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Ab.rtract: Robustness or insensitivity is a desirable property of decisions; however, most texts on 
robl1stness and/or sensitivity analysis do not define it precisely. A broad literature in this field 
concentrntes on robust design (including robust optimization). This paper focuses on robus111ess 
1es1i11g. that is, checking whether a design has actually resulted in robust properties of the system if 
some of basie assumptions are changed. We propose a generał framework of such robustness testing 
and show that robustncss is a propcrty of the relation between three (classes ot) models: a basie 
model of the decision (design) situation, a second model ofpossible perturbations of the first model, 
and a third model of the decision (design) irnplernentation, optionally taking into account some 
rneasurements of the irnpact of perturbatio11s. Typical approaches to robustness or sensitivity 
analysis ussurne tacitly that the first two rnodels can be cornbined, and thus analyze pararneters 
deviations in such combined model. However, the role of the first two models can be asymmetric if 
optimization of the decision is performed on the first model. We extend this framework, intended 
originally for single criteria (scalar) optimization to multiple criteria (vcctor) optimization. The 
proposed approach is illustrated by diverse examples. 

Keywords: Robustness; sensitivity analysis; multiple-criteria analysis. 

I 991 Mathematics Subject Classification: 49K40, 90C29, 90C31 

I. lntroduction 

Robustness is a desired property of decisions, statistical estimates, engineering designs, 
managerial plans etc. However, what is meant by a robust decision is usually not well 
defined. A recent paper on the subject of robust decisions (Ermoliev and Hordijk 2006) 

summarizes many ways of understanding this term, especially in statistics, and concludes 
that the concept of robustness is context dependent. 

There is a broad literature on what we shall call here robust design, thai is, designing 
(including optimization) a decision or conclusion thai in some sense is robust: robust 

decisions (staiting with Gupta and Rosenhead, 1968), robust optimization (see, e.g., Ben 
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Tal et al. 2009, Bertsimas and Sim 2004), robust conclusion (Roy 1998), robust method 
(e.g., Vincke 1999). For example, Nikulin (2006) presents an annotated bibliography of 
almost 90 papers on the issue of robust optimization in the field of combinatorial 
optimization and scheduling theory, including linear programming. Most earlier 
approaches to robust optimization relied on the worst case optimization and, as such, 

were usual!y overly conservative; later approaches tried to overcome this 
conservativeness, analyse various issues of computational complexity, and develop the 

concept of robust optimization in diverse directions. However, only exceptional papers 
ask the question whether robust is truły robust, thai is, how to test the results of di verse 
ways of defining robust optimization. 

In a synthesizing paper by (Vincke 2003) the concept of robustness ana/ysis is used, 
but most types of robust solutions listed there are in fact results of robust design. 
However, Vincke correctly draws attention to the fac! thai an important feature of 
robustness is its subjective dimension. All these various types of robust design are in a 
sense subjective: a way of designing what is robust is selected by the designer, perhaps 
accepted by the decision maker, but a test how to analyse whether robust is truły robust is 

not indicated (and only exceptionally performed). In a sense, these various types of 
robust design are not subjected to Popperian falsification (see Popper I 976). We would 
like, however, to specify better how robustness of model-based decisions - whether they 
are results of robust design or not - can be tested in a more objective, falsifying way. 

Such an approach might be cal/ed robustness testing and is the objective of this paper. 
The distinction between robust design and robustness testing was noted before, e.g. (Dias 
2007) writes about ex ante and ex post ro business analysis; ex ante would correspond to 
what we call here robust design and ex post to testing robustness. There are severa! 
approaches to ex post robustness analysis, mostly related to the concept of robust 
conclusion (Roy 1998), but we fee! that a generał methodology of ro business testing is 
needed. 

The classical definition of robustness in statistics is given by Peter Huber ( I 98 I): 
"robustness signifies insensitivity to small deviationsfrom the assumptions". The need of 
robustness analysis and testing results from the fac! thai any analysis and design is partly 
based on measurement and observations, partly on prior assumptions about an underlying 
situation. Part of such prior assumptions are tacitly made (see, e.g., Polany i I 966, 
Wierzbicki and Nakamori 2006, 2007), and the investigator might not be even aware of 

them. The examples given by Huber correctly stress the need ofvery precise definition of 
the conditions of ro business analysis, but tacitly assume the symmetry of two interlinked 
models thai should be considered in this context, i.e., the basie model and the model of 
possible perturbations. 

This tacit assumption is shared by most sensitivity analysis and robust design . 
Although Huber correctly defines robustness as insensitivity, sensitivity analysis might 

have broader goals; for example, if applied to learning or parameter estimation, 
sensitivity analysis might have the goal of finding regions of model parameters with high 
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sensitivity of outputs to inputs. Same authors even claim that the term robustness can be 
used only in statistical sening. However, most texts in sensitivity analysis, see e.g. 
(Saltelli et al. 2001), tacitly assume that it is sufficient to analyze one parametrically 
imbedded family of models, which is equivalent to an assumption thai the basie model 
and its possible perturbations have a symmetric (or anti-symmetric) role in the analysis. 

The concepts of a basie model and its perturbations are related to the formalization of 

a modeling process as described, e.g., in (Rosen 1991 ), where a "natura! system" is 
encoded into a "forma! system" or a model. However, such fonnalization raises epistemic 
doubts: we know, what is a model, but what is a natura/ system (with all postmodern and 
post-postmodern doubts about the relation between knowledge and nature, see e.g. 
Wierzbicki and Nakamori 2007)? lf the natura! system is a proxy for reality - which, for 
epistemic clarity, we shall denote by "reality" - how to represent it in analysis? 

Works on robust design actually pursue the concept of procedura/ robustness - see, 
e.g., (Ogryczak 20 I O, Naseraldin et al. 20 I O, Bella et al. 20 I O) - and assume thai it is 
sufficient to include logically or mathematically the concept ofrobustness and models of 
same uncertainty parameters, e.g., bounds on possible parameter deviations, etc., into the 
basie model together with an appropriate robust optimization procedure, and the resulting 
decision will be robust. While this is certainly bener than not addressing robustness at all, 

the conclusion actually is that the resulting decision will be robust only ifthe assumptions 
about the basie model will not change. But what if same tacitly made assumptions will 
change? For example, the stationarity of underlying stochastic processes is usually tacitly 
assumed; what ifthey become non-stationary, as it happened during the last financial and 

economic crisis? Thus, we assume here that robustness cannot be defined in an absolute 
sense, !here are ahvays conditions in which it mus/ be experimentally or computationally 
rested. Only a few authors writing on robustness perceive this fact and perform such 
experiments, see, e.g. (Laumanns et al. 2010); when they do it, they use an approach 
si mi lar to (though usually less generał than) that presented here, since we want to present 

a generał methodology of testing robustness by experiments. Thus we concentrate here 
on robustness testing: on computational experiments in robustness ana/ysis based on an 
application of the decision oblained with the help of a basie model (even if the model is 
procedurally robust or a basis ofrobust design) to a model ofpossible "reality". 

