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ABSTRACT: This paper is concerned with the numerical solution of the thermoelastic wheel-rail rolling 
contact problems including friction, frictional heat generation and transport across contact surface as well as 
wear. Three-layer model of raił materiał is assumed. Materials in upper and !ower layers are characterized 
by distinct constant mechanical and thermal parameters. Middle layer materiał parameters are dependent on 
the depth of this layer according to the exponential law. The displacement and the temperature of the raił 
are governed by the coupled hyperbolic variational inequality of the second order and the parabolic equation, 
respectively. Using the special features of the rolling contact problem the original time dependent problem is 
transformed into the quasistatic elliptic problem and numerically solved. Distributions of stress and temperature 
fields in the contact zone are provided and discussed. 

INTRODUCTION 

Contact phenomena appear in different fields of engi­
neering sciences and are subject of intensive research 
(Choi et al. 2008, Giannakopoulos et al. 2000, Guler 
2009, Sextro 2007, Suresh 2001, Wriggers 2006). 
These phenomena may include among others fric­
tion, frictional heat generation as well as heat transfer 
across the contact surface and wear. Contact phenom­
ena may generale high stresses between contacting 
surfaces. Repeated overstressing of the surface or sub­
surface materiał by intensive wheel-rail contact cycles 
may lead to rolling contact fatigue, noise generation 
and reducing of journey comfort for passengers. The 
control and/or reduction of wheel-rail contact stress 
is subject of great interest of the railway engineering 
community. 

This paper deals with the numerical solution of 
the thermoelastic rolling contact problems. The con­
tact of a rigid wheel with an elastic raił lying on a 
rigid foundation is considered. The friction between 
the bodies is assumed to be governed by Coulomb 
law (Chudzikiewicz et al. 2011, Chudzikiewicz et al. 
2012, Shillor et al. 2004, Wriggers 2006). The heat 
generated due to the friction is transported across the 
contact suiface and increases the temperature of the 
contacting bodies. We employ Archard's law of wear 

(Meng et al. 1995, Paczelt et al. 2007). On a macro­
scale the existence of the wear process can be identi­
fied as wear debris. This debris is assumed to disap­
pear immediately at the point where it is formed. In 
the model the wear is identified as an increase in the 
gap between bodies. Moreover the dissipation energy 
is being changed due to wear. The displacement and 
temperature of the contacting bodies are governed by 
the weakly coupled system of hyperbolic variational 
inequality and parabolic heat equation, respectively 
(Chudzikiewicz et al. 2011, Ertz et al. 2002, Jang et 
al. 2007). 

The elastic or thermoelastic rolling contact prob­
lems were considered by many authors. For details 
see the references in monographs (Guler 2009, Han 
et al. 2002, Sextro 2007, Shillor et al. 2004, Wrig­
gers 2006). Among others, in (Ertz et al. 2002) ther­
moelastic wheel-rail contact problem was solved nu­
merically using Hertz contact model as well as Green 
function approach to solve the heat equation. It was 
also pointed out in (Ertz et al. 2002) that not only heat 
conduction but also heat convection should be taken 
into account in wheel-rail he.at flow. Thermoelastic in­
stability in two dimensional contact problem has been 
considered in (Jang et al. 2007) where the heat flow in 
friction materia! components was described by con­
duction convection term. Numerical experiments in 



(Jang et al. 2007, Guler et al. 2013) indicate that the 
use of a graded layer or a coating materiał attached 
to the conventional steel body of the rai! reduces the 
magnitude of residua! and/or thermal stresses. Sim­
ilar conclusions based on results of experiments are 
reported in (Hiensh et al. 2005, Suresh 2001). 

