) 

- div(6(u) + r716( = div((6v) + r71TrDT , (36) 

6m = x k (b~16cp + b:1261r + b:146(b:wTrDT)dx, (37) 

with the boundary conditions: 

where 

6v = O on an, 6cp = 0 on ~in, 6( = 0 on ~out 

II (61r) = 61r, 
(38) 

D (ll))) = div [((TrDT)Il -ll))-ll))T)v'u] +ll))T ~u+ ~ (Il))u )- Re gll))T(uv'u)-Re guv' (ll))u ), 

C(6cp, 6v ) = Re 6cpu · v'u + Re gu · v'6v + Re g6v - v'u, 
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and the coefficients b;j equal: 

20" /20" 
b11 = ,;c, + m - - cp - --Ht(ip), 

/20 pt(120) 
12 

b12 = :X-' 
b13 = 12, 

O" 2 
b10 = g(w + m) - -ip - D"cp , 

l?o 
(T (T 

b21 = - -\- ---Ht(cp), 
l?o pl ( /20 ) /20 

1 
b22 == - :x-, 
b23 = -1, 

(T 

b20 = -cp- >Jl -m 
l?o 

' ~ (T ~ 
b31 = /20 ((w + m) - /20 cp) + p1(120)120 (1 - /20 )Ht(cp) 

b32 = 2_(~(-1), 
,\ /20 

b34 = _!__ (12(>1' + m) - ~cp2 ) , 
/?O i?O 

b30 = ( ~( - 1)(>1' + m) - O"; cp( 
l?o 120 

11 

It is easy to see that the left hand sides of (19a) and Ctl)-(:l7) are identical, which 
will simplify further computations. 

5. Computational scheme. In order to make an optimization step, we need to 
calculate the shape derivative, which is given by the formula (29). Thus we have 
to find the unique solution of the system (19a) and also the material derivatives 
(r5v, brr, ,Sep, ,5(, ,5m), that are the solution to the system (33)-(37). Both these sys­
tems can be written in the common form: 

6-zf - 81z2 = ft('!3) , 

6- Zi - 02Z2 = j'J_ ( iJ) 

01Z£ + 02Zi = f 2('!3), 

uT\7z3 + 0"1Z3 = !3('13), 

- uT\7z4 + 0"2Z4 = !4('13), 

z 5 = f f 5 (ti) dx, .In 

(39) 

where ti = (z1,z2 ,z3 ,z4,z5 ) E (HJ(D)2 x L2 (0) x H 1 (0) x H 1 (0) x £ 2 (0)) and 
0"2 = 0"1 - div u, wit.h the boundary conditions: 

z 1 = Q on 80, 
M(z2 ) = 0, 
z3 = 0 on E;n, 
z4 = 0 on Ea-ut· 
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We rewrite the above system in the compact form: 

.C(u(tl); ti) = R(tl) , (40) 

where the coefficients of (39) depend on u that is computed in the previous step 
(u, in turn, depends on ti and u0 through (14)). Denote by 

t = S(u(tl); ti) 

the inverse of the linear operator t >---+ .C(u(tl);O such that .C(u(t9);t) = R(tl). 
In order to find the approximate solution [9], in which an iteration step is defined 

by the formula: 

19n+ l := D<ntln+½ + (1 - D<n)tln, 

where 1.911 is a value of solution from the previous step, and 

(41) 

( 42) 

We take t90 = 0. Elements of the sequence °'n (in the program we set: 0<11 = 2~n, 

n = 0, l , .. ) have to satisfy the following condilions: 

Jim °'n = 0, 
n--> :,o 

00 

L°'n = oo. 
n = O 

In every iteration of the fixed point method we find the solution ( 42) of the system 
(40) with fixed right-hand sides ff ,f.J.,f 2 , ... ,j5 E L2 (!1). Let us notice that ifwe 
substitute in the system ( 40) the null operator for Rand consider only the first three 
equations, we obtain the Stokes system (it has to be solved once in every iteration). 
To solve ( 40) numerically in every iteration, we apply the modification of the Finite 
Element (FE), used in [28], replacing it by the mixture of Finite Volume and Finite 
Element (which we will denote shortly by FV). The latter one was used in [Hl] and 
[7] for homogeneous systems of the type (l). 
Similarly as FE, the FV method serves for solving systems of differential equations 
in the weak form. Let us then multiply the first 5 equations of ( 40) by the test 
functions t E C/5"(!1) and integrate them over n. Next, applying integration by 
parts, we get: 

l 'vt'vz} dx - l (81t)z2 dx = L J[tdx , 

h 'vf;'v zJ dx - l (82 t)z2 dx = h J.J.t, dx , 

/ 1 / 1 / 2 Jn to,z1 dx + Jn t82z2 dx = Jn f t dx , 

r uT'v z3 t dx + r CJ1z3 t dx = r f 3 t dx , 
ln ln ln 
-l uT'vz4 t + h CJ2z4t = h /4 1; 

z5 = h f 5 dx . 