In engineering, it was perceived already in (Wierzbicki 1977) that "reality" musi be 
represented by a model or family (a set of model versions) of parameterized models M(d) 

of possible "realities", while one of such models or model family, say M(a*) ford= a* 
(model parameters a for assumplions, d for doubts) is selected as the bas is of design or 
decision and shall be called the basie model. We use here the term "model parameter" in 
the most generic sense, without specifying its many possible detailed meanings 
(coefficients, constraint values, indexes of model versions, etc.). Clearly, the basie model 
M(a*) is not the reality or even "reality" (as noted by Bernard Roy: "a map is not a 
territory"), but only the best approximation of reality in same defined sense between the 
models of the family M(d). This family in tum represents how possible "realities" differ 
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from the basie model; for this reason, we shall call the family M(d) the perturbation 
model. We use here the letter dto represent parameters of the perturbation model in order 
to stress that they represent doubts abo ut the validity of the basie model; if d = a*, then 
we have no doubts. 

Thus, the perturbation model or models express our knowledge about the exaetness of 
the basie model. We must stress here thai a model of uneertainty, e.g., represented by 

severa! model versions, if ineluded inio the basie model for the purpose of robust design, 
e.g., robust optimization, does represent uncertainty, but not limited either knowledge or 
limitations of modeling technology; the latter could be represented, e.g., by additional 
model versions not included into the robust design. lt might seem paradoxical to test 
uneertainty with the help of additional uncertainty, but we should try our best to 
effectively cope with the objective modeling limitations, and can use for this purpose 
any tools well known from uncertainty modeling (scenarios, model versions, regret 
functions, etc.); we must only remember that these tools are used here not to suppo11 a 
(robust) design, but to support testing how robust are the results of the model analysis 
when actually applied for design/deeisions. 

The perturbation model might have a broader character than the basie model; we only 

assume that at some parameters value we might obtain the basie model from the 
perturbation model (for example, we can even obtain a deterministic model from a 
stoehastie one by parameter variations). The perturbation model, however, must satisfy 

one essential eondition: it musi be formulated in a way that permits the simu/ation of 
results of any deeision, hence it must be a proeess model, not an opemtional researeh 
type of model (see the discussion of model types in Wierzbicki et al. 2000); thus, e.g., a 
way of dealing with inadmissible decisions (either through their projection on the 

admissible bounds, or through counting penalties associated to constraint violation, or 
any other way) must be ineluded in perturbation model definition. 

Now, a fundamental question in all sensitivity and robustness analysis, in particular 
robustness testing, is: are the ro/es of the basie model and the perturbation model 
symmelrie (or anti-symmelrie) in the proeess of ana/ysis? Or, in other words, is it correct 
to analyze simply the parametric dependence of M(d) in a (smaller or bigger) 

neighborhood of d = a*? The answer, unfortunately, is not an unqualified "yes, of 
course", as it is tacitly assumed in most writings on this subject. The answer, as we 
explain in detail in the next section, is "that depends". In some cases the answer might be 

positive; in other cases, however, sucha conclusion is patently wrong. 

2. The Asymmetric Relation of Basic and Perturbation Models 

Let us assume now that the process of analyzing and deriving conclusions from a basie 
model does involve optimization: it results in an optimal (in the sense of a specified 
perfonmance measure, including robustness measures) decision that is derived from the 
basie model and then applied to reality - or, in analysis, to possible "realities". Now, let 
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us consider two processes: the process of selecting the basie model and the process of 
testing model's sensitivity or robustness. Between them, of course, is the process of using 
the basie model for selecting optima! decisions or for robust design or optimization, on 
which most of literature concentrates; but we consciously concentrate here on the 
beginning and on the (often omitted) end stage. 

When selecting the basie model we consider a family of models M(a) - without loss 

of generality, we might assume that this family is as broad as M(d) - and it is natura! to 
assume thai we choose such parameters a= a• that best approximate the "reality" for a 
given purpose. lf the purpose is optimization, we suppose the "reality" is best 
approximated by a= a• and we choose a decision that is optima! for this value of basie 
model parameters. Then, if we choose (by mistake or lack of knowledge) another a f. a• 
as the bas is of selecting the optima! decision, then the corresponding decision will be not 
optima! when applied to the possible "reality" modeled with d = a•, thus the "actually" 

achieved performance measure can be only worse. This argument will be essential for 

further considerations; anyway, the dependence of the performance 011 the selection of a 
is extremal. 

However, the dependence of the performance level on the perturbations d, on possible 
"realities" needs not to be extremal: we make a decision and !hen the reality can tum out 
for the better or worse for us, we can win or Jose in a changing market even if it seemed 
to us thai we selected an "optima!" investment. Thus the ro/es of the dependences M(a) 
and M(d) are not symmetric in decision processes involving optimization, and a more 
involved parametric analysis is needed in such cases. 

~-----~ą = Q*(a) 

~.._ __ y_=_P_(_x_,a_J _ ___,~ ąo~t~~~:da) 1-1 •: ___ _ 

;· ._I __ Y_=_P_(x_,_d)_~~~--q-=_a_(Y_,x_,_d)_~r:= Q"{a,cf) 

Fig. l. A błock diagram of oplimizing a decision and testing its robustness or sensitivity 

This fundamental fact was first noted in (Wierzbicki I 977). To illustrate the analysis 
needed in such a case, we quote here from this book a slightly mare detailed form of the 

model of a decision situation and its sensitivity analysis, see Fig. I. In the diagram in 
Fig. I, a denotes (a vector of) parameters in the basie model, d denotes (a vector of) 
parameters of the perturbation model, x denotes (a vector of) decisions, y denotes (a 
vector of) decision outcomes (diverse - including possible criteria or performance 
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measures), q denotes (a scalar in this case - see section 5 for a generalization) the 
selected performance measure. The models are assumed to have the process form: the 
first błock y = P(x, a) specifies outcomes of any decisions x (if the decisions are 
inadmissible, the way of dealing with inadmissibility musi be a!so specified). 

On purpose, we do not specify here the spaces of parameters, decisions, decision 
outcomes. Parameters might be just scalars, or trajectories (scenarios of future 

developments), or probability distributions, belonging to mathematically quite abstract 
spaces. Decisions could be also trajectories (in control engineering) or probability 
distributions (in mathematical game theory); the same concerns outcomes of decisions. 
For this reason, whenever we speak about a function mapping, say, decisions into their 
outcomes, this should be understood as a quite generał mapping. 

The upper part of the błock diagram specifies in more detail the basie model M(a), the 
lower part the perturbation model M(d). The roles of these models are asymmetric, 
because we first optimize the performance measure in the basie model, obtain some value 
of performance measure Q*(a) and the optima) decision x• - obviously, both dependent 
on the selected parameter a. This decision is applied !hen to the "reality" - represented in 

analysis by the perturbation model with parameters d. The resulting performance measure 
q = Q"(a,d) does not depend only on the difference a - d: it has an extremum (minimum, 
if we minimize the performance measure) with respect to a at a = d, but might have no 

extremum with respect to d. Clearly, if a= d, then Q"(a,d) = Q*(a) = Q*(d). lfwe assume 

thai Q*(d) > O for all investigated d, then for minimized performance measures we can 
use the following relalive sensilivity index, introduced in (W ierzbicki 1977); later, similar 
expressions were called regret functions - but it should be stressed that we use here the 
term regretfunclion also in the most generic sense, as it was used by (Loones and Sugden 
1982) in their paper on regrel theory stimulated by results of Kahneman and Tversky -

thus, it is not necessarily the maxmin regret as used in some approaches to robust 
optimization, rightly criticised for tao conservative results: 

S(a,d) = (Q0(a,d)- Q*(d))IQ*(d) (I) 

S(a,d) has a minimum at all a= d, but (unlike Q"(a,d)) both with respect to a and d, since 
S(a,a) = O, S(a,d)?. O for all a and d. The relative sensitivity measure represents relative 
loss of performance due to the fact thai we might be mistaken in assessing the "real" 

parameters d and use instead the value a of parameters in the optimized basie model; the 
resulting value of performance measure musi be compared with the optima/ va/ue thai 11•e 

would obtain if we knew the "real" value of the parameters d. 

