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Abstract We study a generalization of the non-derivative discrete gradient method
of Bagirov et al. for minimizing a locally Lipschitz function £ on R". We strengthen
the existing convergence result for this method by showing that it either drives the
f-values to ~eo or each of its cluster points is Clarke stationary for f, without requir-
ing compactness of the level sets of £. Our generalization is an approximate bundle
method, which also subsumes the secant method of Bagirov et al.
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1 Introduction

We consider the recently proposed discrete gradient (DG) method [3] for minimizing
a locally Lipschitzian function f: R" — R. In contrast with bundle methods (see,
e.g., [11,12] and the references in [3,5,7, 14]) which require the computation of a
single subgradient of f at each trial point, the DG method approximates subgradients
by discrete gradients using f-values only. This is important for applications where
subgradients are unavailable and derivative free methods are employed; see, e.g., [1,
2] and the references therein.

Our contributions can be summarized as follows. First, although the DG method
[3, Alg. 7.1] has three nested loops, we show that it may be regarded as an instance
of a bundle method with approxirate subgradients and a single iteration loop; this
simplifies its analysis. Second, we prove that this bundle method either drives the
f-values to —eo, or each of its cluster points is Clarke [8] stationary for f (see Thm.
3.1). This is significantly stronger than the result of {3, Thm. 7.1], which assumes
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additionally that f has bounded level sets and establishes stationarity only for cluster
points of a subsequence generated in an outer loop (cf. Rem. 3.1(c)). Third, since the
DG method needs unbounded storage (cf. Rems. 2.1(e) and 3.1(e)), we show how
to use well-known bundle techniques [11,12] to ensure bounded storage. Fourth, we
note that our results extend easily to the secant method of (5] and the quasisecant

method of [4].
‘We add that our proof technique is related to that employed in [15] for establishing

global convergence of the gradient sampling algorithm [7].

The paper is organized as follows. Section 2 presents our bundle generalization
of the DG and secant methods. Its convergence is analyzed in Section 3. Section 4
gives extensions for the quasisecant setting of [4] and the bundle setting of [14].

2 A bundle method with approximate subgradients

‘We assume that the objective function f : R” — R is locally Lipschitz continuous.
The Clarke subdifferential [8] of f at any point x is given by

af(x) =co{1imij(yj) sy — x and V£(y') exists for all ih
where co denotes the convex hull, and the Clacke g-subdifferential [10] by
0cf(x) := cod f(Blx,£)), M

where B(x, £) := {y: |y —x| < €} is the Euclidean ball centered at x with radius £ > 0.
The mapping J.f(-) closed. We say that a point X is stationary for f if 0 € 3 f(%).
By Lebourg’s mean value theorem (cf. [8, Theorem 2.3.7]), for each d € R”,

flx+ed)— f(x)=e{v(x,d,e),d) forsome v(x,d,€)€df([x,x+ed]). (2)

Since v(x,d, £) may be hard to compute, for algorithmic purposes we assume that we
have a simpler mapping y(x,d, £) that satisfies the following. Let S := {d: |d| = 1}.

Assumption 2.1 (1) The mapping y(x,d, €} has the mean value property
fx+ed) — f(x)=e(y(x,d,e),d) forallxcR"deS,e>0. 3)

(2) Foreach x € R" and € >0, there exists L < oo such that sup,cg 7(x,d,€)| < L.
(3) The set I(x) := co¥(x,S, €) approximates 3 f (x) in the following sense: for each
X eR" and p > 0, there exist T > 0 and & > 0 such thar

T2(B(x,7)) C dp f(X)+B(0,p) forallee(0,E]. @)

Note that we may let I (x) be any set containing co y(x, S, €) for which (4) holds;
e.g., we may replace I3(x) by its closure. Thus our assumption holds in the DG
framework of [3] and the secant framework of [5]. Incidentally, for Y= v of (2) and
I = d: f, the inclusion in (4) holds when T+ & < p.

