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1 Introduction

We give a bundie method for the structured convex minimization problem
0, =unt{0():=0()+n()}, (1.D

where ¢ 1 R™ — (—o0,00] and 7 : C — R are closed proper convex functions, and C :=
domo := {u: o (u) <o} is the effective domain of ¢. Such problems may appear via duality
when the primal has a certain structure. For instance, consider the minimization problems

for=inf{ f(Ax) :x € X} =inf{ f(y):y=Axx€ X}, (1.2)

where X C R" and A is an s x n matrix. For the Lagrangian L(x,y;u) := f(y) -+ (u,Ax ~ y),
minimization over (x,y) € X x R" yields a dual problem ot the form (1.1) with

o(u) = f"(u):=sup,{(uw,y) = f(»)} and m(u):=sup{ (-ATu,x):xeX}). (1.3)

We assume that ¢ is “simple”, i.e., minimizing ¢ plus a separable convex quadratic
function is “easy”. On the other hand, 7 is only known via an oracle, which at any u € C
delivers an affine minorant of @ (e.g., (—Ax,-) for a possibly inexact maximizer x in (1.3)).
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Our method is an approximate version of the proximal point algorithm [17,20] which
generates a sequence

A = argmin o () + () + 5| - =P fork=1,2,..., (t.4)

starting from a point @' € C, where | -| is the Euclidean norm and #, > 0 are stepsizes. It com-
bines two basic ideas: bundling from the proximal bundle methods [8], [6, Sect. XV.3] and
their extensions [11, 12] to inexact oracles, and alternating linearization (AL for short) from
[10, 12, 15]. Here bundling means replacing 7 in (1.4) by its polyhedral model 75, < & de-
rived tfrom the past oracle answers. Since the resulting subproblem may still be too difficult,
we follow the AL approach in which a subproblem involving the sum of two functions (here
o and 7)) is replaced by two subproblems in which the functions are alternately represented
by linear models. Thus, (1.4) is replaced by the two easier subproblems

A = argmin Gy () + () + 5|84, (1.5)
£ = argmin 0'(-)+ﬁ'k(-)+2+k|-~ﬁkl2. (1.6)

The first subproblem (1.5) employs a linearization 6;_; < ¢ obtained at the previous itera-
tion. Its sofution yields by the usual optimality condition a linearization fy < & which may
a posteriori replace 7 in (1.5) without changing its optimal value and solution. Similarly,
the solution of (1.6) provides a linearization 6, < ¢ which may replace o in (1.6).

Our method coincides with that of [12] in the special case of o being the indicator
function ic of C (ic(u) = 0 if 1 € C, o otherwise). Then 11! in (1.6) is the projection onto
C of i* —1, V#,; this projection is straightforward if the set C is “simple”. For more difficult
cases, it is crucial to allow for approximate solutions in (1.6). We show (cf. Sect. 4.2) that
such solutions can be obtained by solving the Fenchel dual of (1.6) approximately; this is
conceptually related to the use of Fenchel’s duality in [6, Prop. XV.2.4.3 and p. 306).

For dual applications, we restrict our attention to the setup of (1.2)~(1.3) with f closed
proper convex and X compact and convex (since other examples of [15] could be treated
in similar ways). As in [12], even when the dual has no solutions, our method can stil
asymptotically find gg-optimal primal solutions, where &, is an upper bound on the oracle’s
errors; in fact only the asymptotic oracle errors matter, as discussed in [12, Sect. 4.2].

Actually, our theoretical contributions outlined above were motivated by applications to
nonlinear muiticommodity flow problems (NMEFP for short); more concretely, by the good
experimental results of [1], where the analytic center cutting plane method (ACCPM for
short) exploited “nice” second-order properties of ¢ in (1.1). We show that our method can
exploit such properties as well, obtaining significant speedups on most instances used in [1].

As for the state-of-the-art in NMFP, we refer the reader to [1] for the developments
subsequent to the review of [18], adding the more recent references of [13, 16].