[t should be stressed thai Q'(a,d)- Q*(d) 'f' Q*(a)- Q*(d), therefore, it is not sufficient to 
parametrically optimize the model and compare the results; we should first model the 
"real" situation and compute in the model the corresponding decision, and then apply 
this decision to something else. lt is only our analytical trick that we assume this 
"something else" can be represented by another model , and thai the differences between 
the models can be represented by differences in parameters. If we wish to test robustness 
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computationally, we must represent possible "realities" by models. Moreover, we can 
represent even essentially different models by, say, their convex combination, thus by a 
simple parameter change. However, we musi simulate the "real situation" taking into 

account all contextual aspects. 

Only if we did not optimize in the basie model, it would be sufficient to compare Q(a) 

and Q(d) (without stars for not optimized variables); for small deviations between d and 
a, we could use d- a as an approximation of Q(d)- Q(a). 

As indicated above, the optimization in the basie model can cause also problems with 
the feasibility of obtained solutions for a perturbed model of possible "realities". This 
happens in particular if the basie model is of linear programming type, see, e.g., 
(Bertsimas and Thiele 2006). Diverse methods can be used, but the best advice is that 
even the bas ie model should be realistic enough, that is, should use (possibly piece-wise 
linear) penalty factors instead of virtual constraints (constraints that can be violated in 

reality at same additional cost, but are included as hard constraints into the model just for 
simplicity). 

3. The Need of an lmplementation Model 

The diagram from Fig. I misrepresents real processes of decision implementation in one 

essential respect: it tacitly assumes that the decision will be applied to reality as it was 
computed, in an open loop in terms of control science (the notation Q1(a,d) corresponds 
to o for open loop). However, decisions are applied often in various forms of a c/osed 
loop, taking into account same measurements of the impact ofperturbations. This is dane 
not only in control engineering, also in social processes when we make contingent plans, 
or in environmental planning with feedback, etc. Therefore, Fig. I musi be supplemented 

with a decision implementation model, such as in Fig. 2, where the index i denotes a 
selected implementation rule and its model F(y, x, a) (note thai the implementation rule, 

if it does depend on parameters, il should only depend on the parameters a), while (l(a,d) 
denotes the resulting performance index depending on the relation of three factors: the 
selected implementation rule i, the assumed basie value of parameters a, and the assumed 
perturbation va! ue of doubts, "real" parameters d 

In (Wierzbicki 1977) it is shown thai even if we optimize in the basie model, we can 

use an infinite number of different implementation rules (or of different optima/ 
cun/rollers) with quite different resulting relative sensitivity indexes: 

S;(a,d) = ((l(a,d)- Q*(d))IQ*(d) 2'. O (2) 

and we should select such implementation rules thai have the smallest relative sensitivity 
indexes for a in a neighborhood of a selected a = a•. We might be interested also in an 
integrated scalar robustness index obtained, e.g., by assuming a discrete probability 
distribution of perturbation model versions 0 e T,1 in a selected neighborhood T,1 of d = 
a* and computing the mean value of the relative sensitivity indexes: 

R; = LJ,J Pi (Q'(a*,d;)- Q*(0))/Q*(0) (3) 
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where p; is the probability of the scenario that the "real" parameters will have the value 
0, J is the set of such scenarios. Sometimes it is difficult to assign probabilities to 
generated scenarios, but we can use the rule "when in doubt, use uniform distribution" 
and assign p1= 1/~ where IJI is the number of scenarios used; or we could use worst case 
scenario, replacing the weighted average in (3) by max operation, as in the maxmin regret 

indicator in robust optimization, see, e.g. (Kouvelis and Yu 1997); however, we must 
remem ber that we use these ways of modeling uncertainty not for robust design, but for 
modeling our doubts when testing robustness. Similarly, if an implementation rule is 
independently selected but the optimization results in many seemingly equivalent 
(optima! or nearly optima!) decisions, we can treat them as options i thai should be 
selected according to their robustness index; thus, robustness computations can be used 
also to regularize optimization problems with non-unique solutions, see also (Makowski 
2000a, b). 

q = Q*(a) 

±j.._ __ v_=_P_(x_,a_) _ __,~..__ą_=_Q_(Y_,x_,a_)~': x* 

y= P(x,d) q= Q(y,x,d) 

X y 

x = F'(y,x*,a) 

Fig. 2. A błock diagram of the procedure of optimizing a dccision and testing its robustness or sensitivity while 

taking into account a decision implementation model 

4. A Relational Definition of Robustness Testing of Decisions x 

Generally, we define robustness as a property of a relation between a basie model of 

decision situation (used as a basis of design, to select a decision; including a 
representation ofuncertainty ifthe design should be robust) and a model ofperturbations 
of such basie model, representing aur doubts or possible "realities". The relation is 
resulting from application of the selected decision inio perturbed "reality", taking inio 
account also a rule ofimplementation of the selected decisions inio "reality". 

If we have an agreed (scalar valued) performance measure of decisions, then we 
define as most robust such decisions thai - together with their implementation rules -

result in the smallest worsening of the value of performance measure (regret function) 
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resulting from the application of the selected decision under the assumed implementation 
rule and under assumed perturbations, compared to a predicted value of the performance 
measure. Such a comparison, as shown above, only in the simplest cases (not involving 
an optimization of decisions) can be based on the value of performance measure 
computed in the basie model. In the cases when decisions are optimized in the basie 
model, we must optimize them also for the perturbed models and base the comparison on 
the optimal value of the perfon11ance measure for the perturbed model under assumed 
perturbation (as if we had perfect foresight; but we actually make only contingent 

analysis). This is advisable even in cases of procedural robustness: if the basie model 

assumes, e.g., a robust optimization procedure based on given ranges of uncertainty 
parameters, we should first simulate the application of the resulting decision to a model 
with different uncertainty parameter ranges, then re•optimize the decision and compare 
the results while computing a kind of regret function similar to {I). Same papers on 
robust optimization (such as Laumanns et al. 20 I O) perform a similar testing. 

The triad: basie model, perlurbation model, implemen/alion model with their 

fundamental relations should be the basis of sensitivity and robustness testing in all 
decision situations. Thus, we agree with (Ermoliev and Hordijk 2006) !hat the concept of 
robustness is context dependent, but we stress the need of a generał structure to classify 
such contexts. Another issue is that the simulation and analysis of robustness can be 

concerned with statistical models, but also with deterministic models of mare complex 

dynamie phenomena, etc. Another dimension of complexity relates to multiple criteria 
decision analysis. 