‘We now state a bundle method which generalizes the DG and secant methods,
For a closed convex set C, Proj{(0|C) is its minimum-norm element.
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Algorithm 2.1 (bundle method with approximate subgradients)

Step O ([nitialization). Select an initial point x! € R”, optimality tolerances Vopty
€opt > 0, a descent parameter k € (0, 1), reduction factors u, 6 in (0,1), a lo-
cality radius £ > 0, a stationarity target vy > 0 and an initial direction d® € S.
Setgli=7y(x',d%¢), Gy :={g'}and k:=1.

Step 1 (Direction finding). Set §* := Proj(0| co Gy ).

Step 2 (Stopping criterion). If |§%| < Vopi and & < oy, terminate.

Step 3 (Locality radius update), If lgk] < Vi, set Vgt i= OVx, Epyl i= UEL I =0,
d* .= g~V and g0 to Step 5. Otherwise, set Viy; i= Vi, &4 i= & and d* :=
~g*/|g*| (so that d* € S).

Step 4 (Descent test). If f(x* + g,d*) — f(x*) > —Kk&(gH], set 1, := 0; otherwise,
choose a step size 1, > & such that f(x* +rea®) < f(xk) — xrelgh[.

Step 5 (Updating). Set xk+! := x* + 1 d*,

Step 6 (Bundle compression). After a null step with t, = 0 and &.,; = &, choose a
reduced bundie Gy C {£°} UGy, with g € co Gy otherwise, set Gy := 0.

Step 7 (Bundle addition). Set g*+' 1= y(**! d*, g11) and Gryy := ("I U Gy

Step 8 (Loop). Increase k by 1 and go to Step 1.

A few comments on the method are in order.

RemarkZ I (a) At Step 1, coGy C co{g’ £ = &, ) < k} with &l = y(k g, d/Y)
give g* € Iz, (x*) by Assumption 2.1(3); thus §¥ is an aggregate subgradient. Step 1
may use the QP methods of [9, 13], which can solve efficiently related subproblems.

(b) The stopping criterion of Step 2 is motivated by the inclusion in (4) with
%= x*; namely, if & < E then ¥ € I, (x*) yields dxsr(OJz?pf (%)) < |g%1+ p, so that
the point x* is approximately stationary if both |g%| and p are small.

(c) At Step 3, the condition [g%] < v, detects progress in stationarity; then v, and
& are reduced and Step 6 drops past subgradients by setting Gy := 0.

(d) If Step 4 produces a null step with ¢ = 0 and & = &, then by the mean
value property (3), the next approximate subgradient g“*! computed at Step 7 will
satisfy (g571,d*) > ~x|g*[: in other words, since ¥ := ~g%/|g*|, g+! will satisfy

(8"%,85 < k8" Q)

In particular, since g* is characterized by g* € co Gy and {g,£*) > |§*|? for all g €
co Gy, we have g¥*! ¢ co Gy by (5) with x < . If a null step does not occur, we can try
expansion, starting from ¢ := g and setting 1= 2¢ until f(x* +1a%) > f(3*) — Kr|g|,
in which case 7 := /2 is accepted. At expansion we can replace x by a pammeter
X € (0,x]. In practice expansion should stop when ¢ is “too large” or f(x* +1d¥) is
“too low"; otherwise it could drive f(x*+7d¥) to —oo,

(e} After a null step, Step 6 may choose Gy by the well-known bundle strategies:
accumulation with Gy := Gy, aggregation with Gy := {§*} UG, for some G C Gy,
or selection with G; > {g/ Af > 0}, where l}‘ > 0 are multipliers such that g* =
L J’-‘gj, L 2.]’-‘ = 1. Of course, accumulation needs unbounded storage, whereas for
any fixed M, > 1, we can choose 1Gel € M, via aggregation, or selection if M, >
n+ 1, since the QP methods of [9, 13] compute at most n+ 1 positive multipliers,

(H)If > O or g4 < &, Step 7 may use an arbitrary d* € S for finding g“+!.
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3 Convergence analysis

Our main convergence result follows.

