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Abstract 

Necessary conditions for the L2 optimality of a first-order-plus-dead-time 
(FOPDT) model of a high-order plant are derived using classic analytic 
function theory. They are expressed as a set of three nonlinear equations that 
partly resemble the interpolation conditions valid for rational approximation. 
From these conditions a simple procedure to find the optimal FOPDT model 
is obtained. An example taken from the relevant literature is finally worked 
out. It turns out that the impulse and step responses of the L2-optimal 
FOPDT model fit well those of the original high-order rational system. 

Keywords: Approximation, L2 norm, Time delay, Optimality conditions, 
Algorithms . 

1. Introduction 

The values of the parameters of PID controllers are usually set on the 
basis of an approximate model of the plant to be controlled (see, e.g., [1], 
[14, Ch. 3]). Often, industrial plants are characterised by a large pole­
zero excess and all of their poles are negative real. As a consequence, their 
step response is monotonically increasing and exhibits a flat initial part of 
non-negligible length because a number of successive derivatives are zero at 
t = 0. Therefore, it is reasonable to approximate the transfer function of 
these plants by means of a first-order-plus-dead-time (FOPDT) model with 
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transfer function 
G (s) = _µ_ e - Ls _ 

a S + >, 
(1) 

Since the pioneering paper by Ziegler and Nichols [19] a variety of meth­
ods have been proposed to derive a transfer function like (1) from the step or 
harmonic response (usually obtained experimentally) of an original complex 
system (see, e.g., [17, Ch. 6], [14, Ch. 3] and bibliographies therein). On 
the other hand, even when an analytical description of a high- order process 
is already available, it is often useful or even mandatory to resort to a more 
compact representation for both computational and controller design reasons. 
Observe, in this regard, that model (1) allows us to deal satisfactorily with 
robustness issues. For example, the set of all PID controllers ensuring given 
stability margins can easily be found when the plant is described by (1) [8], 
[7], [14], [15]. However, despite these advantages, the irrational nature of (1) 
hinders the application of analytically- based techniques to the approxima­
tion of high- order systems by means of FOPDT models. Attempts in this 
direction have recently been made in [10] and [5) where L2- optimal FOPDT 
approximations of either all- pole original systems or, respectively, original 
systems with only one zero have been sought using a time-domain analytical 
approach. 

This note, too, is concerned with the approximation of a high- order ra­
tional model by means of a FOPDT model. The adopted approximation 
criterion is the minimisation of the £ 2 norm of the difference between the 
original and FOPDT impulse responses without restrictions on the structure 
of the original rational system. The problem is formally stated in Section 
2. In Section 3 necessary conditions for the optimality of the approximation 
are derived using a frequency- domain approach. They correspond to a set 
of three nonlinear equations in the three unknown parameters of (1) that 
are somewhat reminiscent of the interpolation conditions valid in the case 
of rational approximation [6]. In Section 4 these conditions are expressed 
in a form that is particularly suited to numerical solution. Section 5 ap­
plies the suggested approximation procedure to a benchmark example. Some 
concluding remarks are made in Section 6. 

2. Problem statement 

Let us write the strictly- proper transfer function of the original high­
order plant as 

( ) Np(s) ~ [ ~ k;,1 ] 
Gp s = Dp(s) = ft ~ (s+a;)l , (2) 
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where the a;, i = 1, ... , n, are the negatives of the n distinct roots of the 
denominator polynomial Dp(s) and them;, i = 1, ... , n, are their respective 
multiplicities. The following standing assumptions are made. 

Assumption 1. The original plant (2) is BIBO stable, i.e., its poles -a; 
are in the open left half-plane {OLHP). 

Assumption 2. Then distinct poles "of {2) are real. 

Assumption 3. The static gain Gp(O) of {2) is positive. 

Assumption 1 implies that the impulse response gp(t) = LT-1 [Gp(s)] of sys­
tem (2) tends to zero and its L2 norm JJgp(t)JI is finite. Assumption 2 implies 
that system (2) does not exhibit pseudo-periodic µiodes, and that all the k;,1 

are real. The following treatment could be extend~d to the case in which (2) 
exhibits poles with nonzero imaginary part, but this extension would entail a 
substantial increase in notational complexity; on the other hand, the presence 
of oscillatory modes would almost certainly ask for an approximating model 
different from (1), for example, a second-order-plus-dead time or SOPDT 
model (see, e.g., [9]). Assumption 3, which means that the step response of 
(2) tends to the positive value Gp(O), does not entail any loss of generality 
since one might as well refer to the approximation of -Gp(s). 

