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Abstract We study a generaiization of the non-derivative discrete gradient method 
of Bagirov et al. for minimizing a locally Lipschitz function fon IR". We strengthen 
the existing convergence result for this method by showing thai it either drives the 
J-vaiues to -~ or each of its cluster points is Clarke stationary for J, without requir­
ing compactness of the ievei sets off. Our generalization is an approximate bundie 
method, which also subsumes the secam method of Bagirov et al. 
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1 Introduction 

We consider the recentiy proposed discrere gradiellf (DG) method (3] for minimizing 
a iocally Lipschitzian function f : IR" -> IR. In contras! with bundle methods (see, 
e.g., (11, 12] and the references in (3,5, 7, 14]) which require the computation of a 
single subgradient off at each trial point, the DG method approximates subgrndients 
by discrete gradients using f-vaiues only. This is important for applications where 
subgradients are unavailable and derivative free methods are employed; see, e.g., [I , 
2] and the references therein. 

Our contributions can be summarized as follows. First, although the DG method 
(3, Alg. 7.1] has three nested loops, we show thai il may be regarded as an instance 
of a bundle method with approximate subgradients and a single iteration loop; this 
simplifies its analysis. Second, we prove thai this bundle method either drives the 
f-values to - ~, or each of its cluster points is Clarke [8] stationary for f (see Thm. 
3.1). This is significantiy stronger than the result of (3, Thm. 7.1], which assumes 
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additionally that f has bounded Jevel sets and establishes stationarity only for cluster 
points of a subsequence generated in an outer loop (cf. Rem. 3.l(c)). Third, since the 
DG method needs unbounded storage (cf. Rems. 2.l(e) and 3.J(e)), we show how 
to use well-known bundle techniques [I I, 12] to ensure bounded storage. Fourth, we 
note that aur results extend easily to the secant method of [5] and the quasisecant 
method of [4]. 

We add that aur proof technique is related to that employed in [I 5] for establishing 
global convergence of the gradient sampling algorithm [7]. 

The paper is organized as follows. Section 2 presents aur bundle generalization 
of the DG and secant methods. Its convergence is analyzed in Section 3. Section 4 
gives extensions for the quasisecant setting of [4] and the bundle setting of [14]. 

2 A bundle method with approximate subgradlents 

We assume that the objective function f : IR" --, IR is Jocally Lipschitz continuous. 
The Clarke subdijferentia/ [8] off at any point x is given by 

df(x) = co{ lim1 V f(y): J--, x and V f(y) exists for all j }, 

where co denotes the convex hull, and the Clarke e-subdiffere111ia/ [ I OJ by 

d,j(x) := codf(B(x,E)), (]) 

where B(x,E) := {y: ly-xl $ e} is the Euclidean bali centered atx with radius E 2: O. 
The mapping d.j(·) closed. We say that a point i is stationary for f ifO E a f(i). 

By Lebourg's mean value theorem (cf. [8, Theorem 2.3.7]), for each d E IR", 

f(x+Ed)- f(x) = E(v(x,d,E),d) for some v(x,d,E) E iJJ([x,x+ed)) . (2) 

Since v(x,d,e) may be hard to compute, for algorithmic purposes we assume that we 
have a simpler mapping y(x,d, e) that satisfies the following. Let § := {d: ldl = I}. 

Assumption 2.1 (I) The mapping y(x,d, e) has the mean va/ue property 

f(x+Ed)-f(x) = e(y(x,d,e),d) fora/lx E IR",d E S,e > O. (3) 

(2) For each x E IR" and e > O, there exists L < = such that supdES lr(x,d,e)I $ L 
(3) The set I',;(x) := coy(x,§, e) approximates df(x) in thefo//owing sense:jor each 

i E IR" and p > O, there exist ~ > O and E > O such that 

I',;(B(i ,~)) c dpf(i)+B(O,p) fora// e E {O,Ej. (4) 

Note that we may let I',;(x) beany set containing coy(x,S,E) for which (4) holds; 
e.g., we may replace I',;(x) by its closure. Tuus our assumption holds in the DG 
framework of [3] and the secant framework of [5]. Incidentally, fory= v of (2) and 
I',= d,j, the inclusion in (4) holds when ~+ii$ p. 