In this paper we solve numerically the thermoelas­
tic rolling contact problem assuming the existence of 
a small elastic multi-layer on the raił surface rather 
than a single graded layer as in (Chudzikiewicz et 
al. 2011 ). It consists from two sublayers having con­
stant distinct materia! parameters and a functionally 
graded materiał layer between them having mate­
ria! properties dependent on its depth according to 
the exponential law. Following (Chudzikiewicz et al. 
2011, Chudzikiewicz et al. 2012, Chudzikiewicz et 
al. 1992, Ertz et al. 2002) special features of this 
rolling contact problem are taken into account and 
so-ca!led quasistatic approach to solve this problem 
is used. In this approach the inertial terms in dis­
placement and temperature governing equations are 
replaced by the stationary terms reflecting the dynam­
ics of the body rather than completely neglecting it as 
in classical quasistatic formulation (Han et al. 2002, 
Shillor et al. 2004). Therefore, after brief introduc­
tion of the thermoelastic model of the rolling contact 
problem with friction and wear in the framework of 
two-dimensional linear elasticity theory (Han et al. 
2002, Sextro 2007) the generał coupled time depen­
dent system describing this physical phenomenon is 
formulated. This system is transformed into equiva­
lent stationary system in so-called quasistatic formu­
lation (Chudzikiewicz et al. 1992). To solve numeri­
cally this stationary system we will decouple it into 
mechanical and thermal parts (Chudzikiewicz et al. 
1992). Finite element method is used as a discretiza­
tion method (Efendiev et al. 2009, Hou et al. I 999, 
Kim et al. 2002). The numerical results are provided 
and discussed. 

2 FORMULATION OF THE PROBLEM 

Consider deformations of an elastic strip lying on a 
rigid foundation (see Fig. !). The strip has constant 
height h and occupies domain n E R 2 with the bound­
ary r. A wheel rolls along the upper surface re of 
the strip. The wheel has radius r 0 , rotating speed w 
and linear velocity V. The axis of the wheel is moving 
along a straight line at a constant altitude ho where 
ho < h + r 0 , i.e., the wheel is pressed in the elastic 
strip. It is assumed, that the head and taił ends of the 
strip are clamped, i.e., we assume that the length of 
the strip is much bigger than the radius of the wheel. 
Moreover it is assumed, that there is no mass forces in 
the strip. The body is clamped along a portion r O of 
the boundary r of the domain n. The contact condi­
tions are prescribed on a portion re of the boundary 
r. Moreover, ro n re= 0, r = f'o U f'e. 
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Figure I: The wheel rolling over the raił strip. 
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2.1 Materiał properties ofthefunctionally graded 
materiał 

Assume !1 = !11 u !12 u [13 where n1 ([13) denotes 
upper (!ower) part of the raił strip having thickness 
he (h,). Materia! properties of layers n1 and [13 are 
assumed to be constant and homogeneous throughout 
their whole volumes . The middle layer n2 has thick­
ness h9 and constitutes a graded coating layer com­
posed of steel and ceramic (see Fig. 2). The coating 
layer materia! has a variation property along its height 
in the occupied subdomain. The graded materiał coat­
ing of raił is assumed to be processed in such a way 
that the property grading is smooth. It implies that 
the discontinuities in the materiał property distribu­
tion are eliminated and stresses through the composite 
layer are bounded. 
In literature (Yang et al. 2008) are used power, expo­
nential or sigmoidal models of the graded layers. In 
the paper we use the exponential model of the graded 
layer rather than the power one as in (Chudzikiewicz 
et al. 2011 ). Materiał properties in this layer are as­
sumed to be a function of the layer height and are de­
scribed by the following equation (Yang et al. 2008): 

P(x) = Pe en(x2 /h,), n= In(;:) , 

(I) 

where x = ( x1 , x2) E n2, P = P( x) denotes the mate­
riał property dependent on spatial variable x2 and Pe, 
P, are the ceramic property and the steel property, re­
spectively. Constant n denotes the non-homogeneity 
parameter of the graded materiał. P may be used 
for the elastic modulus, the thermal expansion, the 
thermal conductivity or the thermal diffusivity coeffi­
cients. Distribution model (I) indicates that the com­
position would vary continuously from homogeneous 
steel materiał near the ]ower interface to homoge­
neous ceramic near the surface. Thus the materiał is 
purely steel at the core part and gradually move and 
approaches the ceramic properties at the upper sur­
face of coating layer. The inner materiał distribution 
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Figure 2: Graded joint. 