From (2), the analytic expression of the original impulse response gp(t) 
turns out to be: 

n m; k 
g (t) = ~ [ ~ _._-,l_tl - l] e-a,t t > 0 

P L,__ L,_ (l - 1)! ' - ' 
i=l l=l 

whereas the impulse response of the FOPDT model (1) is 

ga(t) = LT-1 [Ga(s)] = µe->,(t-L) ].(t - L), 

(3) 

(4) 

where ]_ ( t) denotes the Heaviside step function which is zero for negative 
values of the argument and 1 for nonnegative values of the argument. 
The difference between the impulse responses (4) and (3), called approxima­
tion error in the sequel, will be denoted by 

e(t) = ga(t) - gp(t) (5) 

whose Laplace transform is 

E(s) = Ga(s) - Gp(s) (6) 

The approximation problem considered in this paper can now be stated as 
follows. 
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Problem 1 (Approximation problem). Find the three parameters of the 
FOPDT model {1), withµ> 0, >- > 0 and L 2 0 in such a way that lle(t)II 
is minimal, where II • II denotes the L2 norm. • . 

l 

The constraints >- > O and L > O are related, respectively, to the BIBO 
stability and causality of the approximating model. The constraint µ > 0 
implies that the step response of (1) tends to a positive value (given byµ/>­
which coincides with the area under the impulse response curve 9a(t) of the 
FO PDT model), as is the case for the• original system ( see Assumption 3) . 

Observe that a solution certainly exists on every compact parameter set 
SC {(µ,>- ,L): µ > 0, >- > 0,L 2 O} since, by :Weierstrass extreme value 
theorem, every continuous function, such as lle(t)II, attains its extreme values 
on a (non- empty) compact set, even if the solution might not correspond to 
an interior point of S [13]. Also, it has been proved [10] that the minimum 
of lle(t)II is generically unique if Gp(s) is all- pole. 

Necessary conditions for an interior- point of the positive octant to be a 
point of minimum for lle(t)II (and, thus, for lle(t)ll 2 as well) will be derived 
next in the frequency domain by exploiting Parseval's theorem and simple 
properties of analytic functions , but exactly the same results could obviously 
be obtained in the time domain. 

Concerning the boundary of this octant, no minimum of lle(t) II may occur 
at the points of the plane>-= 0, because there ga(t) tends toµ (so that lle(t)II 
diverges, except forµ= 0 where 9a(t) is identically zero). 

Moreover, no minimum of lle(t) II may occur at the points of the plane 
µ = 0, as shown next. 

Lemma 1. If gP is ultimately positive, i.e., if there exists ti such that 
gp(t) > 0 for all t > ti, then for all C > 0 there exist 1 > 0 and t0 > 0 
such that, for all t > t0 , 

Proof. Let the a;'s be ordered according to increasing value, i.e., 0 < ai < 
a2 < .. . < an, The dominant term of gp(t), fort • oo, is then 

which, by the hypothesis on the sign of gp(t) fort > ti, implies that ki ,m, > 0. 
Moreover, for all 1 > ai, 

1. gp(t) - Ce--rt ki m, O 
1m ""--'-'---- = ' > 

t • oo tm1-ie-a1t (m1 - 1)! . 
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Consequently, there exists t0 > 0 such that, for all t > to, 

gp(t) - ce- -rt > O. 
tm1-le-a1t 

The claim is proven by noting that tm1- 1e-a,t > 0 for all t > to. • 
Corollary 1. If gptt) is ultimately negative, i.e., there exists t1 such that 
gp(t) < 0 for all t > t 1, then for allC < 0 there exist 'Y > 0 and to > 0 such 
that, for all t > to, 

Proposition·!. If Gp(s) is not identically zero, then the solution of Problem 
1 cannot occur for µ = 0. 

Proof. The approximation.error associated with an approximating trans­
fer function that is identically equal to zero is, obviously, llgp(t)II- Suppose 
first that gp(t)- is ultimately positive and consider the transfer function 

G ( ) ce--yto .. - sto 
· d S = ---e , 

s+7 

where C, 'Y and t0 are as in Lemma 1. The impulse response for this system 
is 

gd(t) = Ce--rtoe--y(t-to)](t - to)= { 0, fort< to, 
cc-rt, for t 2': to. 

The L2 norm of the related approximation error ed(t) = gp(t) - gd(t) is 

where the inequality holds because gp(t) > gd(t) > 0 for all t > t0 . The 
same result holds when gp(t) is ultimately negative. Since, by assumption, 
the impulse response does not exhibit pseudo-periodic modes, one of the two 
above-mentioned cases must occur and the claim is proven. • 
Remark 1. To find the candidates to the global optimum on the boundary 
plane L = 0, resort can be made to standard methods of rational approxima­
tion (see, e.g., /2/). As already said, this paper focuses on the interior points 
of the first octant. • 
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3. Optimality conditions 

Denoting the squared L2 norm of the approximation error (5) by 

J := lle(t)fl 2, 

according to Parseval's theorem we have 

1 1+100 J=- E(s)E(-s)ds 
27rJ -JOO 

and, taking (6) into account and substituting (1) for Ga(s), 

1 1+100 J = - [-µ-e - Ls -G (s)] [-µ-eLs - G (-s)] ds . 
27rJ -JOO s + .X P -s + .X v 

(7) 

(8) 

(9) 

The following two lemmas, whose proof is omitted for brevity, will be helpful 
in the search for the minima of index J. 