We now state a bundle method which generalizes the DG and secant methods . 
For a closed convex set C, Proj(O IC) is its minimum-norm element. 
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Convergence of the Oiscrete Gradient Method 

Algorithm 2.1 (bundle method with approximate subgradients) 

Step O (lnitialization). Select an initial point x 1 E IR", optimality tolerances Yopt, 
Eopt ;;:: O, a descent parameter KE (O, I), reduction factors µ, 0 in (O, I), a lo­
cality radius e1 > O, a stationarity target v1 > O and an initial direction d" E §. 

Setg 1 :=y(x1,d0,e1),G1 :={g 1}andk:= I. 
Step I (Directionfinding). Set/:= Proj(OI coGk). 
Step 2 (Stopping criterion). If 18' I $ Yopt and e, $ Eopt, terminale. 
Step 3 (Locality radius update). łf 18'1 $ Vk, set Yk+l := 0v,, ek+I := µek, t, := O, 

d' := dk-l and go to Step 5. Otherwise, set Vk+I := v,, Ek+I := Ek and d* := 
-//Ili (so that dk E §). 

Step 4 (Descent test). łf J(x* + E;dk) - J(:I) > -Keki/I, set lk := O; otherwise, 
choose a step size t,;;:: e, such that J(x* +tkdk) $ J(x*) - Kt;l/1-

Step 5 (Updating). Set x*+I := .-.!' +tkdk. 
Step 6 (Bundle compression). After a null step with tk = O and Ek+I = ek, choose a 

reduced bund le Ćh C {,g'} U Gk with g' Eco G,; otherwise, set Gk := 0. 
Step 7 (Bundle addition). Set g*+l := y(x*+ 1,d',ek+I) and Gk+I := {g*+ 1) UG;. 
Step 8 (Loop). Increase k by I and go to Step I. 

A few comments on the method are in order. 

Remark2.J (a) At Step I, coGk C co{gi: Ej= Ek,j $ k} with gi = y(x*,e,,di- 1) 

give g* E r,,(x*) by Assumption 2.1(3); thus g' is an aggregate subgradient. Step I 
may use the QP methods of (9, 13), which can salve efficiently related subproblems. 

(b) The stopping criterion of Step 2 is motivated by the inclusion in (4) with 
x =x*; namely, if Eop< $ i: then / E r,,(x*) yields dist(O I dpf(x*)) $Ili+ p, so that 
the point x* is approximately stationary if both 1/1 and p are small. 

(c) At Step 3, the condition 1/1 $ Vk detects progress in stationarity; then V; and 
Ek are reduced and Step 6 drops past subgradients by setting Gk := 0. 

(d) If Step 4 produces a null step with t, = O and Ek+I = Ek, then by the mean 
value property (3 ), the n ext approximate subgradient g*+ 1 computed at Step 7 will 
satisfy (g*+l ,dk) > -Kic'!; in other words, since dk := -c'/lc'I, g*+l will satisfy 

(5) 

In particular, since / is characterized by g' E coG, and (g,g');,:: ic'i2 for all g E 
co Gk, we have g*+l r/c co G, by (5) with K < I. If a null step does not occur, we can try 
expansion, starting from t := e, and setting t := 2t until J(x* +tdk) > J(x*)- Ktlc'I, 
in which case r, := t /2 is accepted. At expansion we can replace K by a parameter 
Jf. E (O, K). In practice expansion should stop when t is "tao large" or J(x* + tdk) is 
"tao low"; otherwise it could drive J(x* + tdk) to -=. 

(e) After a null step, Step 6 may choose Gk by the well-known bundle strategies: 
accumulation with G, := G,, aggregation with G, := {g'} UG~ for same G~ C Gk, 
or selection with G, ::i {gi: Aj > O}, where Aj ;;:: O are multipliers such that g' = 

Li Ajgi, Li Aj = I. Of course, accumulation needs unbounded storage, whereas for 

any fixed Mg ;;:: I, we can choose IGkl $ Mg via aggregation, or selection if Mg ;,:: 
n+ I, since the QP methods of (9, 13) compute at most 11 + I positive multipliers. 

(f) If t; > O or Ek+I < e,, Step 7 may use an arbitrary d* E § for finding g*+l _ 
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3 Convergence analysis 

Our main convergence result follows. 