The paper is organized as follows. In Sect. 2 we present our method for general models
of m. Its convergence is analyzed in Sect. 3. Useful modifications, including approximate
solutions of (1.6), are given in Sect. 4. Application to the Lagrangian relaxation of (1.2} is
studied in Sect. 5. Specializations to NMFP are given in Sect. 6. Implementation issues are
discussed in Sect. 7. Finally, numerical comparisons with ACCPM are given in Sect. 8.

2 The alternating linearization bundle method

We first explain our use of approximate objective values in (1.5), (1.6). Our method gener-
ates a sequence of trial points {llk};;‘ C C at which the oracle is called. We assume that for



An Alternating Linearization Bundle Method for Convex Optimization

a fixed accuracy tolerance €, > 0, at each u* € C the oracle delivers an approximate value
nﬁ and an approximate subgradient g& of m that produce the approximate linearization of

T
() i= n:,f + (g’,"r,- - L/‘) < m(-) with m.(u/") = n{f > n(uk) — &y 2.1)

Thus m¥ € [w(i*) ~ &5, (u*)], whereas gk lies in the &,-subdifferential of  at &
Fea (ut) 1= {grn:m(:) = 7() = £x + (gr,- — 1) }.

Then 6F := o¥ + nif is the approximate value of 8 at u¥, where g := o ().
Atiteration k > 1, the current prox (or stability) center &= uF ¢ C for some k(I) < k

has the value 9,,;( = Gl’f(” (usually 95 = min’jzl Gi{); note that, by (2.1),
6% € [0(a") - eq,0("). 2.2)

If nf < A (@*) in (1.6) due to evaluation errors, the predicted descent
v = 0F — [o (@) + /(Y] 2.3)

may be nonpositive; hence, if necessary, & is increased and (1.5)-(1.6) are solved again until
vp > |uf T — %%/ 24 as in [11, 12, 14]. A descent step to #+! = u**1 is taken if

Ol < 0 — xvy (2.4)
for a fixed k € (0,1). Otherwise, a null step &*+! := g occurs; then 7, and the new lin-

earization m) are used to produce a better model 7y > max {7, My }-
Specific rules of our method will be discussed after its formal statement below.

Algorithm 2.1

Step 0 (Initiation). Select ut € C, a descent parameter xk € (0,1), a stepsize bound tyy, > 0
and a stepsize ¢ > fyia- Call the oracle at u! to obtain mf and g}, of (2.1). Set iy :=m,

by (2.1), and &g(-) := o (u') + (p%, —u') with p% € do(u'). Set &' :=u', 6} :=
ol :=ol+n! with g} :=a(u'),il :=0, k:=k(0) := 1,1 := 0 (k{{) - 1 will denote
the iteration of the /th descent step).

Step 1 (Model selection). Choose 7 : R — R convex and such that

max{fy_,m} < 7 < 1. (2.5)
Step 2 (Solving the n~subproblem). Find ! of (1.5) and the aggregate linearization of 7
) o= A (Y 4 (P, — Y with o= (@ @) m— g 2.6)
Step 3 (Solving the c—subproblem). Find t#*! of (1.6) and the aggregate linearization of &
Ge(-) = o (WY ¢ (pE, —uf ) with pE o= @ Y -ph @)
Compute v of (2.3), and the aggregate subgradient and linearization error of 6
o= (ﬁk—uk*l)/tk and £ = vy — 1| p*. (2.8)
Step 4 (Stopping criterion). If max{|p*],&} = 0, stop (0f < 0.,).

Step 5 (Noise attenuation). If vy < —&, setty := 10ty if‘ ==k and go back to Step 2.
Step 6 (Oracle call). Call the oracle at W**! to obtain z*+! and g&t! of (2.1).
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Step 7 (Descent test). If the descent test (2.4) holds with 08+! := o (uf*1) + mi+} | set
A= il @it = ghtl L= 0 k(14 1) 1=k + 1 and increase | by 1 (de-

scent step); otherwise, set ptt = gk, 9;,‘“ = 95, and if“ = i{‘ (null step).

Step 8 (Stepsize updating). If k(1) =k + 1 (i.e., after a descent step), select fy1 > fnins
otherwise, either set £y | 1= ty, Or choOS€ fy41 € [fuyn, ] if i,"+l =0.
Step 9 (Loop). Increase k by 1 and go to Step 1.