of graded layer is determined by the parameter n. For 
n < O the caating layer is more ceramic rich while for 
n > O is more steel rich. Remark n = O denotes the ho­
mogeneous raił materiał, i.e., there is no graded layer. 
Along the boundaries of the subdomains 0 1 and 0 2 as 
well as 02 and 0 3 the materiał properties are assumed 
to be continuous. (see Fig. 2). 

2.2 Thermoelastic model 

The thermoelastic rolling contact problem is de­
scribed by the coupled thermoelastic system of equa­
tions. Let us denote by u = (u1, u2), u = u(x, t), 
x E O, t E (O, T), T > O, a displacement of the strip 
and by 0 = 0(x, t) the absolute temperature of the 
strip. Since the raił consists from the graded layer 
02 and the layers n1 and 0 3 we denote by u9 , Uc 

and u, as well as by 09 , 0c and 0, the displacement 
and temperature of these layers, respectively. There­
fore u= uc, u9 , u, in 0 1, 0 2 and 0 3 , respectively. The 
similar relation holds for the temperature 0. 

Assume the wheel and the raił are brought into 
contact under the action of the static wheel load. 
The contact area and the contact pressure distribution 
are usually calculated using Hertz's theory (Hiensh 
et al. 2005). Here we use two dimensional elastic 
linear model and Coulomb friction model to deter­
mine contact area and stress distribution. The dis­
placement u and the temperature 0 of the raił strip sat-
1sfy the system of evolution equations in O x (O, T) 
(Chudzikiewicz et al. 2011, Meng et al. 1995): 

82u 
P fJt2 = A* DAu - a(3.,\ + 21 )'v0, (2) 

80 
Pr .. -= Rb.0 ..,,, at ' 
with the initial and the boundary conditions: 

u=O onr0 x(0,T) , 

B*DAu=F onrcx(0,T), 

(3) 

(4) 

(5) 

u(0) = iio, u'(0) = u1 

0(0) = 0 in o, 

in O, 

80 
fJn(x,t)=q(t,x) onrx(0,T), 

(6) 

(7) 

(8) 

where u(0) = u(:i:,0), u'= du/dt, u0 , u1, 0, q(t,x) 
are given functions, p is a mass density of the strip 
materiał, a is a coefficient of thermal expansion, R is 
a thermal conductivity coefficient, <;, is a heat capac­
ity coefficient, ro= r \re.The operators A, Band 
D are defined as fellows (Chudzikiewicz et al. 20 I 1, 
Chudzikiewicz et al. 1992) 

(9) 

[ 
.,\ + 2, .,\ O] 

D = ~ .-\ 62, ~ , (IO) 

where n= (n1, n2) is the outward norma! versor to 
the boundary r of the domain O, .,\ and I are Lame 
coefficients (Chudzikiewicz et al. 201 l) related with 
Young modulus E and Poisson's ratio v by relations 

.-\= Ev 
(l+v)(l-2v)' 

E ,= 2(1+v)' 

Lame coefficients are constant in 0 1 and 0 3 • In 0 2 
they are dependent on x2 in 0 2 according to (l). 
Therefore operator D is also assumed to be constant 
in 01 U 0 3 and to depend on the depth of the raił 
(Hiensh et al. 2005, Jang et al. 2007) according to the 
exponential law (I) in 0 2 • Coefficients Rand Cp in (3) 
are assumed to be constant in 0 1 and 0 3 as well as to 
depend on spatial variable x2 in 0 2 according to (I). 
The matrix A* (B*) denotes a transpose of A (B). 

Due to the dependence of stress also on tempera­
ture in the equation (2) appears the gradient 'v 0 = 
[;:1 , ::,Jr of temperature 0. Therefore the operator 
equations (2) and (3) are midly coupled. 