(43) 

The first three equations of (43) constitute a system which is hardest to solve (the 
last three equations are independent and can be solved separately). The boundary 
conditions will be discussed later on (cL (60)). 



DRAG MINIMIZATION FOR THE OBSTACLE 13 

6. Approximation method. Assume that there is a given triangulation of the 
domain 0, so O ~ L T. Denote by h the diameter of the biggest triangle in that 

TCT 
mesh (that is the diameter of the circumscribed circle). We will denote the set of 
all triangle edges from T by E, and the sets of all inner edges and outer edges by 
Eint and Eext, respectively. We will approximate the functions appearing in the 
system (39) by functions from certain finitely dimensional spaces (the same spaces 
as in [10] a.nd [7]) . The approximations of the functions zL zJ, z\ z4 and t, except 
from the te.st functions from ( 4;1 /3), are the elements of the space Vh : 

Vh = 

{kh E L2(n): v kh It E Pi (ti), v 1 khlcl(ti) ds = r khlcl(t;) ds} , (44) 
l 1 ET ' l1 ,ljET: e .le 

e=ti l tj 

where t; I t_i denotes the common edge of triangles l; a.nd lj, Pi ( l;) - the space of first 
order polynomials defined on a triangle t;, and khlct(t;) is a continuous extension 
of khlt, on the closure oft;. Let ne be the number of triangle edges in a mesh T. 
The elements of the space V,,, which are linear functions on interiors of triangles, 
are uniquely determined by their values in the centres of edges. Thus this space is 
of dimension ne and its basis consists of the functions: 

¢, _ { 1 on the i-th edge, 
' - 0 at the centres of other edges of triangles adj a.cent to e;, ( 45) 

i = 1... ne. On the other hand, z2 , the right-hand sides J};, fl, f 2 , ... , f 5 a.nd the test 
functions for the equation ( 43/3) a.re approximated by piecewise constant functions 
lh over the triangles, 

Lh = {lh E L2 (0): lh It is a constant for t ET}, (46) 

with the basis of characteristic functions over the triangles from T: 

Xk, k = l, ... ,nt, (47) 

where nt denotes the number of triangles in the mesh. Thus, approximations of 
functions from (43) in the above bases will have the form: 

n e 

Zi ~ L Zi,;¢,;, 
i=l 

n , 

n e 

Zi ~ L Zi,;¢,i, 
'i= l 

i = l 

n• 
t ~ Lk-;¢,; 

i=l 

or t ~ L lkXk in (-13/3), 

n, 

ff ~ L if,kXk, 
k= l 
n, 

f~ ~ Lf;Xk, 
k= l 

k=l 
n, 

f.J. ~ L fi,kXk, 
k= l k = l 

n, n, 

f 4 ~ LffXk, 1" ~ LfrXk, 
k= l k= l 

(48) 

with real coefficients Zi,;, z:½,;, z~, z;, z;, k;, lk a.nd Jl,k , f.J.,k, ff, 1;, ft, Substituting 
above sums to the system (4:3), we obtain a system of algebraic equations in the 
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matrix form: 

Szf - W1z2 = Fl 
Szl - W2z2 = F] 

wr zf + w{ z} = F 2 

(D + 0- 1 M)z3 = F 3 

(-D + o-2M)z4 = p4 

n,.1 
z5 = L !hkdx. 

k= l tc 

(49) 

where o-2 = o-1 - div uh E Lh (in turn, uh E (Vh) 2 is a discretization of u) and G}, 
G1 are vectors such that 

Here [u!1,u!2,u!3] and [u~ 1 ,u~2 ,u~3 ] are the values of the first and the second ve­
locity component on the edges of a given triangle tk. The matrices used above are 
defined in the following way: 

S = d= j '17¢/ii'</>j dx]i=l .. n.x j=l..n , 
k=lik 

W1 = [j (xk81</>i) dx]i=l...nc xk=l...n, W2 = [j (xk82</>i) dx]i=l. .n. xk=l...n, 

4 4 

~1 1 1 1 T 2 2 2 T D = [L., <P·i<Pj( Gi[uel, Ue2, Ue~J + G2[uel, Ue2, Ue~J ) dx] ·i=l .. n. xj= l .. n e , 

k=l h 

while the right-hand side vectors are: 

F/ = d= r Jl,kXk<Pi dx]i=l...nc, 
k= l it,. 

F 2 = ct r fl Xk<Pi dx]i=l .. n, , 
k= l lt,. 