Lemma 2. The k-th derivative with respect to s of the function 

e-Ls 
fa(s) = s+.X 

is 
dk · -Ls k kl 
-d k fa(s) = (-It ( e _x)k+l L -:-1• L\s + -Xt 

S S + i=O i. 

• 
Lemma 3. The k-th derivative with respect to s of the function 

is 

• 
The candidate points of minimum of (7) in the open positive parameter 
octant can be found by setting to zero the partial derivatives of (7) with 
respect to µ, ,X and L. 
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Now, the partial derivative of (9) with respect to µ is 

f)J = __!_j+Joo [-1-e- Ls] [-µ-eLs -Gp(-s)] ds = 
8µ 7r] -JOO s + >. -s + >. 

- ~-~----,-ds - - --e-Ls G (-s) ds = 1 !+Joo µ 1 !+Joo 1 

7rJ -Joo (s + >.)(-s + >.) 7rJ -Joo s + >. P 

µ 1 j+Joo 1 - - - --e-Ls Gp(-s) ds. 
A 7r) -JOO s + A 

(10) 

Setting this derivative to zero leads to 

- = - --e-Lsc (-s)ds µ 1 !+Joo 1 
2..\ 21r.7 -JOO s + >. P 

(11) 

from which, replacing Gp(s) by (2), we find 

-- k1- -- ds 
µ n { m; 1 !+Joo e-Ls 1 } 

2..\ - ~ 8 ,, [2-rrJ -Joo s + >. (-s + ai)l ] · 
(12) 

Since, according to the residue theorem and taking into account Lemma 2 

1 !+Joo e-Ls 1 [ e-Ls 1 ] 
27rJ -Joo s + ..\ (-s + a;)l ds = -Ress=a, s + ..\ (-s + ai)l = 

(-1)1+1 dl- 1 ( e-Ls ) e-La; l - 1 1 

(l - l)! ;~~' ds1- 1 s + .,\ = (a;+ >.)l ~ k!Lk(ai + >.)k' (13) 

condition (12) becomes 

Remark 2. For mi= 1 and k; = ki,l, i = 1, ... , n (Gp(s) with simple poles 
only), condition (21) reduces to 

which, for L = 0 (no delay), implies that the L2-optimalfirst-order (rational) 
transfer function interpolates the original n - th order transfer function at the 
negative >. of its pole -..\. Such an interpolation property is well-known in 
L2 - optimal rational approximation {12}, {6}. • 
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A procedure similar to the one followed to find the expression (10) of the 
partial derivative with respect to µ can be adopted to express the partial 
derivative of J with respect to >- leading to: 

aJ µ 1 1 +Joo 1 
8>- = 2.>-2 - 7rJ -Joo (s + >-)2 e-Ls Gv(-s)ds. (15) 

Substituting (2) for Gv(s) in (15), setting the derivative to zero and taking 
account of the residue theorem and Lemma 3, we eventually find 

4~2 = t [ tk;,z[(a//;;z+i ~ 1~,k Lk(a;+W] l (16) 

Remark 3. Form;= 1 and k; = k;, 1, i = 1, ... , n (Gv(s) with simple poles 
only), condition {21) reduces to 

µ '2-- k; -La, 

4,>_2 ={;;:(a;+ ,>_)2e 

which states that, for L = 0 (no delay) , also the derivative with respect to s of 
Ga(s) must equal the derivative of Gp(s) at the negative of the pole of Ga(s). 
This further interpolation condition is also well- known in the L2 -optimal 
rational approximation of a scalar system [12} {the corresponding condition 
for multivariable systems can be found in /6}). • 

Finally, taking the partial derivative of (9) with respect to L, one succes­
sively finds 

8J 1 l+Joo [ µs -Ls] [ µ -Ls ( ] -=- ---e --e -G -s) ds= 
8L 'TrJ -JOO s + >- -s + >- v 

_!!:_ l+Joo [ µs - s + A - \-Lsc (-s)] ds -
-rr.7 -Joo (s+>-)(-s+>-) s+>- P -

[ 
1 l+Joo µs 1 1+J00 

-µ - ( >-)(- >-)ds-- e~L•Gv(-s)ds+ 
'ff) ~JOO S + S + Jr} -JOO 

!_ l+Joo _>-_e~Lscp(-s) ds]. 
'TrJ -JOO s + A 

Setting (17) to zero with Gp(s) as in (2), we finally obtain 

(17) 

9p(L) - A t [ t k;,1 [(a::a;)l ~ ~Lk(a; + >-t]] = 0, (18) 

8 



where, according to the definition of inverse Laplace transform, 

(19) 

Remark 4. Obviously, condition {23), which for a Gp(s) with only simple 
poles reduces to 

9p(L) - .X t [a;! .Xe-La,] = 0, 

has no counterpart in L2-optimal rational approximation. 