Several comments on the method are tn order. Step | may choose the simplest model
7o = max {7, m; ). More efficient choices are discussed in [12, Sect. 4.4] and (14, Sect.
2.3]. For polyhedral models, Step 2 may use tlie QP methods of [3,7,9], which can handle
efficiently sequences of subproblems (1.5).

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which in-
volves the aggregate linearization 6y := Gy + 7 and the optimality measure
Vk::max{lpk|,£k+(pk,ftk)}. 2.9)
Lemma 2.2 (1) The vectors pt and pk defined in (2.6) and (2.7) are in fact subgradients:
phedn (@) and pt e do(utt), (2.10)
and the linearizations , and 6y defined in (2.6) and (2.7) provide the minorizations
T <, 6,<0 and Op:=m+06,<8. 2.11)
(2) The aggregate subgradient p* defined in (2.8) and the linearization 8y above satisfy
PE=patpo = (@ = d )/, (2.12)
Oe() = B (Y + (P, - — Wk, (2.13)
(3) The predicted descent v of (2.3) and the aggregate linearization error & of (2.8) satisfy
ve = 0F — B () = lk]pklz +& and & =05 —6,(2). (2.14)
(4) The aggregate linearization Oy is expressed in terms of P~ and g as follows:
Of — e+ (pf, — ") = Bi() < 0(). (2.15)
(5) The optimality measure Vi of (2.9) satisfies Vi, < max{]p*|, & }(1 + |i#*|) and

0F < O(u) +Vi(L+u|) forallu. (2.16)

(6) We have v, > —g < tk}pk|2/2 > g v > tk]pk|2/2. Moreover, v > €, —& < &g
and

ve > max {1 p*1%/2, &l } if v —g, (2.17)

Ve <max{@ve/u)' v} (L 18) if v > —&, (2.18)

Vi < (265 /1) /% (1 + |a]) if v < —&. (2.19)
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Proof (1) Let 9% and ¢% denote the objectives of (1.5) and (1.6). By (2.6), the optimality
condition 0 € 9¢F(#*1) for (1.5) with V&;_; = p%~! by Step 0 and (2.7), i..,
0 € Ipr( ) = Iy (@) + plg! + (M — ) /1y = IR () - pf,

and the equality 7 (#1") = 7, (*+Y) yield p € 37 (%) and & < 7. Similarly, by (2.7),

0€ 0Lk ) = pk + o (W) + (W = J = Ao (W) -

(using V& = p5) and G (u*+!) = o(ub*!) give p € do (") and &; < . Combining
both minorizations, we obtain that Ty + 6, < 7 + g < 0 by (2.5) and (1.1).

(2) Use the linearity of O 1= R + Ok, (2.6), (2. 7) and (2.8).

(3) Rewrite (2. 3), using the fact that ek (8% = G (1) + 1) k]2 by (2).

(4) We have 9“ — g, =0 ( @) by (3), 6, is affine by (2) and minorizes ¢ by (1),

(5) Use the Cauchy—Schwarz inequality in the definition (2.9) and in (4).

(6) The equivalences follow from the expression of v = ;] pklz + & in (3); in particular,
v, > &. Next, by (2.14), (2.11) and (2.2), we have

—g = 6, (5 — 6f < 9(*) - 05 < ;.

Finally, to obtain the bounds (2.17)--(2.19), use the equivalences together with the facts that
Vi 2 &, —& < € and the bound on Vj from assertion (5). O

The optimality estimate (2.16) justifies the stopping criterion of Step 4: V; = 0 yields
9;," < int@ = 6,; thus, the point i is Eqg-optimal, i.e., 9(&") < 0, + £z by (2.2). If the oracle
is exact (€, = 0}, we have v, > g > 0 by Lemma 2.2(6), and Step 5 is redundant. When
inexacmess is discovered at Step 5 via v, < —g and the stepsize ¢ is increased, the stepsize
indicator i¥ # 0 prevents Step 7 from decreasing # after null steps unti! the next descent step
occurs (cf. Step 6). At Step 6, we have ¥ € C and vy >0 (by (2.17), since max{{p*|, &} >
0 at Step 4), so that @*+' € C and 95+ < @ for all k.