(50) 

(51) 

The elements of the matrices, as well as the components of the right-hand side 
vectors can be computed using elementary calculations, like the formula for the 
gradient of linear function. In order to improve numerical properties of the system 
(49), we add to its third equation the stabilizing terms TsrAB.l and TsrAB.2· The 
term Tsr AB,3 is added to the next two equations. These terms are defined as 
follows. 
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Let /3 > 0, 'Y > 0, then 

TsTAB ,1 = h13 

0 

0 
0 

where ltkl denotes the area of k - th triangle. Next, 

TsTAB ,2 = h"[b;j]i=l. .. n,xj= l .. n,, 

with 

{ 
leij1 l9i.i1 ~ ···. + leijnl9ijn for tj1, .. , tin E N(t;) , if 

b;j = - le;jl9ij 1[ i c/ .7 and lj E N(t,;) 

0 in other cases, 

15 

(52) 

(53) 

'i = j 
(54) 

Here e;j = t;ltj (t;lti is a common edge of triangles t; and tj), N(t;) denotes t he 
set of neighbours oft;, and 9ij = (s;h; + Sjhj ), where h; , hi are heights from l; and 
tj which are falling on eij · 
Let tk E T Then: 

{ 
l if tk has 1 neighbour, 

Sk = -~ if tk has 2 neighbours, (55) 
u if tk has 3 neighbours, 

The factor s;h; I e;j I corresponds to the 1 , ½, or ½ part of t he area of triangle 
t .;. Thus the penalty for discontinuity between neighbouring triangles t; and tj is 
proportional to their areas. The last term is 

TsTAB,3 = K.S, (56) 

and the value of small K. > 0 different places of the program; for the definition of S 
see formulas (50) . Owing to the first term, the system ( 49) becomes invertible (it 
corresponds to the condition rI(1r) = 1r in (19). TsTAB ,2 is a regularizing term and 
TsTAB,~ is a term that stabilizes the discretized transport equations, equivalent to 
adding on the left-hand side the Lapla.ce operator multiplied by K.. Thus the final 
form of the discretized scheme is the following: 

Szf - W1z2 = Fl 
Sz~ - W2z2 = Fi 

wr Zi + Wi Zi + (TsTAB.I + TsTAB ,2)z2 = F 2 

(D + u1M + TsTAB ,3)z3 = F 3 (57) 

7. Correctness of the approximation method. For the convergence of numer­
ical method we are going to establish: 

1. The existence of solutions to the discrete scheme (57) by a fixed point argu­
ment. 
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2. The convergence of the sequence of discrete solutions to the solution ( 4::l) 
of the model, taking into account appropriate a priori estimates for discrete 
solutions. 

First of all, the linear Stokes system (l) with the nonhomogeneous Dirichlet 
boundary conditions is transformed by translation to the equivalent system with 
homogeneous Dirichlet boundary conditions. Recall that the Stokes system under 
considerations takes the form: 

b.uo - Vqo = f 1 inn 

div(u0 ) = / 2 inn 

u 0 = U on I:, u0 = 0 on r , M(q0 ) = 0, 

Let u' satisfy the system: 

b.u' = 0 in [l 
u' = U on E, u' = 0 on I' 

Substituting w = u - u', we get: 

b.w - Vq = f 1 in [l 
divw = /2 + divu' in [l 
w = 0 on 80 

(58) 

(59) 

Of course, the second equation satisfies t he compatibility condition if and only if 

i U-ndS = 0, 

this condition is imposed in the subsection 8.2. 
It means that we can apply the scheme ( 40) with homogeneous Dirichlet bound­

ary conditions to the whole systems which we solve, including (1) . Thus, we replace 
the approximation space Vh ( defined in ( 44)) by the space Vt 

(60) 

corresponding to zero boundary conditions. 
Denote by T,, a triangulation T of the diameter h, and by (zL zD - the sequence 
of solutions for (Gl) in the space (V,~) 2 x Lh corresponding to the triangulation T,,. 
The last three equations of the system (57) are solved, after regularization, in a 
standard way. Therefore we will concentrate only on its first three equations hav­
ing the form (G9). We rewrite them in the slightly different, but analogical form: 
Vk1i E (Vf )2 , Vt; E T,, 

1 Vz}. · Vkhdx - 1 z~ div k hdx = 1 f~ · k hdx 
n ,b n ,b n ,b (ol) 

L Ve ,h + hi31 t;lzi,,h + h'Y L lel(s;h; + s1h1 )(z;,, ,h - z;, ,h) = It; I ft~ ,h, 
e=t,l t, 

where Ve,h = lelz! hnt,, nt, is a normal vector to the edge e, pointing outwards the 

triangle t; and In ,b denotes the following sum of integrals: L 1 · 
, t ., ET,, t, 

By the symbol II · llb we will denote the norm of the space (Vf)2 , given by the 
formula: II z1 II~= In b Vz}, : Vz}.dx. 
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7.1. Existence of a solution to the discrete scheme. By an application of 
the Leray-Schauder Fixed Point Theorem (cf. [11]) we can show that the discrete 
scheme (Gl) admits a solution. We recall the theorem. 