By a= (a11,a22,a12) and F we denote the stress 
tensor in domain O and surface traction vector on the 
boundary r, respectively. The surface traction vector 
F = (F1 , F2) on the boundary r c is a priori unknown 
and is given by the conditions of contact and friction. 
Under the assumptions that the strip displacement is 
suitable small the contact conditions on r c x (O, T) 
take the form (Chudzikiewicz et al. 2011): 

U2 + g,. + W :s; o, F2 :S: o, 

(u2 + 9r + w)F2 = O, ( 11) 

(12) 



(13) 

where µ is a friction coefficient and u2 denotes ver­
tical component of u . For the sake of simplicity we 
assume here this friction coefficient is constant. In 
generał it may be dependent on temperature 0 or 
sliding velocity ~- Under suitable assumptions the 
gap between the bodies is equal to 9r = h - ho + 
✓r5 - (u1 + x 1 ) 2 (Chudzikiewicz et al. 2012). Con­
ditions (11)-(13) describe the contact phenomenon. 
Nonpenetration condition (I I) implies that either the 
bodies are in contact characterized by the displace­
ment satisfying first condition in (11) as equality and 
nonzero norma! contact stress or the contact does not 
appear, i.e., the displacement condition is satisfied as 
strong inequality and the norma! contact stress is zero. 
Conditions (12)-(13) describe Coulomb law of fric­
tion. 

Function w = w( x, t) in (11) denotes the ad­
ditional distance between the bodies due to wear 
(Chudzikiewicz et al. 2011) of the contacting sur­
faces. For details concerning wear phenomenon and 
models see (Meng et al. 1995, Paczelt et al. 2007). 
We assume wear on the boundary r c x (O, T ) is gov­
erned by Archard's law (Meng et al. 1995), 

dw 
- = kV F2 . (14) 
dt 

w = w(x, t ) is an interna! state variable to model 
the wear process taking place at the contact interface 
(Meng et al. 1995). k > O denotes a given dimensional 
wear coefficient. In the considered model the wear is 
described as an increase in the gap in the norma! di­
rection between the contacting bodies. For general­
izations of wear models see (Paczelt et al. 2007). 

Displacement continuity condition is also assumed 
on the interfaces between the layers, i.e. , 

(15) 

Ug = U s On lt2 n lt3. 

It is well known (Hiensh et al. 2005) that for the 
observer fixed to the wheel the contact patch moves 
with respect to the wheel surface. The frictional heat­
ing within this patch is generally a time dependent 
heat source. We confine to consider the simpler case 
when the heat source term is stationary, i.e., we as­
sume that in (8) function q( t, x ) = ą{x) = q is not 
dependent on time. The boundary conditions asso­
ciated with the heat equation are dependent on con­
tact between the bodies and surrounding environment. 
Consider the boundary condition (8) . The first case 
is when the surfaces of the wheel and the raił are in 
coniact. It causes heat generation due to friction. This 
heat flow is expressed as the boundary condition 

on re X (0,T ), (] 6) 

where ą is a given function which may depend on 
space variables . We use ą given by (31). When the 
contact surfaces are separated the boundary condition 
(8) takes the form 

-K 80c (x t ) = O. an ' (17) 

Temperature continuity condition is also assumed on 
the interfaces between the layers, i.e., 

(18) 

0g = 0, on n2 n l13. 

Along the boundary r0 temperature 0c = 09 = 0, = 0a 
where 00 denotes the given temperature of the sur­
rounding air. At the initial moment t = O tempera­
ture of raił is assumed to be the same as the given 
temperature 00 of the surrounding air, i.e., 0c(0, x ) = 
03 (0 ,x) = 0g(o,x) = 00 in n. 