The previous results prove the following theorem. 

(20) 

• 

Theorem 1 (Optimality conditions). Necessary conditions for (1) to be 
the L2-optimal approximation of (2) in the interior of the positive octant of 
the parameter space of (1) are {21), {22) and (23). • 

4. Solution procedure 

The optimality conditions obtained in Section 3 consist of three nonlin­
ear equations in the three unknown parameters of the FOPDT model. For 
convenience, these conditions are rewritten next: 

µ 

2.X 

µ 
4_x2 

t { t k;,1 [(a::a;)l ~ fiLk(a; + .xl] }, 
n [ m, - La· 1-1 l k ] 
~ ~k;,1[(a;e+.X;l+1~ :, Lk(a;+W], 

At [ t k;,1 [(a:::)1 ~ fiLk(a; + W] l 
Comparing (21) with (22), we obtain 

(21) 

(22) 

(23) 

~ [ ~ k· e-La, [~ 1 a;+ .X(l - 2(1- k)) Lk (a·+ .X)k]] = O (24) 
L L ,,z(a;+A)l Lk! a;+.X , 
t=l I=! k=D 

which contains only parameters .X and L, and, substituting expression (3) 
with t = L for gp(L) in (23), we get 

n m, [ Ll-1 1 1-1 1 ] 
~( ~ k;,ze-La' (l - l)! - A (a;+ .X)' ~ k!Lk(a; + .X)k = 0 (.25) 
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which also does not contain µ. 
Therefore, to find the triplet of parameter values where the partial deriva­

tives of the index (9) are equal to zero, this procedure can be followed: 

• solve for >- and L the system of two equations (24)- (25), 

• using these values of >- and L, compute directly the value of µ from 

which corresponds to (21). D 

When all of the poles of Gp(s) are simple, equations (24), (25) and (26) 
simplify, respectively, to 

'2-- ai - A ki - a L O 
L,----e '= 
i=I ai + >- ai + >- ' 

-.2--- ki - a,L _ O 
L, ai a · + >- e - , 
i=l i 

(27) 

(28) 

(29) 

Remark 5. To solve the nonlinear system (24) - (25) or (27)-(28), resort 
can be made to standard Matlab® tools, such as the fsolve function based 
on the quadratically convergent Newton- Raphson algorithm which requires 
the specification of a starting point. This point could be chosen according to 
the second method of Ziegler- Nichols (19/. • 

5. Example 

To show how well the responses of the £ 2- optimal model fit those of the 
original system, the procedure outlined in Section 4 is applied next to the 
system described by the transfer function 

G s _ (- 0.3s + 1)(0.0Ss + 1) 
p( ) - (2s + l)(s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3 

(30) 
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which has also been considered in [16] and [18] . The resulting FOPDT model 
turns out to be 

0.281 
Ga(s) = s + 0.2682 e-1.31•. (31) 

The corresponding (minimal) norm of the impulse-response error is lle(t)II = 
0.0137. 

The FOPDT model obtained by Yang and Seested [18] using a genetic 
algorithm is 

G ( ) = 1.05 -l.4s 
9 s 3.34s + 1 e (32) 

for which lle(t)II = 0.01497, and the FOPDT model obtained by Skogestad 
[16] is 

1 G,(s) = --- e-l.47s 
2.5s + 1 

(33) 

which matches exactly the original static gain and, consequently, the steady­
state value of the step response, but leads to a significantly larger impulse­
response error (lle(t)II = 0.0255). 

The impulse responses of the original model (30) and of the three FOPDT 
models are shown in Fig. 1, whereas their step responses are shown in Fig. 
2. 

6. Conclusions 

The problem of finding a FOLPDT model of a high-order rational plant in 
such a way that the L2 norm of the impulse-response error is minimised, has 
been considered. Necessary conditions of optimality have been derived using 
standard tools of analytic function theory for the case of plants of general 
structure, thus extending previous results. On the basis of these conditions, 
an easily implementable procedure has been suggested to find the parameters 
of the optimal model. Its numerical complexity compares favourably with 
that afforded by alternative metaheuristic procedures. A benchmark example 
has shown that the approximation based on the L2 criterion leads to models 
whose impulse and step responses fit well the original responses. 
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