Theorem(Leray-Schauder) 1. Let B be a Banach space, T - compact mapping 
from Bx [0, l] to B, such that T(X, 0) = 0 for all X EB. Assume that t here exists 
a constant M such that: 

llx IIB:s;M (62) 

for all (x, >.) E B x [O, l ] satisfying x = T(x , >.). Then the mapping Tr : B -+ B of 
the form T1X = T(X, 1) ha.s a. fixed point. 

Set. B = (V,~) 2 x Lh and denote X = (A, B) E B. Take T : Bx [O, l ] -+ B such that 
T(X, >.) = x E B : x = (zk, z~) satisfies the following system: 

Vkh E (Vi)2 , Vti E 7Ji 

1 v'z1,, · v'khdx - >. 1 B div khd.r = >. 1 fl · khd.r 
fl ,b fl ,b fl ,b 

A L Ae,h + h(3 I ti I z;,,h+ 
e=t,lt; 

>.h-Y L (skhk + s1ht) I e I (z;;.h - zt;,h) = >- I ti I Jt ,h 
e=t d t.; 

(63) 

where Ae,h is defined in the same manner a.s Ve,h· We need to show that the mapping 
T satisfies a.ll the assumptions. For >. = 0 it ha.s the form: 

Vkh E (Vi) 2 1 v'z1,_ · v'kh dx = 0 
fl,b (64) 

Vti E 7'i h(3 I ti I z;,,h = 0 

Obviously, the only solution to the above system is the Lrivial one. Thus T satisfies 
the condition: T((A, B), 0) = 0 V(A, B) EB. The zero solution obviously meets the 
estimate (62) too. Furthermore, T- as a. linear operator, acting in finite dimensional 
space - is compact.. In order to prove the estimate (62) for the solution to the system: 
Vk1i E (Vi)2, Vti ET,, 

{ v'zfi . v'k1idx - >, { z~ div k1idx = >, { f1; · k1idx 
Jn ,b Jn ,b Jn ,& 

), L Ve,h + h(3 I ti I zz,,1i+ (65) 

e=l;l l1 

>.h-Y L (skhk + s1ht) I e I (z;,,h - z;,,h) = >- I ti I J;. ,h, 
e=ti!tJ 

we can use estimates derived for the scheme (Gl) (which is equal to (GS) for>. = 1 ), 
that are presented further in this paper (see 7. 2. l) . Since, employing the analogical 
technique a.s for (Gl), we get the following inequality: 

II Z1,_ lib::; 
1 (66) 
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(symbols c2 , c1 denote certain positive constants, described later - see 7.2.1 ).In turn, 
estimates for zl can be derived from the equation (65/2). Let us multiply it by zl 
and sum over all triangles from Tt,.: 

A r z2 div z 1 dx + h/3 r (z2. ) 2dx+ Jr h h Jr. t ,.,h fl.b fl ,b 

.\h'Y L JeJ(sihi + sjhj)(z;, ,h - z;,,h) 2 =Al Jr,· zldx. 
eE E . fl ,b 

(67) 

After substituting for ,\ fn.b zl div z}, the identity from (6!'i/1) (with kh = z},), we 

get (from definition of nor~ JI · Jib in the space (Vt) 2): 

II z}, Ill +h13 r (zt, ,h)2dx --1- ,\h'Y L JeJ(sihi + Sjhj)(zt, ,h - zt,,h)2 = 
Jn ,b e EE 

,\ l f~ · z},dx + ,\ l R · zldx. Sl,b 11,b 

(68) 

Since the first and the third term on the left are non-negative, the following in­
equality must hold: 

h/3 f (z;, ,h)2 dx :::; ,\ / r,; · z},dx + ,\ l Jr, · zldx , (69) 
ln,b Jn ,b n,b 

and after applying definition of the norm in L2 (D) and Holder's inequality, we have: 
/3 22 1 1 2 2 

h II zh IIL2(n):::; c1 II f" IIL2(nJ2ll zh lib+ II !1i ll ucnJII zh II L2(n), (70) 

then: 

II z'f. llucnJ (h 13 II zl liL2(nJ -.\II!,~ llucnJ):::; .\c1 II r,; llucni2II z}, lib, (71) 

and in consequence: 

.JiJi II zl llucnJ -~ II Jr, ll ucnJ)2 :::; .\c1 II f~ ll ucnJ2 II z}, li b, (72) 

if only 

Otherwise it holds: 
2 ,\ 2 II zh IIPcnJ:::; h/3 II fh llucnJ, 

which already gives an estimate for JI zl IJL2 (fl)· From (72) results: 

(73) 