3 QUASISTATIC FORMULATION 

The system of thermoelastic equations (2)-(3) with 
the boundary and initial conditions (4)-(18) may be 
solved using generał or specialized methods. Laplace 
transform method belongs to the first group. To solve 
this system usually Green function approach is used 
(Hiensh et al. 2005). Assuming that heat source is 
constant in time and space surface temperature inte­
grals are expressed in terms of the error function and 
the exponential integral for which series expansions 
are known. In this approach, as in (Hiensh et al. 2005), 
time t elapsed since entering the contact area is substi­
tuted with the current position x in a coordinate sys­
tem fixed to the contact patch. It results in wheel or 
raił temperature integrals depending only on spatial 
variables. We propose slightly different way to elimi­
nate time t from this system. 

Taking into account the special features of 
the contact problem (2)-(18) one can reform u late 
it in the framework of the quasistatic approach 
(Chudzikiewicz et al. 20 I 2). This approach is based 
on the main assumption that for the observer moving 
with a wheel with the constant linear velocity V its 
displacement does not depend on time. Moreover !et 
us assume: 

(i) the Jength of the strip is much bigger 
than the radius of the wheel, 

(ii) for the observer moving wi th the wheel 
the displacement of the strip does not 
depend on time, 

(iii) the velocity of the wheel is small enough, 
(iv) the temperatures very soon approach 

steady-state values, 
(v) in the contact area the heat is generated 

due to friction and the heat flow rate 
is transformed completely into heat, 



(vi) the wear debris disappear immediately at 
the point where it is formed influencing 
the contact conditions by increasing 
the gap between the contacting bodies only. 

Since we consider the raił which has finite length 
rather than infinite length assumption (i) is the min­
imal requirement to formulate displacement equation 
(2) as well as thermal equation (3) with initial and 
boundary conditions (4)-(18). Assumption (ii) is es­
sential to transform the original contact problem into 
quasistatic one. The observer does not distinguish be­
tween points of the upper swface of the raił. Assump­
tion (iii) is introduced to ensure the positive definite­
ness of the stiffness matrix, i.e., the existence of solu­
tions to the contact problem. Remark this assumption 
imposes an upper bound on the admissible wheel ve­
Iocity. However due to the application of the scaling 
technique, numerically wide range ofwheel velocities 
appearing in the operational systems can be covered. 
Assumption (iv) means that the considered heat flow 
rate is not strongly dependent on time, i.e., is station­
ary or close to this state. Such assumption appear also 
in (Hiensh et al. 2005). However Jet us remark that 
in (Dohrman 2001 ), where strongly non steady heat 
flow is considered this assumption does not hold. Tak­
ing into account heat convection it leads also to more 
complicated and difficult finite element model to be 
so.lved. These elements motivates the assumption (iv). 
Assumption (v) states that all friction energy without 
dissipation is transformed inte heat energy and is used 
to increase the temperature of raił only. Recall fric­
tional beat energy may increase temperature of wheel 
as well as of raił (Hiensh et al. 2005, Chudzikiewicz 
et al. 2012). The last assmnption simplifies the wear 
phenomenon. Contact models assuming the existence 
of intermediate Iayer of wear particles between con­
tacting surfaces are still under development and it is 
not known whether they possess a solution. 

To transform equations (2)-( 18) into quasistatic 
form let us introduce the new Cartesian coordinate 
system 0':r\x2 hooked in the middle of the wheel. 
The new system O'x'1x2 and the original one Ox1x2 
are related by: 

x'1 = x 1 - Vt, (19) 

Since by assumption (i i) u( x'1, x2) does not depend on 
time we obtain: 

au( I ') au( ) at X1,x2 = at X1 - Vt,x2,t = O. 