3 Convergence

With Lemma 2.2 replacing [12, Lem. 2.2], it is easy to check that the convergence results of
{12, Sect. 3] will hold once we prove [12, Lem. 3.2] for our method. To this end, as usual in
bundle methods, we assume that the oracle’s subgradients are locally bounded:

{g%} is bounded if {u*} is bounded. (3.1
Further, as in [12], we assume that the model subgradients p£ € s (@) in (2.10) satisfy
{pX} is bounded if {u*} is bounded. (3.2)

Remark 3.1 Note that (3.1) holds if C = R" or if & can be extended to become finite-valued
on a neighborhiood of C, since gk € J, m(*) by (2.1), whereas the mapping d., 7 is locally
bounded on C in both cases [6, Sect. XI.4.1]. As discussed in [12, Rem. 4.4], typical models

74 satisty condition (3.2) automatically when (3.1) holds.
A suitable modification of the proof of [12, Lem. 3.2] follows.

Lemma 3.2 Suppose there exists k such that for all k >k, only null steps occur and Step 5
doesn’t increase ty. Then Vy, — 0.
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Proof Let ¢% and ¢X denote the objectives of subproblems (1.5) and (1.6). First, using partial
linearizations of these subproblems, we show that their optimal values ¢,,( Y < gk (k)

are nondecreasing and bounded above for k > k.
Fix k > k. By the definitions in (1.5) and (2.6), we have % (i**!) = 7%, (#**1) and

@ = argmin{ §5() = () + Gk () + 2|~ } (33)
from V@X(i*+!') = 0. Since ¢ is quadratic and X (i#T1) = ¢k (1 +1), by Taylor’s expansion
r () = OR(H) 4 o] =i (34)

Similarly, by the definitions in (1.6) and (2.7), we have &, (1#4*1) = o (s4*1),
W = argmjn{ (ﬁé() =)+ Ou() + 21[([ Hukj } 3.5)
G5 () = 95 () - |- =T 3.6)

Next, to bound the objective values of the linearized subproblems (3.3) and (3.5) from above,
we use the minorizations 7y < 7 and 63,0, < ¢ of (2.11) for 8 := 4+ o

Or @) o | — P = gr(a) < 0(aY), (3.72)
05 (1) gl — P = g () < (), (3.7b)
where the equalities stem from (3.4) and (3.6). Due to the minorization &;_; < o, the ob-

jectives of subproblems (3.3) and (1.6) satisfy <ﬁ,’; < ¢§. On the other hand, since 21! = i#,

tip1 <# (cf. Step 7), and 7, < 741 by (2.5), the objectives of (3.5) and the next subproblem
(1.5) satisty % < ¢X+1. Altogether, by (3.4) and (3.6), we see that

PR gl =i = () < gg (i), (3.82)
¢§(llk+l)+—l—[ﬁk+2 k+l|2v_¢ ( k+2) < ¢k+l(\ik+2). (38b)

In particular, the inequalities ¢X (:7*F1) < ¢k 1541y < ¢+ (52 imply that the nondecreas-
ing scqucnccs {pk(i+h) ) hesi and {¢G(u"“)}k>k, which are bounded above by (3.7) with
& = f* for all & > k, must have a common limit, say ¢ < 6(u ). Moreover, since the

stepsizes satisfy 1, < for all £ > k, we deduce from the bounds (3.7)-(3.8) that

¢7/:(ﬁk+l),¢£(uk+l) 1 oo ﬁk+2 _”k+1 -0, (3.9)

and the sequences {i#1} and {u**!} are bounded. Then the sequences {gt} and {pt} are

bounded by (3.1) and (3.2).