In the presence of inequalities (66), (7:~) and the fact that ,\ E (0, 1), we have: 

II z}, IJb:::; _!_ c2c1 II f~ IIL2(nJ2 II Jr, llucnJ + c1 II r,; llu(nJ2 +2- II Jr, llucnJ, (74) 
~ ~ 

and 

II zl llucuJ:::; ~ c1 II f~ llucoJ2ll z}, lib + hl/3 II Jr, Jlr,2c11J (75) 

The right-hand sides of the above inequalities are given and independent of A, so 
also the assumption (G2) is satisfied. That ensures the existence of a solution to the 
system (fil). 
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7.2. Converge nce of discrete solutions to the solution of the model. We 
will show t hat the sequence (zL z~) has an estimate in Vn1(0)2 x L2 (0 ) independent 
of the di ameter h of t he mesh . T his makes possible to select a weakly convergent 
subsequence. Furthermore, we have to know that this subsequence converges to the 
model's solution when the mesh diameter h-+ 0. 

7.2.1. Estimates f or discrete solutions. Mult iplying the second equation of the scheme 
(-'i7) by z~ and summing it over all t riangles from T;, , we get : 

J z~ divzkdx+ h/3 1 (zt;,h) 2dx+ h'Y L lel(sihi+sj hj)(zt;,h-zZ;.h)2 = 
n,b n,b eEE . 

(76) 

{ f/; · z~_dx . 
.ln,b 

Next, substitut ing for .J~.b z~ div z f, dx t he identity 

from definition of the norm II · llu in the space Vt 
(til / 1) with k h = zL we get 

II zk. II~. +hi3 j z;,,/dx + h'Y L lel(s; hi + Sj hj)(z;,,,, - z;,_,,) 2 = 
n,b e EE 

J fl · z f,dx + J J; -zl.clx. 
n,b n,b 

(77) 

Removing the last two terms on the left-hand side ,we obtain: 

II z f, Ill.::; J fl · zkd.r, + 1 J; -zl.dx. 
n,b n,b 

(78) 

Employing Holder's inequality to the right-hand side gives: 

II zk. 11~_::; II fl 1iL2(nJ2il zk. IIL2 (n) 2 + II J; IIL2(n)II z~ IIL2 (n)::; 
c1 II f,; IIL2(n)2 II zh li b + 11 f,: IIL2(n) II zl IIL2(n), 

(79) 

wherein the last inequality results from Friedrichs-Poincare inequali ty for the space 
(vi)2, having a form: 

where the constant c1 depends only on n and the regularity of the mesh. In conse­
quence: 

(81) 

assuming that II /1~ IIL2(n)> 0 (otherwise the inequality (78) simplifies). Now we 
can use t he inf-sup stability of t he pair of spaces ((Vi) 2 , Lh) (see [10],[7]): 

f n b zl div(k h)dx 
sup ' Il k II ~c2llz1,-M(zr.)IIL2(n), (82) 

k h E( V,~ )2 h h 

where the constant c2 > 0 is independent of Lhe size of t riangulation. Substituting 
for _J; 1,b Zfi div(k1i)dx the expression (61/1), we obtain: 

f n,b Vzf, · Vkhcl.r, - f n.b fl · k hdx 2 2 
sup II k II · ~ C2 II zh - M(zh) IIL2(n) . (83) 

k 1, E (V,~) 2 h h 
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But, since M(zr,) = 0, we have 11 zl.-M(zr,) llu(u)=II zr, [[P(U)· Next, the following 
sequence of estimates holds: 

j v'z/; · v'khd,r, - 1 fl · khdx 
11,b !Lb 

:S:f / v'z/;. · v'khdx I+ I / fl• khdx [:S: (84) 
.ln,b .! fl,b 

II z/; [[b[[ kh [[b + II f~ IIL2(fl)2 II kh l[L2(DJ:S: 

II zf, [[bl[ k1i [lb +c1 II fl fiu(n) 2 II k1i [lb• 

Then, substituting the estimate from (84) to inequality (83), we get: 

II z/; [lb +c1 II fl [[L2(n) 2 2: c2 II z1, [[L2(n) . (85) 

Employing (81), we obtain the following relation leading directly to the the estimate 
for z);: 

II 1 II + II fl II > II zk lib (II z/; [lb -c1 II fl [[L2(n)2) (86) 
zh b c1 h L2(ii)2 _ c2 II 12 II 

h £2(f1) 

Above inequality gives: 

CJ II fl llL2(!l) 2 II J; II L2(H) C:: 
(87) 

II z/; [[b(c2 II z/; [lb -c2c1 II f~ llu(,1)2 - II J; llu(n))-

Of course, the right-hand side of that inequality can be estimated from below by 
the expression: 

c2(II z;, lib -c1 II f,; IIL2(nJ2 _ _!_ II!,~ llu(n))2, 
C2 

(88) 

if only it is non-negative; otherwise we arrive in the estimate of the form: 