Theorem 3.1 Let {x'} be a sequence generated byAlgorithm 2.1 with Eop, = O under 
Assumption 2.1. Then the algorithm does not stop and either f(x') l -=, or vk l O, 
ek l O and every cluster point of {x'} is srationary for f. 

Proof Since Step 2 is always reached with Ek > O, no tennination occurs. If f(x') l 
-=, there is nothing to prove, and so assume infk f(x') > -=. If tk > O, then Steps 4 
and 5 with jd*I = I yield Ktkle'I = Kjx"+' -x'lle'I $ f(x') - f(x"+' ). Summing this 
inequality (which holds also if tk = O at Steps 3 or 4) gives 

(6) 

[ lx*+' -x"11t1 < =. (7) 
k=I 

Suppose there is k1, ii > O and E > O such that vk = ii and ek = E for all k 2: k1. 
Using 1/1 2: ii at Step 3 in (6) yields tk -, O. Pick k2 2: k1 such that tk < E gives 
lt = O at Step 4 for all k ;;: k2. Fix k ;;: k2. Since g* E co Gt at Step 6, at Step 7 
we have g*, gk+ 1 E co Gk+ 1 and jgk+ 1 I $ L for L given by Assumption 2. I (2) with 
x = x'' and e = E. On the next iteration, by Remark 2. l(d), (g' ,g*+I) 2: j/+112 and 
(gk+ 1, g<+ 1) 2: lek+ 112 at Step I. The first inequality and expanding Il+ 1 - t 12 give 

lek+' -tl2 s ltl2 -1t+112 , (8) 

whereas the second onecombined with (5) yields (gk+l ,g<+l -g*) 2: jg*+I 12 - Kle'l2, 

so using the Cauchy-Schwarz inequality and the bound Il+ 1 I $ L, we obtain 

(9) 

Now, by (8) with le'I 2: ii, there is V 2: ii such that ic*I-, V, and g*+' -g*-, O, 
so in (9), the left-hand side converges to O, whereas the right-hand side converges to 
(I - K)v > O (since K < I). This contradiction implies that vk l O and Ek l O. 

N ext, suppose { x"} has a cluster point x. We claim that 

li.m; max{ lx" -xl, Iii}= O. (10) 

This is elear if x" ..., x, since Vt l O and Il I $ Vk w hen Vk+ 1 < Yt, so assume x" f+ x. 
Arguing by contradiction, suppose ( 10) is false. Then there exist ii > O, k and an 
infinite set K := { k: k 2: k, lx" - xl $ ii} such that le'I > ii for all k E K, so (7) gives 
LkEK jx"+1 -x"I < =. Since x" f+ x, there is e > O such thai for each k E K with 

lx' - xl $ ii /2 there exists k' > k satisfying lx"' - x"j > e and li - xl $ ii for all k $ 
i< Jć. Therefore, by the triangle inequality, we have e < lx"' -x"I $ Et:i' lx;+i -il 
with the right side being less than e for large k E K from LkEK jx"+l -x"I < =, a 
contradiction. Therefore, (I O) must hold also when x" f+ x. 

By (10), there exists an infinite set K such that x" K' i and gk K' O. According to 
Assumption 2.1(3), for any p > O, there exist ~>O and e >Osuch thai (4) holds. 

• 



Convergcncc of the Discrctc Gradient Method 

Since / E r,, (x') by Remark 2.1 (a), x* "i[' .i and E; ..... O, (4) with :x! E B(.i, -r) and 
ek $efor k E K large enough yields / E dpf(x) +B(O,p). Since/ "i[' O, p > O is 
arbitrary and the mapping J.J(.i) is closed, OE JJ(x). O 

Remark 3.1 (a) Suppose Step 4 is modified so that if '* ~ ek, then actually '* := 
argmax{1 ~O: J(x' +rd*) $ J(x')- Ktl.i*I}, where KE (O, 1<] (cf. Remark 2.l(d)); 
such ft exists if inf f > -oo. Theo Theorem 3.1 remains true (by its proof). 