By elementary differentiation (19)-(20) imply 

au= -V au 
at Bx1 

and 

Using the same argument we obtain: 

80 =-V~ 8w =-Vaw_ 
at Bx1' at Bx1 

(20) 

(21) 

(22) 

Let l1 denotes now the moving part of the strip 
seen by the observer. Taking into account (19) and 
using (21)-(22) we can transform system (2)-(18) into 
the quasistatic form. This problem has the following 
form: find u= Uc, u9 , u, and 0 = 0c, 09 , 0, depending 
on spatial variables only satisfying displacement gov­
erning equations 

A* DAu - pV2 ~ - a(3>- + 
ax1ax2 

21)v'0=0 inl1 , 

and temperature governing equations 

-V~=Ka20 
8x1 ax~ 

in n , 

(23) 

(24) 

where K(x2) = p(;,<i:,L) is thermal diffusivity coef­
ficient depending in l12 on x2 according to (I). In 
l11 and l13 thermal diffusivity coefficient has distinct 
constant values. Let us transform the boundary con­
ditions (4)-(18) into equivalent ones using (19)-(22). 
Strip clamped condition (4) takes the form 

Uc = u9 = u, = O and 

0c = 0g = 0, = 0. on ro. (25) 

Displacement continuity conditions ( 15) and (18) be­
come 

(26) 

u9 =u„ 09 =0, onl12n_l13. 

In the contact zone the surface traction vector F in 
condition (5) is determined by 

(27) 

Contact and friction conditions (11)-(13) take the fol­
lowing equivalent form on re, 

Uc2 + 9r + W ~ O, F2 ~ O, 

(uc2 + 9r + w)F2 = O, 

au1 
-F1-<0 

ax1 - ' 

au1 (I F1 I-µ I F2 I),,= o. 
UXJ 

The boundary beat flow condition (8) becomes 

80 
-K- = {j Oil re, 

OX2 

where 

_ _ 0 kpc0 
q = a[-F2 + (1- -)µV F2). 

r µ 

(28) 

(29) 

(30) 

(3 l) 



In (31) & represents the fraction of frictional heat flow 
rate entering the raił, r is thermal resistance constant 
(Chudzikiewicz et al. 1992). Remark, the form of ą 
follows from the balance of heat energy along the 
contact interface. Under assumption (vi) the formed 
wear debris disappear immediately without interfer­
ing with contact conditions apart from changing the 
gap between the wheel and the raił. The disappearing 
wear debris are warm due to wear process as well as 
due to conduction from surrounding heated materia!. 
Term µ V F2 in (31) is the power of frictional forces. 
Power generated due to these forces is decreased by 
the power carried away as heat in Ioose wear parti­
cles. The dissipated wear debris power is assumed to 
be proportional to the wear rate and the temperature 
of the contacting surfaces. The first term in (31) de­
scribes the transfer of heat from the wear debris into 
raił by conduction. Here it is assumed that the contact 
resistance to heat flow is inversely proportional to the 
contact pressure. For detailed derivation of q see ref­
erences in (Chudzikiewicz et al. 2012). 

Moreover wear condition (14) takes the form 

ow 
-=-k~. (3~ 
OX1 

There are also given initial conditions (5), (6) where 
the given functions are assumed to be zero. The initial 
temperature of the raił is equal to the given tempera­
ture e •. 
In order to solve numerically quasistatic system (23 )­
(32) and ensure the existence (Shillor et al. 2004) of 
solutions to this system we have to consider it as a 
problem with the prescribed friction. It means this 
problem has to be replaced by the regularized one. 
Let c > O denotes a regularization parameter. We use 
in numerical algorithm the following formula relating 
tangential Fi and norma] F2 tractions on the contact 
boundary fe (Chudzikiewicz et al. 2011) 

F1 = Fi(c,F2,u1) = 

1 OU1 
-µ I F2 I a.rcta.n[-(V,,)]. 

E: uX1 
(33) 

Remark the proposed quasistatic approach based on 
the assumptions (i)-(vi) consists in replacing the time 
derivatives terms in equations (2)-(3) by the station­
ary terms depending on the wheel velocity and spa­
tial derivatives of displacement or temperature. These 
terms still reflect the dynamics of the moving body 
rather than completely neglect it as in the classical 
quasistatic formulation (Sextro 2007). Therefore the 
original nonstationary system (2)-(14) is transformed 
into the stationary one (23)-(33). 