5. The Issue of Multicriteria Decisions and Their Robustness 

Multiple criteria decision analysis uses the concept of an efficient (Pareto-optima!) 
frontier in a multi-dimensional criteria space. It is well defined as the set of such criteria 
values thai no criterion can be improved without deteriorating the value of another 
criterion, but is not readily adaptable for a generalization of such definition of ro business 
index as in Eq. (3). 

The concept of robustness is used also in multiple criteria decision analysis with 
diverse meanings, see, e.g., (Kadziński and Słowiński 2012). (Barrico and Antunes 2006) 
propose that a robustness indicator should be incorporated in the fitness value in an 

evolutionary algorithm of finding the efficient frontier, which might result either in a 

modified efficient frontier (determined at the cost of increasing the robustness indicator, 
see later comments) or in a classification of the points along the original efficient frontier 
with an indication of robustness class. For the purpose of such classification, they use a 
discrete (natural number valued) robustness indicator, defined in a rather ad hoc way and 
called also robuslness degree. The points on the efficient frontier can thus have an 

associated robustness degree, which is an advantage of such ad hoc approach. The 
disadvantage is the lack of a elear interpretation of parameters of this procedure 
(relatively elear in a bi-criteria case, but worsening with the increase of dimension of the 
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objective space). Another disadvantage is that the implementation of decisions is tacitly 
assumed to be in open loop. 

Thus, we should ask about a more generał detinition of a robustness indicator for the 
multiple objective case. The issue is how to extend the detinition of robustness index as 
in Eq. (3) to analyzing the robustness of a point on efficient, Pareto-optima! frontier? To 
do this, we need a scalarized performance measure such as (!(a,d) function that has a 

minimum with respect to the selected decisions, and thus to the basie model parameters a 
at a = d However, such a function can be provided by the reference point approach to 
multiple criteria optimization, see, e.g., (Wierzbicki, Makowski and Wessels 2000): it is 
the achievement scalarizing function, e.g., of the form: 

(4) 

where er denotes the achievement function, q is the vector of the component criteria q.., q­
is the vector of the component reference levels ą~, in criteria space, K is the set of criteria 
indexes, li > O is a regularization coefficient that should be small enough in order not to 
exclude too many efficient solutions that are nearly improperly efficient (with trade-off 
coefficients exceeding Ile). To be sure that the achievement function has a minimum 
(equal zero) at q = q*, where q* is a point at the efficient frontier, it is sufticient to 
choose ą~ = q*; this is the basie check ofefficiency in reference point approaches. 

An achievement scalarizing function is treated as an ad hoc approximation to the 

value function of the decision maker based on her/his specitication of reference levels 
(aspiration and/or reservation) for component criteria, see (Wierzbicki et al. 2000) and is 
typically maximized (we shall use such in some further examples). In Eq. (4) we 
converted its form here to the minimized case, assuming also that all multiple criteria are 
minimized. 

Thus, we can use the achievement scalarizing function rr(q, q*, li), interpreted as the 
performance measure (!(a,d) (depending on basie model parameters a, on perturbation 
model parameters d and on the implementation rule i), to measure the robustness of a 
point q* at the efficient frontier of a model with parameters a* with a corresponding 

optima! decision x*. That this function has a minimum also with respect to a results from 

a reasoning such as presented at the beginning of Section 2: if another a i a• is chosen as 
the basis of selecting the optima! decision, then the corresponding decision is not 
necessarily optima! when applied to modeled "reality" with d = a*, thus the achieved 
performance measure characterized by the value rr(q, q*, li) can be only worse. This 
reasoning, however, does apply only to the selection of basie model parameters a; if we 

change poss i ble "realities" by selecting di a*, then the entire Pareto frontier can shift, 
thus the minimal value of the achievement scalarizing function with tixed q- = q* can go 
down below zero (which means in this case that the "reality" turns out to be more 
advantageous than predicted). 

We might thus use a robustness index such as detined by Eq. (3) except for one basie 
difference: because the achievement scalarizing function can be positive or negative 
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(which corresponds to Q•(dJ changing its sign) we cannot normalize the index by this 
value. Therefore, we rnight use as the robustness index ofa vector q* ofcriteria values on 
the Pareto frontier, corresponding to a decision x*, just the value: 

R',,, = I,;,.1 p; (,'(a*,,t)- ,'(d;,d;)) (5) 

where ,/(a•,d;) = a(.(j(a•,,t), q•, s) is a corresponding value of achievement scalarizing 

function ( 4 ), {j(a*,dj) denotes the vector of criteria values resulting from the application 
of the decision x• modified by an implementation rule F(y, x*,a*) to the model of a 
possible „reality" with parameters d;, selected (or generated by a pseudo-random 
generator) from a chosen neighborhood of the parameter value d = a*, constituting a 
family ofscenariosj eJ. However, we must know also ,;(<4,<4) that denotes the value of 

achievement scalarizing function (3) also with q- = q*, but re-optimized on the model of 
possible "reality" with parameters d; (estimating the loss of optimality due to our 

imperfect foresight). 

Such an approach to robustness testing of efficient solutions on Pareto-optima! 
frontier inherits the advantages of relative simplicity and uniformity of scalar and vector 
optimization as well as consistency with well tested methods of vector (multiple criteria) 
optimization. As commented above, we can use, instead of expected value (5) of the loss 
of optimality due to uncertainty, the maxi mal value due to the most pessimistic scenario; 
we must only remember that this representation of uncertainty has the goal of robustness 
testing, not of robust design. Thus, ifthe decision was based on a maxima! regret analysis 
for multiple criteria case, as in, e.g., (Dias and Climaco 2003), then we musi consider not 

only the set of assumed parameter variations or model versions a;€ T,_, used to determine a 
robust decision, but also our doubts about the validity of these assumptions, a different 
set d; e T,1 which will be used in robustness testing, e.g., checking how the robust 
decisions will behave if we test them on model versions other than initially assumed. 

6. Exnmples 

We present here severa! diverse examples just to show the role of various aspects of 

robustness testing: starting with a very simple, academic multiple criteria example, 
quoting a single-criteria but mare complex example with diverse implementation rules, 
following with more advanced multiple criteria managerial example, and indicating a 
complex example of air quality modeling. The diversity of such examples indicates the 
generic nature of the proposed methodology ofrobustness testing. 

6. 1. Sfotple 11111/tiple criteria example 

We start with a very simple example illustrating the principles of robustness analysis on 
an elementary model M of multiple criteria decision problem with a simple scalarizing 
function. The problem has two criteria q, and q2 : 

maxq 1 = x, (6a) 
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with constraints set X defined as follows 

XJ + Xz S 1 

XJ, X1~0 

We assume a simple perturbation model M(d) 

maxq1 =dx1 

maxą1 =x1 

(6b) 

(6c) 

with the same constraints set X defined as in (6b); thus, a• = I. We also assurne a 
simple scalarizing function (which has minima at Pareto solutions for the problem, as it is 
easy to check): 

(6d) 

If q-, = 0.5 and q-, = 0.5, then the minimum of the scalarizing function with respect to 

x eX occurs at x1 = 0.5, x, = 0.5 for the problem (6a, b), while u(q, q-) = O at this point. lf 
we make a simple sensitivity analysis by changing d and computing the resulting values 

of Il, we obtain a graph such as in Fig. 3 (e.g., if d> l, then we obtain Il < O). However, 
sucha graph does not inform us about robustness of the solution. 
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Fig. 3. Sensitivity grnph 

The robustness of the solution can be characterized by the simple robustness index 

(5). In this case, it suffices to compute the regret function <; (a*,d)-<; (d, d), where a*= I, 
<; (a •, d) = a(Q(a*,d), q-), while Q(a*, d) denotes the vector ofobjective functions (q„ q,) 
obtained when applying the solution x 1 = 0.5, x, = 0.5, optima( for the basie model (6a, 
b), to the perturbation model (6c, b), and<; (d, d) = a(Q(d, d), q~), while Q(d, d) denotes 

the vector of objective functions (q1, q,) obtained when applying a solution of (6c, b, d) 
re-optimized with respect to x e X to the perturbation model (6c, b). The re-optimization 
gives result x 1 = 1/( I +d), x, = dl(! +d). The regret function is presented in Fig. 4. 
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Note that in this sim ple example we assumed an open-loop implementation of decisions, 

without any complex decision implementation model. 