(b) For k in J := { k : Iii $ vk}, Step 3 may choose Vk+,, Ek+, > O in other ways 
that ensure vk, ek ..... O when the set J is infinite (see, e.g., [3, Alg. 7. Il). Theorem 3.1 
remains true. Indeed , in its proof, suppose J is finite, let kt := I + maxkel kand use 
ii := vk,, e := ek, to obtain a contradiction from (8), (9) as before. Therefore, J must 
be infinite, Vk, e, ..... O and g* J4 O, so thai !i.m, Jg* I = O in the proofof (I 0). 

(c) For the DG method, aur Theorem 3.1 is significantly stronger than the re­
suit of [3, Thm. 7.1], which assumes additionally that the set {x: J(x) $ J(xt)} is 
bounded and the modifications of (a), (b) above are employed. This result says only 
that each accumulation point of the subsequence {x*he1 is stationary for f (with 
J := {k: Iii$ vk}). Note that the DG method [3, Alg. 7.1] has three nested loops: 
an outer loop concems iterations in J, a middle loop starts/stops whenever descent or 
stationarity progress occurs, and an inner loop works for consecutive null steps. 

(d) As in (c) above, for the secant method [5, Alg. 3] aur Theorem 3.1 is signif­
icantly stronger than the result of [5, Thm. 2], which assumes additionally that the 
set {x: J(x) $ J(x')} is bounded and either Step 4 is modified as in (a) above or it 
employs the step size expansion of Remark 2. l(d). Here the three nested loops of (c) 
above correspond to Algorithms 3, 2 and I in [5], respectively. 

(e) Bath DG and secant methods use accumulation (cf. Remark 2.l(e)), for which 
storage cannot be bounded a priori. In contrast, Algorithm 2.1 may employ aggrega­
tion or selection to ensure bounded storage and work per iteration. 

4 Extensions 

Inspection of the proof of Theorem 3.1 reveals that Theorem 3.1 remains true if As­
sumption 2.1 on the algorithmic mapping y(x, d, e) is replaced by the following. 

Assumption 4.1 (I) If d = -g/lgl and J(x+ ed) - f(x) > -1<elclfor same x,g E 
IR", gi' O and e > O, 1he11 (y(x,d,e),d) ~ -iclcl, where icE {1<, I) isjixed. 

(2) For eaclt x E IR" and e > O, tltere exists L < 00 suclt that supdES lr(x,d, e)I $ L 
(3) For eaclt .i E IR" and p > O, there exist -r > O and e > Osuch that the approxima­

tion property (4) /to/ds, w/tere I',(x) := coy(x,§,e). 

Indeed, u n der Assumption 4.1 (I), we may rep lace 1< by ie in (5), (9) and below. 
First, we note that Assumption 4.1 holds in the quasisecant setting of [4], where 

the secant property (3) is replaced by the following q11asiseca111 property 

J(x+ ed) - J(x) $ e(y(x,d, e),d) for all x E IR" ,d E §, e > O, (Il) 

and JJ(.i) replaces Jpf(.i) in (4). In effect, Remark 3.l(d) applies to the three algo­
rithms of [4] as well as to those in [5]. 
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We now show how to satisfy Assumption 4.1 in the traditional bundle framework 
(cf. [12, 14]) where a subgradient mapping g(-) E JJ(-) is available and the objective 
fis upper semidijferentiable [6], i.e., as noted in (16, Eq. (5)], 

lim{[f(x+td)- f(x)]/t - (g(x+td),d)} $ O for every x and d. (12) 
1)0 

Then y(x,d,e) may be constructed by the following procedure (cf. (12, p. 103]). 

Procedure 4.1 (line search atx along the direction d = -g/lgl with g 'f' O) 

(a) Set IL:= O and t := tu := €. 
(b) If f(x+td) $ f(x)- ,ajgj set IL:= t, otherwise set tu:= t. 
(c) If ti = e or (g(x+td),d) ~ -iclgl, return y(x,d,e) := g(x+td). 
(d) Choose t E [tL+O.l(tu -ti),tu -0.l(tu -ti)] and go to (b). 

Thus, by construction y(x,d, e) := g(x+td) satisfies Assumption 4. 1(1) with t $ 
€. Hence, for Assumption 4.1 (2) we may take L as the Lipschitz constant off on 
B(x,2€), and the inclusion in (4) holds when -r+i: $ p. 
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