Theorem 3.1 Let {x*} be a sequence generated by Algorithm 2.1 with Eopt = 0 under
Assumption 2.1. Then the algorithm does not stop and either f(x*) | —os, or v | 0,
& | O and every cluster point of {x*} is stationary for f.

Proof Since Step 2 is always reached with g > 0, no termination occurs. If f(x*) |
~co, there is nothing to prove, and so assume infy f(x¥) > —oo. If f;, > 0, then Steps 4
and 5 with |@*] = 1 yield x# |g*| = |t — 2 |1g%] < F(=*) — F(xX*1). Summing this
inequality (which holds also if 1, = 0 at Steps 3 or 4) gives

Y nlgt] <o, O]
k=1

T - g < e, 0
k=1

Suppose there is k;, ¥ > 0 and & > 0 such that vy = V and g, = E forall k > &;.
Using Jg"i > ¥ at Step 3 in (6) yields r, — 0. Pick ky > k; such that 1, < E gives
# = 0 at Step 4 for all ¥ > ky. Fix k > kg. Since §* € coGy at Step 6, at Step 7
we have g% g**1 € coGyy) and [g*t!] < L for L given by Assumption 2.1(2) with
x =x*2 and € = E. On the next iteration, by Remark 2.1(d), (g%, ¢**!) > |#*!|? and
(g**+1, g5+1) > |g5F1 12 at Step 1. The first inequality and expanding |g5*! — g4|? give

|§k+l _gﬂk12 < |§k[2—,§k+l|2, (8)

whereas the second one combined with (5) yields (gh+1, g¢+1 — g%) > | g*+1)2 . k|2,
50 using the Cauchy-Schwarz inequality and the bound |g**!| < L, we obtain

LI~ g4 2 18 P - xIgt P (9

Now, by (8) with |g*| > ¥, there is ¥ > ¥ such that [§¥| — ¥, and g**! — g% — 0,
50 in (9), the left-hand side converges to 0, whereas the right-hand side converges to
(1 - x)¥ > 0 (since x < 1). This contradiction implies that v, | O and g | 0.

Next, suppose (x"} has a cluster point X. We claim that

lim, max{|¥* - %, } =0. (10)

This is clear if x* — %, since v; | 0 and |§*] < v when Viy| < Vi, 50 assume x* 4 %.
Arguing by contradiction, suppose (10) is false. Then there exist ¥ > 0, k and an
infinite set K := {k : k > k, |x* — | < ¥} such that {g*| > ¥ forall k € X, so (7) gives
Tiek |5+ —x*| < oo. Since x* 4 i, there is € > 0 such that for each k € X with
¥t — %[ < 72 there exists k' > k satisfying |** —x¥| > ¢ and |x' — %| < ¥ forall k <
i < k' Therefore, by the triangle inequality, we have £ < & —x*| < TX ! xi+! — i)
with the right side being less than ¢ for large k € K from Yyex ! — x| < o0, 2
contradiction. Therefore, (10) must hold also when x* /£ %.

By (10), there exists an infinite set X such that x* &’ ¥and & % 0. According to
Assumption 2.1(3), for any p > 0, there exist T > 0 and & > 0 such that (4) holds.
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Since ¢* € It (x*) by Remark 2.1(a), x* & % and & — 0, (4) with ** € B(%,) and
£ < & for k € K large enough yields g* € d, f(£) + B(0, p). Since g 7 0, p > 0 is
arbitrary and the mapping d. (%) is closed, 0 € 9 f(%). m]

Remark 3.1 (a) Suppose Step 4 is modified so that if 1 > &, then actually ; :=
argmax{r > 0 f(x* +1d*) < f(x*) — kr|g|}, where i € (0, k] (cf. Remark 2.1(d));
such # exists if inf f > —co. Then Theorem 3.1 remains true (by its proof).