4 NUMERICAL ALGORITHM 

Problem (23)-(33) is a coupled thermoelastic prob­
lem. Remark, the contact traction depends on the ther­
mal distortion of the bodies and wear process. On 

the other hand, the amount of heat generated due to 
friction depends on the contact traction. The main so­
lution strategies for coupled problems are global so­
lution algorithms where the differentia] systems for 
the different variables are solved together or operator 
splitting methods. In this paper we employ operator 
split algorithm. The conceptual algorithm for solving 
quasistatic system (23)-(33) is as follows 

Step I : Choose 0 = 0° and w= w0 . Choose 
1) E (O , 1). Set k = O. 

Step 2 : For given Bk and wk find uk and F{ 
satisfying equation (23) with 
boundary conditions (25)-(29). 

Step 3 : For calculated uk and Ff find Bk+1 

as well as wk+ 1 satisfying 
equations (24) and (32), 
respectively, with boundary conditions 
(25), (26), (31). 

Step 4 : If li Bk+ 1 - Bk li::; 1) , Stop. Otherwise: 
set k = k + 1, go to Step 2. 

The conceptual algorithm consists first in calculating 
for a given temperature field and wear the corres­
ponding displacement and stress fields, i.e., in solv­
ing the mechanical subproblem. Next for the calcu­
lated displacement and stress fields we salve the ther­
mal part of the system and calculate wear. The algo­
rithm is terminated when the calculated temperature 
becomes steady, i.e., the temperature changes from it­
eration to iteration are less than the prescribed toler­
ance. The convergence of the operator split algorithm 
is shown using Fixed Point Theorem (see references 
in (Chudzikiewicz et al. 2012)). 

Let us briefly present the algorithms for solving dis­
crete mechanical and thermal subproblems. In order 
to salve the mechanical part of this system we intro­
duce regularization of the friction conditions. The me­
chanical subproblem of the discretized contact prob­
lem is reformulated as a quadratic optimization prob­
lem in terms of tangent and norma] contact tractions. 
In order to solve this auxiliary optimization problem 
one has to approximate inverse stiffness matrix of the 
discretized system. This matrix is calculated using 
collocation approach. Newton method is employed 
to calculate regularized tangent traction. Lineariza­
tion based optimization method (Chudzikiewicz et al. 
1992) is used to solve auxiliary quadratic optimiza­
tion problem and to find tangent and norma] trac­
tions. Having calculated these tractions one can cal­
culate by back substitution displacement and stresses 
in the whole strip as well as the wear. Next the thermal 
problem is solved using Choleski algorithm. For algo­
rithm details concerning solving discrete mechanical 
and thermal subproblems see references (Han et al. 
2002). 
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5 NUMERICAL RESULTS AND DISCUSSION 

A series of simulations are conducted to calculate and 
to investigate, governed by system (23)-(33), the in­
fluence of the elastic grading on the stress and tem­
perature distributions in the contact area. Polygonal 
domain n occupied by the rai! has a form 

n= {(.c1,X2) E R2 : X1 E (-2,2), 

X2 E (0, l)}. (34) 

The contact boundary is modeled by 39 segments. 
The coating Jayer, in zone, where the wheel - raił 
contact may occur has been covered with fine mesh 
while the coarse mesh has been used to divide the 
steel layer (Efendiev et al. 2009, Hou et al. 1999, 
Kim et al. 2002). The thickness of surface layer is 
made large enough to ensure that stresses in wheel­
rail contact zone are not affected by the boundary be­
tween the fine and coilrse meshes. Multi - point con­
straints are applied on the boundary between layers 
and coarse and fine meshes. The ratio he/ h9 = .25 
is chosen. The layer materia! properties are assem­
bled in Table I. The computations were performed 
for the non-homogeneity index n equal to 0.28, O, 
-0.28 con-esponding to ratio P,/ Pe equal to 1.32, 1, 
O. 75, respectively. n < O (n > O) indicates that the 
surface coating layer is stiffer (softer) than the !ower 
layer. n = O c01Tesponds to the homogeneous case, 
i.e., all three Jayers have the same materia! parame­
ters. Other data are as follows: the velocity V = 10 
mis, radius of the wheel r0 = 0.46 m, the thermal 
resistance coefficient r = 1000 KNs/J, the wear con­
stant k = 0.5 • 10-6 M Pa- 1 . The friction coefficient 
µ is equal to 0.45. The penetration of the wheel is 
taken as J = 0.1 • 10-3 111. The regularization parame­
ter c.in (33) is set to 0.001. Functions iioj and il1j, for 
j = "c", "g" or j = "s", in (6) are selected as equal 
to O. 00 is equal to 20 ° C and a in (31) is equal to 
I. The obtained distributions of stresses and temper­
atures in the contact area for different values of non­
homogeneity index n are displayed on Fig. 3-11. 