We now show that the approximation error & = £t ™' — i (uf™!) vanishes. Using the
form (2.1) of m, the minorization 7y < 4 of (2.5), the Cauchy-Schwarz inequality,
and the optimal values of subproblems (1.5) and (1.6) with i = g* for k > k, we estimate

& o= A — () = g () — () - (gE L W Dy
< nk+1(vk+2) ﬂk( k+l)+lgl.+lHuk+l_uk+ZI
— ¢7A[+l(l~ik+2) (p (u/(+l)+A"+Ak +|gl¢+l”uk+l_ﬁk+2|’ (3.10)

k+l)

where A% = ik +1 — 38220 — |it+2 — 08[2/2¢,, | and A% := GF+! — G (i*2); in fact, Ak =
— (&, @2 — 1Y by (2.7). To see that A¥ — 0, note that

[i*2 17E|2 = |uktt L?E,2 20T hE ) |k k2
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i+t — ﬁ’_"jz is bounded, #2 — i1 — 0 by (3.9), and fiyin < 1y < # for k >k by Step 7.
These properties also give Af, — 0, since by (2.7) and the Cauchy—Schwarz inequality,

1461 < lpelid™ =] with  [pl] < 16" ~a")/n+|p3l,

where {pt} is bounded. Hence, using (3.9) and the boundedness of {gt!} in (3.10) yields
Tty & < 0. On the other hand, & = 51 — 6, (1" 1) from &, (5*) = o+ in (2.7), while
for k > k the null step condition 9,’,‘“ > 65‘ — Kvy gives

!_3/( = [9,f+l —9[/;(] + [Gg—ék(uh-l)] > KW v = (1 - K')Vk 20

by (2.14), where « < 1 by Step 0; we conclude that & — 0 and v; — 0. Finally, since vy — 0,
ty > tin (cf. Step 7) and ak = a* for k > k, we have V4 — 0 by (2.18). O

T ] NP T ’
We may now state our principal result on the asymptotic objective value 8 = limy ;.

Theorem 3.3 (1) We have 0% | 87 < 6,, and additionally lim, Vi = 0 if 6, > —es,

-

(2) 0, < lim, 8(d*) < Iim; 8(8*) < 07 + .

Proof Use the proof of [12, Thmn. 3.5], with obvious modifications. (]

4 Modifications
4.1 Looping between subproblems

To obtain a more accurate solution to the prox subproblem (1.4) with 7 replaced by 7, we
may cycle between subproblems (1.5) and (1.6), updating their data as if null steps occured
without changing the model 7. Specifically, for a given subproblem accuracy threshold
K € (0,1), suppose that the following step is inserted after Step 5.

Step 5’ (Subproblem accuracy test). If

o () + A (W) > 0f — Ky, (4.1)

set 31 () i= 8x(-), P& := p¥ and go back to Step 2.

The main aim of this modification is to avoid “unnecessary” null steps. Namely, if the
test (4.1) holds with k < « and the oracle is exact enough to deliver 71;f+l > ir,((u"+l ), then
the descent test (2.4) can’t hold and a null step must occur, which is bypassed by Step 5.

When the oracle is expensive, the optional use of Step 5 with K € [« 1) gives room for
deciding whether to continue working with the current model 7, before calling the oracle.

Convergence for this modification can be analyzed as in [12, Rem. 4.1]. Omitting details
for brevity, here we just observe that for the test (4.1) written as (cf. (2.14))

& = i (Y — B (W) > (1= ©)w,

the &, above may play the role of & in (3.10).




K.C. Kiwiel

4.2 Solving the o-subproblem approximately

For a given tolerance &y € (0, 1 — x), suppose Step 3 is replaced by the following.
Step 3’ (Solving the o—subproblem approximately). Find a linearization §;, < ¢ such that
() < go (), 4.2)
o () — G () < 1y, 4.3)
for «**! given by (3.5) and v by (2.14). Set p"' and € by (2.8), and pf, = V.

Before discussing implementations, we show that Step 3 does not spoil convergence. In
Sect. 2, 63 (¢**1) replaces o (t* 1) in (2.3), (2.7) and (2.10). In Sect. 3, it suffices to validate

Lemma 3.2.

Lemma 4.1 Lemuma 3.2 still holds for Step 3 replaced by Step 3 above.