(b) For kin J := {k:|8*| < wi}, Step 3 may choose Vi+1, &1 > O in other ways
that ensure vy, €, — 0 when the set J is infinite (see, e.g., [3, Alg. 7.1]). Theorem 3.1
remains true. Indeed, in its proof, suppose J is finite, let &y ;= 1 + maxes & and use
V1= Vy,, & := g, to obtain a contradiction from (8), (9) as before. Therefore, / must
be infinite, Vi, x — 0 and g* 7 0, so that limy |g*| = 0 in the proof of (10).

(c) For the DG method, our Theorem 3.1 is significantly stronger than the re-
sult of [3, Thm. 7.11, which assumes additionally that the set {x: f(x) < f{x")} is
bounded and the modifications of (a}, (b) above are employed. This result says only
that each accumulation point of the subsequence {x*}.c; is stationary for f (with
J:= {k: |#*| < w}). Note that the DG method [3, Alg. 7.1] has three nested loops:
an outer loop concems iterations in J, a middle loop starts/stops whenever descent or
stationarity progress occurs, and an inner loop works for consecutive null steps.

(d) As in (c) above, for the secant method [5, Alg. 3] our Theorem 3.1 is signif-
icantly stronger than the result of [5, Thm. 2], which assumes additionally that the
set {x: f(x) < f(x')} is bounded and either Step 4 is modified as in (a) above or it
employs the step size expansion of Remark 2.1(d). Here the three nested loops of (¢)
above correspond to Algorithms 3, 2 and | in {5), respectively.

(e) Both DG and secant methods use accumulation (cf. Remark 2.1(e)), for which
storage cannot be bounded a priori. In contrast, Algorithm 2.1 may employ aggrega-
tion or selection to ensure bounded storage and work per iteration.

4 Extensions

Inspection of the proof of Theorem 3.1 reveals that Theorem 3.1 remains true if As-

sumption 2.1 on the algorithmic mapping ¥(x,d, €) is replaced by the following.

Assumption 4.1 (1) If d = —§/|g| and f(x+ed) ~ f(x) > —«e|g| for some x,§ €
R", § # 0 and € > 0, then {y(x,d,€),d) > —K|g|, where X € (x, 1) is fixed.

(2) For eachx € R" and &€ > 0, there exists L < oo such that sup,eg|v(x,d,€)| < L.

(3) Foreachx € R" and p > 0, there exist T > 0 and E > 0 such that the approxima-
tion property (4) holds, where I3 (x) := co¥(x,S, €).

Indeed, under Assumption 4.1(1), we may replace x by & in (5}, (9) and below.
First, we note that Assumption 4.1 holds in the quasisecant setting of [4], where

the secant property (3) is replaced by the following quasisecant property

flx+ed)— f(x) < ely(x,d,e),d) forallxeR",deS e>0, (1

and J f() replaces d, f(%) in (4). In effect, Remark 3.1(d) applies to the three algo-
rithms of [4] as well as to those in [5).
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We now show how to satisfy Assumption 4.1 in the traditional bundle framework
(cf. [12, 14]) where a subgradient mapping g(-) € d f(-) is available and the objective
[ is upper semidifferentiable [6], i.e., as noted in (16, Eq. (5)],

%{[f(x+rd)-f(x)]/t~( g(x+1td),d)} <0 foreveryxandd.  (12)

Then (x,d, £) may be constructed by the following procedure (cf. [12, p. 103]).

Procedure 4.1 (line search at x along the direction d = —g/|§| with g # 0)

(a) Setty:=0andt:=1y =¢.

) If f(x+1td) < f(x) — kt|§| set ¢, := ¢, otherwise set 1y =

(c) If ey, = € or {(g(x +td),d) > —&|$|, return ¥(x,d,€) := g(x+1d).
(d) Choosert € [IL +0.1 (I(,' —1t),ty —0.1(ty — tL)] and go to (b).

Thus, by construction y{(x,d, £) := g{x+ td) satisfies Assumption 4.1(1) with ¢ <
€. Hence, for Assumption 4.1(2) we may take L as the Lipschitz constant of f on
B{(x,2¢), and the inclusion in (4) holds when 7+ < p.
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