Norma! contact pressure distribution is shown on 
Fig. 3. It attains maxima! value in the middle of the 
contact zone. It is sensitive with respect to the change 
of the non-homogeneity index n. The decrease of the 
norma! contact pressure maxima! value is accompa­
nied by the extension of the contact zone. 

Fig. 4-6 display through-thickness stresses 
a22,a12,a11 , respectively. These stresses attain maxi­
mum at a surface contact point and rapidly decrease 
inside the strip. 

Fig. 7-9 display longitudial stresses a 22 ,a12,a11 , 

respectively. These stresses attain maximum at a sur­
face point inside the contact zone. 

Fig 10-11 display the distribution of the temper­
ature in the contact zone. The maxima! temperature 
is observed in the contact area. The temperature is 
rapidly decreasing inside the strip and in front of the 

~ .. 0,1 

~ 

,,, .................. __ 

I_.,.," .. ., I 

,,.'/' ..... . 
/: · ... ~~-... 

_łl I\ 

. 
x1(mmJ 

Figure 3: Norma! contact pressure distribution as a function of 
n. 
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Figure 4: Through - thickness stress a22 at x 1 = O. 

-n•-0.28 
"" n=O 

• • •n•0.28 

.. , 
', 

Figure 5: Through - thickness stress a 11 at x 1 = O. 
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Table I· Materiał properties of caating and steel layers 
Properties 

Elastic modulus E (GPa) 
Poisson ratio v 
density p (kg/m") 
thermal conductivity 
R. (W/(mdeg(C)) 
thermal diffusivity " (m' / s) 
thermal expansion <> ( deg cJ- 1 . 
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Figure 6: Through - thickness stress u 12 at x 1 = O. 
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Figure 7: Longitudinal stress u 22 on x2 = 1. 
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Figure 8: Longitudinal stress"" on x2 = l. 
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Figure 9: Longitudinal stress u 12 on x 2 = l. 
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Figure 10: Raił temperature distribution at x 1 = O (along x2 di­
rection). 

wheel. Behind the wheel the decrease of temperature 
ismild. 

6 CONCLUSIONS 

The applied exponential model of the graded materia! 
allows to control the norma! contact pressure, tem­
perature and the size of the contact area. The ob­
tained numerical results seems to be in accordance 
with physical reasoning. The norma! traction F2 has 
its peak in the middle of the contact area. The qua­
sistatic approach allows also to observe dynamie phe­
nomena associated with the rolling wheel (for details 
see (Chudzikiewicz et al. 1992))). The decrease in 
the non-homogeneity index n reduces the maximum 
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Figure 11: Temperature distribution a long the contact interface 
at x 2 = I (along x 1 direction). 

norma] contact pressure and temperature at a cost of 
the widening of the contact area. The relationship be­
tween the applied norma! load and the size of the con­
tael zone is nonlinear. The designing and the analysis 
of functionally graded materials is also considered in 
the framework of topology and/or materiał optimiza­
tion (see (Paulino et al. 2009)). These methods allow 
to investigate the sensitivity of the displacement or the 
temperature fields with respect to the pe11urbation of 
the materiał parameters. 
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