Proof We only sketch how to modify the proof of Lemumna 3.2. First, referring to (3.5) instead
of (1.6), replace ¢X by ¢¥ throughout, and (3.82) by (4.2). Second, let AL := & (u**!) —
Gx (i#F?) in (3.10). Third, by (4.3), the null step condition yields

G + 25 > 0% — kv + G () — o (5T > 6F — kv
for kK := x4 xy < 1, and hence
B =G (W) + 25 B (T > (1= Ry 20,
O

so that the proof may finish as before.

Step 3’ can be implemented by solving the Fenchel dual of (1.6) approximately. Indeed,
using the representation ¢ () = sup,{(z,-) — 0*(z)} in (1.6), consider the Lagrangian

L(u,2) i= (z,u) = 0™ () + () + 5 | — P2, (4.4)
and associate with each dual point z € dom ¢* the following quantities:
ii(z) = argmin, L{u,z) = @ — 1 (pX +2), 4.5)
G(s2)=(z,) —0"(3), (4.6)
€(z) := o(a(z)) — 6(i(z);2) = o ((z)) + 07 (2) — (2, 8(2)), .7
v(z) = 05 — [ M (1(2)) + 6(a(z); 2) ], (4.8)

where (z) is the Lagrangian solution (with pf = V%), §(-;2) is the linearization of &, £(z)
is its linearization error at i(z), and v(z) is the predicted descent. Maximizing L(ii(z},z) or
equivalently minimizing w(z) = —L(ii(z), z) leads to the following dua} problem:

w, 1= min { w(z) := 0*(z) + %]pf, +2)? = {z,0%) — A (@%) I8 (4.9)
with a unique solution z* giving u* := (z*) such that u* € do*(z*), z* € do(u*) and
oy +o" ()~ (" u") =0 (4.10)

not suprisingly, u* is the exact solution of (1.6) and z* is the corresponding pf, in (2.7). Note
that (4.9) can be restricted to the set 2 := domdo* := {z: d0*(z) # 0}, which contains z*.
Now, suppose that we have a method for solving (4.9) with the following properties:
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(1) It starts from the point z' := p&~! € D such that o3 (-) = {z! ,~) o*(zh); thus by (3.3),
(3.4) and (4.4)—(4.6), the initial w(z') = —¢,,(li"“) from w(z )= L(‘t( ), 2.
(2) Tt generates points 7 € D with w(z') < w(z!) such that 7 — z*, 0*(') — o*(z*) and
o(a(z')) — o(u*), where i(z') — u* by (4.5).
Then £(z') — 0 by (4.7) and (4.10), whereas v(Z) — v(z*) by (4.8). Thus, if v(z*) > 0,
we will eventually have £(Z') < KNv( ) Then the method may stop with **! := a(z}),
v = v(2'), 8x(-) := &(+;2%) and pk 1= z' to meet the requirements of Step ¥/, with (4.2)
following from —@% (¥ ™) = w(z') < w(z!) = — gL (#**1); see (1) above and (3.5).
As for the assumptions in (2) above, note that o*(z') — o*(z*) if o* is continuous on
D :=domdo* (e.g., in Sect. 6.3). Similarly, o(ii(z')) — o («*) holds if o is continuous on
domdo and i(z') € dom d o for large i.

5 Lagrangian relaxation

We now consider the application of our method to (1.2) treated as the primal problem
o =sup {@(y) :=—f(»)} st yly)=y—Ax=0,x€X, (5.1

assuming that f is closed proper convex and the set X # @ is compact and convex. In view
of (1.3) and (2.1), suppose that, at each i € C, the oracle delivers

¢ =AY and m():=(—Ad, ) forsome X € X. (5.2)
For simplicity, let Step [ retain only selected past linearizations for its kth model

() = maxnj() with ke C{l,...,k}. (5.3)
Jj€k

Then (see (2.10) and [12, Sect. 4.4]) there are convex weights \/} > 0 such that
(7, ph 1) = 3 vi(m,85, 1) with  Jyo={j € J: v >0}, (5.4)
ik

and for convergence it suffices to choose Jiy 1 D Jx U {k -+ L}. Using these weights and (2.7),
we may estimate a solution to (5.1) via the aggregate primal solution (¥, _)‘rk) with