6.2. Example of time-optima/ control 

As a mare complex example of robustness testing, we quote here first from (Wierzbicki 

1977) the analysis of decisions concerning time-optima! control, because they illustrate 

the importance of implementation model. In a basie case, we decide about the control 

trajectory x(t) that intluences the position of a servomotor with the basie model dy,ldt = 

y2(t), dy,ldt = a x(t) in order to bring the model from a given initial position y 1(0) = y,,,, 
y,(O) = y,,, to the finał position y 1(7) = O, y,(7) = O treated as a goal in the shortest time T 
treated as the performance measure, with a constraint lx(t)I ~ 1. The optima! decision is 

just to switch, say, from x(t) = -I to x(I) = + 1 at a suitable time t.(a); say, t_,(a) = l!a05 if 

Yni = 1,Y10 = O. 
Three diverse rules of implementing this optima! decision were invest igated in 

(Wierzbicki 1977): one is an open loop control x"(I) = sign (I - t_,(a)), second is closed­
/oop control based on a switching manifold in the phase space x1(1) = - sign(ay1(1) + 0.5 

(y2(t))1sign y 2(t)), third is a trajectory following control in which the control x2(1) is 

selected to fellow the pre-computed optima! trajectory y 1*(1,a),y,*(l,a). 

lf these implementation rui es are applied to a model of possible "reality" dy,ldt = 
y,(t), dy,ldt = a x(t) with a t a, then the open-loop implementation is just infinitely 

sensitive, cannot achieve the goal. The closed loop control is the most robust of the three, 

with possible oscillations or even sliding motion if at a, but always reaching the goal. 

The trajectory following control (trying to keep to a pre-computed optima! trajectory 

despite of parameter variations) is slightly less robust for a > a, but infinitely less robust 

; 

! 
i 

' ni 
2,5 
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for a < a, because in !hat case the pre-computed trajectory cannot be followed when Jx(l)J 
:S I. The results are illustrated in Fig. 5. 

Fig. 5. Relative sensitivity index S(a,d) = ({j(a,d) - Q•(d)YQ*(d) for the time•optimal control decisions with a 
scalar parnmeter a ofpossible "reality"; i= I - optima! closed loop; i= 2 - optimal trajectory following 

The above is jus! an illustrative quote showing, however, !hat an implementation rule 

of pre-computed "optima!" as well as "robust" decisions matters significantly; thus, 

decision analysis should pay mare attention to implementation rules. On the other hand, 
the same example in a time-discrete form might be a demanding testing example for 

evolutionary algorithms ofoptimization; therefore, we give here the discretized form: 

y 1[t + I J = y 1[t] + y,[t]; y,[t + I] = y1[1] + a x[t]; Jx[t]J :S I; y 1[0] = I 00; y1[0] = O; 
[y,[711 :s c5; [y,[711 :s c5 (6) 

with I = O, I, 2, ... T (square brackets stress the discrete nature of 1), the goal slightly less 
demanding, e.g. c5 = I (in order to bring the end state sufficiently close, not necessarily 

equal to zero) and the minimized performance measure T. A bicriteria version ofthis test 
example might be including c5, Tas two minimized criteria. Robustness testing might 

concern the same model with d fc a in place of a as a model ofpossible "reality". 

6.3. Example of ra11ki11g of discrele a//emalives 

In (Wierzbicki 2008) the concept of so-called objeclive ranking of discrete alternatives 
was introduced (no ranking is absolutely objective, but in many situations we need a 
ranking that is as objective as possible) based on reference point approach with 
statistically defined reference points or aspiration and reservation levels. The following 
example (from an actual application, but distorted for commercial reasons) was analyzed. 

Suppose an international corporation consists of six divisions A .. . . F. Suppose these 
units are characterized by diverse data items, such as name, location, number of 
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employees etc. However, suppose that the CEO of this corporation is really interested in 
ranking or classification of these divisions taking inio account the following attributes 
used as criteria: 

1) profit (in% ofrevenue), 

2) market share (m.share, in % of supplying a specific market sector, e.g. global 
market for a type ofproducts specific for this division), 

3) interna! collaboration (i.trade, in % of revenue coming from supp lying other 
divisions of the corporation), and 

4) local social image (l.s.i., meaning public relations and the perception of this 
division - e.g., of its friendliness to local environment - in the society where it is 
located, evaluated on a scale 0-100 points). 

All these criteria are maximized, improve when increased. An example of decision 
table of this type is shown in Table I (with data distorted; any sim ilarity to an actual 
corporation is accidental), while Pareto-nondominated divisions are distinguished by 
mark•. 

Table I. Data for an example on intemational business management 

Division Name Location Emolovees a 1: orofit 01 : m.share la,: i.trade a~ : l.s.i. 

A Aloha USA 250 11% 8% 10% 40 

B' Beta Brasil 750 23% 40% 34% 60 

c• Gamma China 450 16% 50% 45% 70 

D' Delta Oubai 150 35¾ 20% 20% 44 

E' Epsilon C. Europe 350 18% 30% 20¾ 80 

F Fi France 220 12¾ 8% 9% 30 

The CEO obviously could propose an intuitive, subjective ranking ofthese divisions -
and this ranking might be even better than a rational one resulting from the table above, if 
the CEO knows all these divisions in minute detail. However, when preparing a 
discussion with her/his stockholders, (s)he might prefer to ask a consulting firm for an 
objective ranking. 

In order to obtain such ranking, we compute first statistical averages of criteria values 
q,"' that would be used as basie reference levels, a modification of these values to obtain 
aspiration levels a,, and another modification of these values to obtain reservation levels 
r,; these might be defined (for the case of maximization of criteria) as follows: 

q,"' = L-/cl q,,~LI; r, = 0.5(q,'° + q,"'); a;= 0.5(q,"P + q,"') (7) 

where ILI is the number of alternative decision options, hence q,"' is just an average value 
of k-th criterion between all alternatives, and aspiration and reservation levels - just 
averages ofthese averages and the lower and upper bounds, respectively. However, there 
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are no essential reasons why we should limit the averaging to the set of alternative 
options ranked; we could use as well a larger set of data in order to define more adequate 
(say, historically meaningful) averages, or a smaller set - e.g., only the Pareto­
nondominated alternatives. 