1 1 1 2 
II zh [[b:S: c1 II fh llu(n)2 + - II !1i llu(n) • 

Cz 
(89) 

Thus: 

c2c1 II f,; llu(n)2il !; llu(n) 2: c2 II z/; lib -c2c1 II f,; llu(n)2 - II!; llu(n), (90) 

so finally we have: 

II z/; llb:S: _!_ c2c1 II f,; II L2(nJ2 II !,~ IIL2(nJ + c1 II f,; llu(nJ 2 + _!_ II /,; llu(nJ . (91) 
~ ~ 

Simultaneously, in the presence of (8G) and (Dl ), we easily obtain a bound for 
II z1, llu(n)'. 

2 1 1 C1 1 
II zh llu(n):S: - II zh [lb+ - II fh llu(n)2 • (92) 

C2 Cz 

For further computations it will be also necessary to estimate the expression I z~ [1,,, 
defined in the space Lh in the following way: 

fz~fh = L (hi+ hJ)fef(z;;,h - z;;,,J2. (93) 
eEE,nt 

LFrom the equality (77) follows that: 

h"i L fef(si hi + Sjhj)(z;,,h - z;;,h) 2 :S: / fl• z/;dx + / J; · pdx. (94) 
eEE .! n,b .! n.b 
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Purlhermore, as Si~ t, lhen 6(sihi + sJhJ) ~(hi + hJ) and: 

h' L lel(hi + hj)(z;, ,h - zz,,h)2 :C:::: 6h' L lel(sihi + Sjhj)(z;,,h - z;; ,h) 2. (95) 
eE E eE E 

Thus, an estimate for lz~_l7i, can be obtained on the basis of the estimate of the 
right-hand side of (04). 

By Theorem 3.3 in [IO] it follows that the estimates for discrete solutions (zk, z~) 
in Vii1(0) 2 x L2 (0) which are independent of the mesh size imply the strong con­
vergence of the sequence z}. in L2 (0)2 to the limit z1 from HJ(0)2 and the weak 
convergence of z~ in L2 (0) (these convergences hold for subsequences only). 

7.2,2. Convergence of discrete schemes to the model. We want to show that the 
scheme: Vkh E( V,. )2 Vt; E Ti, 

1 v'zh - v'khdx - 1 z~ div khdx = 1 f~ -k1idx 
n ,b n ,b 0 ,b 

L v, ,h + h13 1tdzf,,h + h' L lel(sihi + Sjhj)( zz, ,h - zz; ,h) = It; I fZ; ,h 
(96) 

e=l; /l1 e=l;_ /l; 

converges to the system of the form: 

1 v'z1 . v'kdx -1 z2 div k = 1 f 1 . kdx vkECJ"(fl )2 
!! !! !! 

L div(z 1 )ldx = L f 2 ldx V1 ECJ"(fl) 

(97) 

Since the proof of convergence of the first equation in the scheme (96) to the first 
one in (07) is considered in the paper [ l OJ, we can direct the reader to that source, 
Regarding the convergence of the second one, we do not have a ready result but we 
may apply some ideas from [10]. First, multiplying (96/2) by the approximation 
l1i E Lh of a smooth function l E Cg"(O) and summing over all triangles from fh , 
we obtain: 

denoting: 

T1 +T2 +T:i = L I ti I fL,A,h , 

T1 = L L v,,hlt,,h 
t,ETh e=t,/ t; 

l; ET 

tiE l/i 

T3 = L h' L lel(sihi + sJhj)(z;,,h - z;;,h)lt, ,h, 
l;ET e=t,/ t; 

(98) 

(99) 

where lt ,,h is the mean value of l on the triangle ti- We will show that the first, 
term converges to J; 1 div z 1l dx and the other two tend to zero when h---, 0. At the 
beginning, one can notice that the following equalities hold: 

T1 = ( div z}.lhdx = 1 div zt.(l1i - l)dx + 1 div zf,Zdx, (100) 
Jn ,b n ,b n ,b 
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since: lh--+ l in L2(D) (according to Lemma 2.1 (3) from [10]), and div zA is bounded 
in L2 (D) on every triangle t;, as: 

l l az~ h az~ h 
(divzf,)2dx = (-,- ' dx + -,- ' )2dx = 

. t , . 1, 8x1 8x2 

1 8z1 2 8z1 8z1 8z1 2 

( _____.!l!:_ + 2_____.!l!:_-2!::. + -2!::. )dx < 
1, 8x1 8x1 8x2 8x2 -

(101) 

a i 2 a i 2 l Z1,h z2,h l 1 . 1 1 
2 (-a- + -a- )dx '.S 2 'vzh · 'vzh = 2 II zh llb · 