= Z v}‘x’ and = pk. (5.5)
J€lk

We first derive useful expressions of @(5°) and y(&%,3%).
Lenuna 5.1 We have # € X, ¢(3*) = 0 — & ~ (p*,0*) and y(#,9*) =

Proof First, # € co {xj}jef,( CX, ()= (=A%) and p& = ~A* by convexity of X, (5.2),
(5.4) and (5.5). Then p* = §* — A% = (2%, §%) by (2.12), (5.1) and (5.5). Next, by {19, Thm.
23.5), the inclusion 7* := p& € do(#**1) of (2.10) with & := f* in (1.3) yields o(uf*!) =
(UL PRy — F(9%); thus @(5%) := — f(5%) = 4(0) by (5.1) and (2.7). Since 74(0) = 0 in
(2.11), (2.15) gives 8¢ (0) = 8, (0) = 8% — & + (p*, %), as required. m]
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In terms of the optimality measure Vi of (2.9), the expressions of Lemma 5.1 imply

FeXx with o@H >0 -V, |wE M <V (5.6)

— i

We now show that {(#, 9 )} has cluster points in the set of ez-optimal solutions ot (5.1)
Ze, ={(xy) EXxR": 0(3) 2 ¢ — &, W(x,y) =0}, (5.7

unless @, = —eo, i.e., the primal problem is infeasible. Note that (5.2) with X compact and
(5.4) yield (3.1)—(3.2), as required for Theorem 3.3.

Theorem 5.2 Either 6, = —oo and 65 | —eo, in which case the primal problem (5.1) is
infeasible, or 6, > —oo, 95 167 € (6, —£x,6.], Timg H(r?k) <07 + &g and lim, Vi = 0. In
the latter case, let K C N be a subsequence such thar V, X,0. Then:

(1) The sequence {( (&, 9 Yheex is bounded and all its cluster points lie in the set X x R™.
(2) Ler (£°,5°) bea clustez point of the sequence { .5 ek Then (£°,97) € Ze,.

(3) dz,, ((#,59) = inf(y ez, [(F,5) = (1) -5 0.
@) If £, =0, then 05 | 6., 9(5) = @, = 0, and w(¥,5*) - 0.

Proof The first assertion follows from Theorem 3.3 (since &, = —eo implies primal infea-
sibility by weak duality). In the second case, using 9: 167 >0, —¢&r and V X, 0 in the
bounds of (5.6) yiclds limycr @ (3%) > 6, — £, and limyeg w(#,5%) = 0.

(1) By (5.6), {#} lies in the compact X; then {¥*}1cx is bounded by (5.1) and (5.6).

(2) We have £~ € X, @(§°) > 6, — £ and y(£=,77) = 0 by closedness of ¢ and conti-
nuity of w. Since 6, > @, by weak duality (cf. (1.1), (1.3), (5.1)), we get ¢(7°) > ¢. — &1.
Thus (£7,5%) € Z,, by the definition (5.7).

(3) This tollows from (1), (2) and the continuity ot the distance function ey

(4) In the proof of (2), 6, > @, > @(§) > 6, yields ¢, = ¢(F*) = 0,, and for K’ C K

such that $* - 5= we have ¢(5) > Tingexs @ (%) 2 limger 9(7) 2 6., L. p(7%) <5 o,
So considering convergent subsequences in (1) gives @ (5) X, Q.. O

6 Application to multicommodity network flows
6.1 The nonlinear multicommodity flow problem

Let (4, &) be a directed graph with N := |#| nodes and m := || arcs. Let E € RV*" be
its node-arc incidence matrix. There are n commodities to be routed through the network.
For each commodity i there is a required flow r; > 0 from its source node o; to its sink node
d;. Let 5; be the supply N-vector of commodity i, having components s, = r;, Sig, = — i,
sy = 0it | # 0;,d;. Our nonlinear multicommodiry flow problem (NMFP for short) is:

m

min f(y Zf,(yj) (6.1a)

1
st y= Z,\‘,, (6.1b)
i=1

xieXi={x Ex=5,0<x<%}, i=1:n, (6.1¢)







