The objective ranking approach uses a nonlinear aggregation of criteria by an 

achievement function that is performed in two steps: 

I) We first count achievements for each individual criterion or satisfaction with its 
values by transforming it (monotonically and piece-wise linearly) e.g. in the case of 
maximized criteria as shown in Eq. (2) below. For problems with a continuous 
(nonempty interior) set of options, for an easy transformation to a linear programming 

problem, such a function needs additional specific parameters selected to assure the 
concavity of this function, see (Wierzbicki et al. 2000). In a discrete decision problem, 
however, concavity is not important for optimization performance; therefore we can 

choose these coefficients to have a reasonable interpretation of the values of the partia/ 
(or individual) achievement fimction. Since the range of [O; I OJ points is often used for 
eliciting expe1t opinions about subjectively evaluated criteria or achievements, we 
adopted this range in Eq. (8) below for the values of a partia! achievement function 

11,(q,., a,, r,): 

r 11 (q, - ą/')l(r, - ą/'), 
11,.(q,, a,, r,) = ~ /I + (v - p) (q,- r,)l(a, - r,), 

L v + (1 O - v) (q, - a,)l(q,"" - a,), 

for ą,/' ~ ą1.: < '°'• 
for r1.: S q" < ak 

for ak S qk ~ ą/'" 

(8) 

where ą,/0 and q/'1' denote correspondingly the !ower and upper bounds on criteria values. 

The parameters /I and v, O < /I < v < I O, in this case denote correspondingly the values of 
the partia! achievement function for ą, = r, and ą, = a,. The value 11,, = 11,(q,,, a,, r,) of 
this achievement function for a given alternative / e L signifies the satisfaction level with 
the criterion value for this alternative. Thus, the above transformation assigns satisfaction 

levels from O to 11 (say, /I= 3) for criterion values between q,"' and r,, from /I to v (say, v 
= 7) for criterion values between rk and ok, from v to 1 O for criterion values between ak 

and Cft"/1. 
2) After this transformation of all criteria values, we might use then the following 

form of the overall achievement function: 

11(q, a, r) = min,<'K 11,(q,, a0 r,) + s/JKJ .E,d 11,(q,, a0 ,,) (9) 

where q = (q1, ... ą,, ... q,) is the vector of criteria values, a= (a" ... a,, ... as) and 
r = (r ,, ... r,, .. rK) are the vectors of aspiration and reservation levels, while s > O is a 
small regularizing coefficient and /A.1 is the number of criteria. 

We use then the achievement values to rank the alternatives, as illustrated in Table 2, 

where c = 0.4 was used (/A.1 = 4), for two types of averaging: of all alternatives or, more 
demanding, of Pareto-optima! alternatives. 

Tnblc 2. An example of objective ranking and classification for the data from Table I 



18 A.P .Wienbicki, M Makowski, J. Granat 

Criterion a, a, a, a, 

Upper bound 35% 50% 45% 80 

Lower bound 11% 8% 9% 30 

Rcference A (avcragc) 19.2% 26% 23% 54 

Aspiration A 27.1% 38% 34% 67 

Reservation A 15.1% 17% 16% 42 

Reference B (Pareto average) 23% 35.0% 29.7% 63.5 

Aspiration B 29% 42.5% 37.4% 71.7 

Reservation B 17% 17% 19.4% 46.7 

RankimzA; Division u, u, u, o, a Rank Class 

A 0.00 0.00 0.37 2.50 0.29 5 Ili 

B 5.63 7.50 7.00 5.88 8.23 I I 

C 3.30 IO.O IO.O 7.62 6.39 2 li 

D IO.O 3.57 3.89 3.32 5.40 4 li 

E 3.97 5.48 3.89 IO.O 6.30 3 li 

F 0.73 0.00 0.00 0.00 0.07 6 Ili 

Rankin2 B: Division a, a, a, a, a Rank Class 

A O.DO 0.00 0.29 1.80 0.21 5 Ili 

B 5.00 6.61 6.24 5.13 7.30 I I 

C 2.50 IO .O IO.O 6.73 5.42 2 li 

D IO.O 3.47 3.13 2.51 4.42 4 li 

E 3.33 5.04 3.13 IO.O 5.28 3 li 

F 0.50 0.00 0.00 0.00 0.05 6 Ili 

In Table 2, the column Class means a rough classification of divisions A, ... F into 
three classes (required by the user in actual application); we see thai ranking A and B 
give slightly different results but this does not influence the rough classification. 

6.3.1. Robustness o/ranking 

Naw we can illustrate robustness testing in two variants. First is the robustness of 
ranking, say, of ranking A (based on full averages). For this purpose, we assume two 
scenarios involving parameters thai might influence the ranking and are likely to change; 
say, Jet q,8 = 60 d1 and q18 = 23 d2 % with d*1 = d*, =a•,= a•,= I (cf. Table I). W hat 
is the robustness of this ranking if the parameters d1 and d, change below I? We musi 
establish first reasonable ranges of parameter changes; Jet us assume thai d,'" = 0.5 and 
d,'° = 0.478 (in both cases, criteria values reach their )ower bounds - we can also 
continue the analysis below these criteria values by accordingly modifying )ower bounds, 
but we omit here the precise description since it changes the character of computations). 
We compute !hen the dependence of the losses of achievement (if we maintain the first 
place of alternative B while another alternative becomes actually first because of 
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parameter changes) R,(o.1) and R,(o.,) as the differences of attainable achievements (cf. 
Eq. 5 which we modify for this case just by assuming originally that the probability of 
examined scenario is eąual I). 

The character of achievement functions used here is piece-wise linear and an essential 
problem is to compute the value of parameter change when linear pieces meet. For 
example, as long as the alternative B remains first in ranking, the loss of achievement 
either R1(o. 1} or R,(a,) remains equal zero (the achievement might change, but after re­
optimization it is the same achievement). This leads to the problem how to find the 

critical values of d1 ord„ where the losses exceed zero. We illustrate the solution only for 
the case of d,. 

For d1 close to I, u,n has the form (resulting from Eq. 8 with µ = 3 and v = 7) u,8 = 
9.6d1 - 3.72; it becomes the lowest of u,H when 9.6d1 - 3.72 = 5.63 (the value of u,H in 
Table 2), hence for d1 = 0.978, and becomes equal to 3.0 (at the reservation level) when 

9.6d, - 3.72 = 3.00, hence for d1 = 0.70. However, for d1 < 0.978, the overall 
achievement <lH takes the form (Eq.9 with e = 0.4 and IKI = 4) u8 = I0.56 d1 - 2.079. 
Since the second alternative in ranking is C with uc = 6.39, alternative B loses its first 

rank when I 0.56 d1 - 2.079 = 6.39, at d1 = 0.802; etc. Results of such computations are 
given in Table 3 and Fig. 6. Similar computations ford, give results illustrated in Table 4 
and Fig. 7; in this case, alternative B loses its first rank at d, = 0.782, etc. 