, t; X1 X2 , t i 

Next, integrating the second term by parts, we get 

1 divzkldx = -1 zA'vldx --+ -1 z 1'vldx , 
11 ,b 11.b h->0 !l 

because it was already demonstrated that zA --+ z 1 in L2(D) 2 to a function from 
h -> 0 

HJ(D)2. Applying integration by parts one more time, we obtain the needed result 
for the first term. Obviously, the second term T2 tends to zero when h tends to 
zero since, as it was already shown, the expression II z~ IIL2(1l) is bounded. As for 
the term T.1, from the boundedness of I z~ ITh we get T.1--+ 0, owing to: 

T3 = L h7 L /e /(s;h; + Sjhj)(zz,,h - ZZ;,1.llt , '.S 
t, ET e=t,l t ; 

(102) 
:::; L h7 L /e /(h; + hj)(zi,,h - z;;,h)lt, :S: h7 I z~ 1h11 lh llc.';"(fl)hjo 0 

t , ET e=t, /t, 

Finally, again from Lemma 2.1(3) from [10], it is obvious that: 

L It; I ft~ ,hlt,,h = L It; I ft~ ,h(lt, ,h - l) + L It; I !l ,hl 
t ,E7i, 

--+ L I t; I JZ,hl , 
(103) 

t ,ET,, 

and from the weak convergence of ft~ ,h in L2 (D) we have: 

L I t; I 1rh1--+ In f 2 ldx. 
t iE T,i 

(104) 

This, with convergence of the terms T1, T2 and T3 from the left hand side of (98), 
gives the result. 

The novelty of the analysis performed above consists in considering the system 
with f 2 =/ 0. The reasoning is based on [10], [7], where a nonlinear system was 
considered, but had to be supplemented by the elements taking into account this 
non-homogeneity. 

8. Example of obstacle shape optimization. 

8.1. Shape and size of the computational domain D. We define the compu­
tational domain Das an ellipse with two small circular holes inside(one of them is 
the inlet, and the other one - the initial shape of the obstacle, see Fig.1 ), situated 
symmetrically with respect to its centre. The radii of the considered ellipse are 30 
and 16 units. The centres of the circles lie in the horizontal axis of the ellipse, each 
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in the distance of 3,5 from its centre. The length of the radii of both circles equals 
1. 

8.2. Boundary conditions - vector field U. Vector field U, that appearsin the 
boundary condition (2c) is chosen in such a way, that it satisfies the compatibility 
condition for the equation (1), which reads: 

{ V -n ds + { V - n ds = 0. 
)Ei.n lz:. out 

It corresponds to the physical condition that the same amount of the fluid enters 
and leaves n. We assume that the fluid passes through the boundary 80 in normal 
direction. We take U = a 11 \:'~:~•1~ (a E IR), which is the velocity field in the solution 
to the system (116) defined for x 0 , the source of the gas, taken as the coordinates 
of the centre of ~in· 

8.3. Optimization step. Using the gradient method, we want to find a trans­
formation of fl acting in the direction of the steepest descent of J. For a fixed 
discretization of r, the vector field T is a linear combination of basic fields T; 
related to the boundary points i = l..nb, namely: 

(105) 

where t = [t;], i E 1..nb are real coefficients. Thus the gradient of the functional J 
contains the derivatives with respect to the basic fields 

_ [ 1 n,l _ aJ _ [ aJ aJ ] g - g , ... ,g - -8 - -8 , ... , -8 
t tl tnb 

(106) 

taken at t; = 0, ·i = l..nb. 
In order to construct these fields , we approximate the boundary r by a closed 

spline curve ~ of class C 2 , passing through all the points of the discretized boundary 
(which are the vertices of triangles from T that touch r) and parametrized by the 
arc length s: 

(107) 

where L is Lhe length of r. Since we want to construct normal movements of the 
boundary, for every point Pk we need a formula for the outer normal vector. It has 
the form: 

N~t(sk) [o -lJ 
Ilk = II ~1(sk) II ' N = 1 O 

(108) 

Then we define the hat function around a given boundary discretization point of r 
by the following formula: 

b () [ ( dist(s,sk))2] ks = exp- , 
Wo 

(109) 

where dist(-, sk) is a minimal distance of s from sk: 

dist(s, sk) = min{ ls - sk i, L - Is - ski} (llO) 

a.nd the constant w0 determines the "width" of the function bk(s). To obtain a 
normal shift of every boundary point Pj, we multiply bk(sj) by the normal vector 
nj: 

hk(Pj) = bk(sj)nj , j = l..nb (111) 

Applying the formula (27), all vector fields Tk on fl can be evaluated . 
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During our computations we impose two obvious constraints. The first is the 
constancy of the volume, since otherwise the optimal obstacle would reduce to the 
single point. If we assume, that t he boundary nodal points of Sh move by the vector 
LkEl..n" (khk, then the requirement of fixed volume reduces to 

L (k (1 divTkdx) = L (kdk = 0 
k El..nb oh k El..nb 

where dk = fnh div Tk dx . 
The second constraint concerns the position of the mass centre of the boundary 

of the obstacle. The speed of the flow decreases with the distance from the inlet, 
therefore, in order to reduce the drag, the obstacle would move as far to the right 
as it is possible, see Fig. 1. We want to prevent it, because we are interested in the 
optimal shape at the specified position. 