Tnblc 3. Results of ana lysis of ranking robustness, scenario I with q„11 = 60 d, 

d, I.O 0.9 0.802 0.8 0.7 0.6 0.5 
Cl m 60 54 48. 12 48 42 36 30 
U./Jt 5.88 4.92 3.98 3.96 3.00 1.50 0.00 

"" 8.23 7.425 6.39 6.37 5.313 3.663 2.01] 

" 8.23 7.425 6.39 6.39 6.39 6.39 6.39 
R, = a·· r111 0.00 0.00 0.00 0.02 1.077 2.727 4.377 

Table 4. Results ofanalysis of ranking robustness, scenario 2 with ąw = 23 aJ % 

c/I I.O 0.9 0.8 0.782 0.7 0.657 0.6 0.478 
l/111 23% 20.7% 18.4% 18.0% 16.1% 15.1% 13.8% 11% 
Q u, 5.63 4.86 4.10 3.96 3.33 3.00 2. 11 0.00 

"" 8.23 7.39 6.54 6.39 5.70 5.33 4.33 2.03 

" 8.23 7.39 6.54 6.39 6.39 6.39 6.39 6.39 
R_, = a·-a„ 0.00 0.00 0.00 0.00 0.69 1.06 2.06 4.36 

We can see that the robustness index changes are quite similar for both scenarios, they 

differ in minor details. The ranking is quite robust, alternative B loses its first rank (to 
alternative C) when data change mare than 20% oftheir initial value. 
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Fig. 6 Regret function change for a simple example, scenario I (a,•= I) 
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Fig. 7 Regret function change for a sim ple example, sccnario 2 (a1• = I) 

6.3.2. Robustness of Pareto-optima/ solutions 

On the same example, say, for the second ranking with more demanding aspirations 
(ranking B in Table 2), we can study the question: how to compare the robustness qf 

severa/ Pareto-optima/ solutions? Le! us assume !hat we want to compare the robustness 
of two Pareto-optimal solutions, alternatives B and C, with respect to four scenarios of 
parameter change: q,s = 60 d„ q!B = 23 d1 %, q,c = 70 d,, q": = l6d, %, with a•,= a•,= 
a*1 = a*.1 = 1. For simplicity ofpresentation, we shall consider here a composite scenario 

jointly changing d = d1 = d1 = d,, = d,, and assuming equal probabilities (we could, of 
course, assume much more complex scenarios with parameters influencing all data ofthis 
example and diverse probabilities, but we present here only this simple case for 
illustrative purposes ). 
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In order to test the robustness of Pareto-optima! solutions, we must apply the method 
presented in Section 5: we can compute the losses of achievement functions due to 
parameter changes, but with reference points shifted to the criteria values at the 

corresponding Pareto-optima! solutions. Since we used in this example achievement 
function (9) with double-valued reference point (composed of aspirations and 
reservations), we shall keep this form of achievement function, only assume that the 

aspiration levels are shifted to the criteria values at the corresponding Pareto-optima! 
solutions, while reservation levels are averages of !ower bounds and aspiration levels. 
These assumptions result in the following table of aspiration and reservation levels: 

T11blc 5. Aspiration and reservation levels for robustness ana lysis of Pareto-optima I solutions 

Criterion "' ą, "' "' Upper bound 35% 50% 45% 80 

Lower bound 11% 8% 9% JO 

Analysis ofaltemative B 

Aspiration an 23% 40% 34% 60 

Reservation rn 17% 24% 21.5% 45 

Analysis ofaltemative C 

Aspiration a1· 16% 50% 45% 70 

Reservation ri · 13.5% 29% 27% 50 

Naw we can compute the partia! achievements (8) and overall achievement (9) 

together with their dependence on d, because we assume joint changes q,8 = 60d, q 18 = 
23a"lo, q,c = 70d, ąw = i6a%; we consider d 2: 0.687, since ą1c reaches then its !ower 
bound (as noted above, we can perform also the analysis with changing !ower bounds, but 
we omit these details). We must only remember to compare the overall achievement for 

alternative B or C with other Pareto-optima! alternatives and compute the loss of 
achievement if same other alternative starts to outrank B or C; this is equivalent to re­
optimization assumed in Eq. (5)). Therefore, we must compute achievement values for all 
Pareto-optima! alternatives (according to the properlies of achievement scalarizing 

functions, the dominated alternatives might be neglected). In Table 6 we present the 
resulting achievement values for the analysis ofalternative B. 

T:1ble 6. Achievement va lues for the analysis of altemative B 

Analysis ofalternative B u, u, u, u, u Rank 
Division d=I 

B 7.00::::: 0"111 7.00 7.00 7.oo::::: 0"4u 9.80 :=::: ao I 
C 2.50::::: du.: IO.O IO.O 8.50:::::: 0"4c; 5.60:::::: O"c; 2 
D IO.O 2.25 2.64 2.80 3.98 4 
E 3.67 4.50 2.64 IO.O 4.72 J 

After thai we can compute the dependence of a8 and acan d; the results are presented 
in Table 7. 

Table 7. Results ofrobustness testing ofalternative B, composite scenario 
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d I.O 0.9 0.8 0.7 
Q,n 60 54 48 42 
a„ 23% 20.7% 18.4% 16.1% 
a,c 70 63 56 49 
a,c 16% 14.4% 12.8% 11.2% 
a„ 5.88 4.92 3.96 3.00 
a/8 7.00 5.40 3.80 2.40 
a,c 8.50 7.45 5.93 4.07 
a,c 2.50 1.70 0.9 O.I 
a, 8.23 7.43 6.37 5.31 
ac 5.60 4.72 3.84 2.96 
a 8.23 7.43 6.37 5.31 
Rn =u -un 0.00 0.00 0.00 0.00 

We see thai alternative B is very robust as a Pareto-optima! solution: it does not łase 
its first place even with parameter changes exceeding 30%. When we analyze the 
robustness of the altemative C as a Pareto-optima! solution, we musi change accordingly 
aspiration and reservation levels, as presented in Table 5. The achievement values change 
accordingly as in Table 8. 

Table 8. Achievement va lues for the analysis of alternative C 

Analysis of altemative B a, a, a, o, o Rank 
Division atd= I 

B 8.11 ~Urn 5.10 4.56 5.00 ~ O'~ll 6.79 ;:!u11 I 

C 7.00~ U1t: IO.O JO.O 7.00 ~ U~t: 10.4 ::! O't: 2 

D IO.O 2.25 2.64 2.80 3.98 4 

E 3.67 4.50 2.64 JO.O 4.72 3 

After !hat we can again compute the dependence of u8 and uc on d; the results are 
presented in Table 9. 

Table 9. Results of robustness testing of altemative C, composite scenario 

d I.O 0.9 0.8 0.7 .,. 60 54 48 42 

"" 23% 20.7% 18.4% 16.1% 
Q,c 70 63 56 49 

Q/C 16% 14.4% 12.8% 11.2% 
O,n 5.00 3.80 2.70 1.80 
a/H 8.11 7.25 7.13 7.01 .... 7.00 6.30 5.60 4.90 
O'JC 7.00 4.44 2.16 0.24 
o, 6.79 5.87 4.65 3.65 
ac 10.4 7.51 4.93 2.75 
o 10.4 7.51 4.93 4.72 
Rc=u ·U(' 0.00 0.00 0.00 1.97 
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Again, alternative C as a Pareto-optima( solution is quite robust, but loses its first rank 

(to alternative E) at about a = 0.79, thus it is less robust than alternative B as a Pareto­

optimal solution. These results are illustrated in Fig. 8. 

We presented here the computations related to robustness testing in some detail for 

illustrative purposes. The conclusions are thai even if robustness testing is 

computationally expensive, and even ifthe assumptions of data perturbation scenarios are 

quite subjective, belong to the art of modeling, il is possible nevertheless to compare 
robustness of di verse Pareto-optima! solutions. 

6.4. Example o/the air quality 111odeli11g 

Models of complex environmental problems, such as European air quality, have not only 
very large dimensions, but also an infinite number of near-optimal solutions (Makowski 

2000a); if we formulate them as multiple criteria problems, they also have infinitely 
many Pareto-optima! solutions. Such solutions are similar in the sense of the objective 
function (or criteria) values, but have usually very different compositions of values of 
decision variables, which in tum imply substantial differences in obligations of partners 
of international agreements. This property can be treated as advantageous, if one uses an 
additional criterion for selecting between a large number of suboptimal solutions a 
specified solution thai has an additional property, for example being robust. This can be 

achieved by defining a robustness indicator and including such indicator in the analysis 
of the model results driven by decision maker preferences: the most robust solutions 
would then be preferred over all less robust solutions having similar values of the original 

objective function. Such a technique is known as regularization and its application to the 
European air quality model by using a classical regularizing term (e.g. minimization ofa 
norm, or of a distance from a preferred point is the subspace of decision variables) is 
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discussed in (Makowski 2000b). Here we propose an extension of this approach by 
replacing the classical regularizing term by a robustness indicator. 

The key problem !hen is to define a robustness indicator. (). For using the robustness 
index defined by Eq. (3) or (5), we shall select a reference (trial) decision, e.g., one of 
near-optimal solutions, or a Pareto-optima) one, and develop a number I.Jl of possible 
"reality" scenarios characterized by parameters aj and probabilities Pj • For each of such 
scenarios, we not only compute the value of (!(a*,d;) or ,/(a*.d;), estimating the 
performance obtained through the decision optimized for a basie value of parameters a•; , 
but we also re-optimize the decisions to determine the value Q*(d;) or c;'(d; d;) for 
different representations of the "real" value denoted by aj thus estimating the 
performance obtained if we knew beforehand how the "reality" would change and 
optimized perfectly. The number of scenarios is practically limited by computational 
resources; for larger models the computations are usually dispersed over a computational 
grid, therefore this limitation can easily be softened. To construct such scenarios, we 
typically select a subset of parameters of selected constraints considered crucial; such a 
selection can be dane during the post-optimization analysis of the basie solution focused 
on identification of those binding constraints that have key impact, e.g., either 
environmental or economical. For the selected subset of parameters a manageable set J of 
scenarios is generated, i.e. ~ = n, where n is the number of scenarios, which depends 
mainly on computational resources. The variations of the stochastic parameters are 
context-spacific. They are uniformly distributed over a given range of values, if there is 
no sufficient knowledge about their variation. If the probability distributions of selected 
parameters are known, then one can use a sampling technique to generate scenarios. 

One should also note thai the multiple-criteria analysis copes in a natura) way with the 
issue of price of robustness, see e.g., (Bersimas, Sim, 2004). The main performance 
indicator of the air quality problem discussed here is the cost-effectiveness; therefore the 
typical reference decision is the one minimizing the total cost. Other indicators include 
diverse measures of air pollution impacts. A set of selected indicators can be used as 
criteria for which the aspiration-reservation methodology of multiple-criteria analysis can 
be used (see e.g., Wierzbicki et al. 2000). Therefore a natura) approach to analysis of the 
price of robustness it to add a criterion representing the robustness measure, and to 
perform a truły integrated multiple-criteria analysis of the whole problem; such an 
approach provides the decision-makers with an intuitive way to analyze diverse trade-offs 
between conflicting criteria. In sucha way also the price of robustness can be analyzed. 

Note !hat there is also a trade-off between the number of selected stochastic parameters 
and the corresponding scenarios for each trial decision on one side, and the number of 
trial decisions compared for robustness on the other side; , the computational effort 
quickly becomes excessive unless at least one of these numbers is small. Usually, the 
computation of the values (!(a*,d;) or c;1(a*,d;) through simulation takes much less 
computational effort !han the re-optimization needed to determine the value Q*(d;) or 
c;'(dpd;) (which is equivalent to repeating many times the computation of the values 
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(l(a *.d;) or c;'(a*.d;)). This necessity of repeating many limes the re-optimization ("what 
if we knew beforehand what would happen in reality") and the related large 

computational effort is the main obstacle in such applications of robustness analysis for 
large scale models. 

A selection of a robustness indicator is problem specific, and belongs to the modeling art; 

tlms, the definition provided above is just an example. The robustness indicator used as 
an advanced regularizing term is typically used for achieving numerical stability, and in 
such situations the original goal function is the primary objective for selecting a solution. 

However, a robustness indicator can play a role of a criterion (or a component of an 
objective function in traditional single-criterion optimization approaches), and then 
support analysis of trade-offs between the original objective (or a set of objectives in 
multi-criteria analysis) and robustness of a selected solution. In such traditional 
approaches, for example, assuming the single objective to find a cost-effective solution 
for achieving agreed environmental standards. lt might be rational to consider (possibly 
slightly or substantially) mare expensive (than thecost-minimizing) solutions thai are 
mare robust than the cheapest one. This requires analyzes of the trade-offs between cost 
and robustness. In a simplistic approach such analysis can be dane using a composite 
objective function defined as a weighted sum of the cost and robustness indicator. 
However, such approach has a number of pitfalls (see, e.g. Wierzbicki et al., 2000), 
therefore one should use a truły multi-criteria analysis outlined above. A critical element 
for the robustness analysis remains however the selection of the robustness indicator, 

which is by far a mare difficult issue than a selection ofan outcome variable to serve as a 

criterion. The methodology of specification of the robustness indicators is stili an open 
research issue. 

7. Conclusions 

There are diverse concepts and approaches to robustness and sensitivity analysis serving 
different purposes. The paper deals with a specific issue of robustness testing focused on 
multiple-criteria decision-making support; therefore it concentrates on robustness of 
decisions. The concept of robustness of decisions is context dependent; we proposed to 

distinguish clearly between robust design (ex ante robustness analysis, including robust 
optimization etc.) and robustness testing (ex post robustness analysis); the paper 
concentrated on the latter case and we proposed a generał structure to classify contexts of 
robustness testing. The structure relates to a triad: basie model, perturbation model, and 

implementation model with their fundamental relations explained in the paper. The roles 
of the basie model and the perturbation model in decision processes involving 
optimization are not symmetric; therefore one cannot just analyze parametrically one 

family of models, a mare involved sensitivity and robustness testing isthus proposed. The 
simulation and testing of robustness can be concerned with statistical models, but also 
with deterministic models of mare complex dynamie phenomena. Another dimension of 
complexity relates to multiple criteria decision analysis. We proposed an approach to 
robustness testing of efficient solutions on Pareto-optima! frontier thai has the advantage 



26 A.P. Wienbicki, M. Makowski, J. Granat 

of relative simplicity and uniformity of scalar and vector optimization as well as 

consistency with well tested methods of vector optimization, especially effective for 

decision-making support through interactive multiple-criteria model analysis. 

A generał conclusion of this paper is thai robustness testing should be included into 

good practice of model-based decision analysis and support. Rational decision-making 

support requires a process that results in a design of a robust decision; it is however not 

enough to base it on a robust optimization using a selected model it is necessary to test 
robustness of such decions on the implementation model. 
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