The condition for the mass center to be fixed at, the origin reads 

{ Xj ds = 0, j = 1, 2. (112) 
las,. 

This may be transformed as follows: 

l ~ ~ Xj ds = L.., lkx_; ~ lo L.., xj , 
DS,. k=l k=l 

Here we have assumed that the lengths of boundary edges lk are approximately the 
same and equal 10 . This condition holds at the beginning of each optimization step, 
see next paragraph. Therefore, in view of (1 12), 

n, 
I::.-r; = o, j = 1, 2. (113) 
k=l 

Now if we move each nodal point by I:Z'.:c 1 (khk (Pi), i = 1, ... , nb, the above 
condition takes on the form 

t [·r,J + t(kh{(Pi)] = 0, j = 1, 2. 

Because of (113), the condition for keeping mass centre of rh. in place thus becomes 

nb [ n , ] ?; (k ~ h{(Pi) = 0, j = 1, 2. (114) 

Let us denote 

nb 

f;_i = [h·{, .. . ,ii.n,]r, where ii.{= Lh-1(Pi), j = 1,2. 
i= l 

As a result we must project the gradient g on the intersection of three hyperplanes 
n, 

L(kdk = 0, 
k=l 

It is easily done by taking 

n, 

L (kii.{ = 0, j = 1, 2. 
k=l 
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and finding eto, a 1, a2 from equations 

gf d = 0, gf h1 = 0, gf h2 = 0. 

As it was mentioned above, after each optimization step we distribute Sk approx­
imately uniformly along ~(s), see (107). This simplifies the condition for keeping 
the obstacle in place, but also prevents other undesirable behaviour. In places of 
higher curvature the nodal points on f1t may get nearer and nearer in the process 
of optimization. Keeping the distances between these points equal prevents them 
from overlapping during the consecutive optimization steps. T he results of t he 
computations are shown in Fig.2. 

6. 15 ~--~---~---~--~ 
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5.7~--~---~---~--~ 
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Figure 2. On the left: the plot of J versus number of steps; on the right: t he final 
shape of the obstacle r after minimization of the drag 

8.4. Experimental computation of the rates of convergence of FE and 
FV. To investigate the rates of convergence of both methods, we use the Stokes 
system: 

L'l.u - 'vp = 0 in St 

div(u) = 0 inn 

u = u on an 
(115) 

with the field U generated by a fundamental solution (Stoklet) to the system: 

L'I.U1 - 81P = o(x - xu) in lii?.2 , 

L'I.U2 - 82P = 0 in lR2, 

div(U) = 0 in 1R2 , 

(116) 
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where x 0 ¢. n. Thus, the solution to (11G) is given by the formula: 

2 x? - x 1 
·u1 = -0.5 log(II x - xo 11 ) + II x _ xD ll 2 

(x, - x?)(x2 - xg) 
U2 = II x - xn 112 , 

(117) 

2(x 1 - x?) 
P = II x - x 0 11 2 ' 

In order to compute the rates of convergence of u and p, we make 3 subsequent 
mesh condensations (every time we take h := ½h). Regularity of the mesh is assured 
by Matlab's algorithm. Denote by ·u1err, ·u2err and perr errors of the velocity 
components and the pressure, computed in the norm of L2 (0). We take the total 
error of the velocity as: 

uerr = Ju,1err2 + u2err2. (118) 

In both methods the same scheme (57) and the same stabilizing terms (52), (53), 
(5G) have been employed. The values of (3 and I are chosen in such a way(/3 = 1, 2, 
1 = 0, 6) t hat they minimize the errors of the Stoklet solution. The same values were 
used in the computations done during the optimization. The convergence rates of 
the velocity and pressure obtained from comparison with exact solutions are 3.0714 
and 0.9158 for FE compared to 2.5763 and 1.5480 for FV. One can remark that error 
values themselves are not actually important, only the convergence rate - since for 
the same triangulation the number of discrete variables for FV is approximately 3 
times bigger than for FE. The obtained results are presented on the plot below: 

·1 

-2 

r .3 

ci 
,!! -4 

.5 

-6 

Figure 3. 

It can be concluded that FV approximates the pressure more accurately, whereas its 
advantage in accuracy for the velocity decreases with subsequent mesh condensation 
steps. However, the accuracy of the pressure is crucial in this case. 
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