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Abstract 

Rational decision-making in complex situations requires well structured model-based 
support. The paper presents methodology of modular modeling environment provid­
ing such support. The environment has been designed and implemented for effectively 
handling large-scale complex models, and for enabling model analysis also by users with­
out modeling skills. The features of the developed system were motivated and tested 
by diversified case-studies in different fields. In particular, the underlying models are 
characterized by criteria with possibly huge ranges of criteria values, and by long com­
putation time of the resulting optimization tasks. Such model characteristics demand 
advanced methods for the model analysis. The paper presents the effective implemen­
tation of the modular , web-based multiple-criteria model analysis tool that can be used 
with different model-development environments without any modifications of the latter. 
Moreover, the paper presents the energy-water-climate nexus problem analyzed with the 
developed tool. 

Keywords: decision-making support, multicriteria model analysis, structured 
modeling, modeling systems and languages, large-scale complex models, 
energy-water-climate nexus, model management. 

1. Introduction 

The presented work as well as countless other applied research activities are moti­
vated by the needs of rational support for solving of complex decision-making problems. 
Such decisions are of different types, including not only various policy or management 
problems, but also choices made in diverse areas of e.g., industry, research, medical treat­
ment, and infrastructure planning. The background knowledge on decision-making and 
support is well researched since long ago in all related (and often overlapping) disciplines, 
e.g., management [1, 2, 3, 4, 5, 6], psychology [7, 8, 9, 10, 11 , 12], as well as mathematics 
and operational research [13, 14, 15, 16, 17, 18, 19, 20, 21] . Yet, the large gap between 
the knowledge and its effective implementation (pointed out already decades ago, see 
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e.g., [22, 23, 24, 25, 26, 27]) still exists despite of the ever growing experience. The 
research described in this paper aims at narrowing this gap. 

As a basis for presenting the objectives and scope of the work we summarize several 
commonly known facts: 
1. Decision problems are more and more complex; rational dealing with them usually 

requires science-based support. Science develops knowledge often using mathemati­
cal models in two stages: first, for integrating and representing relevant knowledge; 
second, for creating, through integrated model analysis, knowledge aimed at problem 
understanding and aiding rational decision-making. 

2. Problem understanding requires reliable and transparent representation of relations 
between decisions and consequences of their implementation; the latter are measured 
by several (or many) criteria. Effective decision-making support has to guarantee 
the Decision-Maker (DM1) sovereignty in exploring all solutions through transparent 
specification of preferences. DMs are not only persons making policy or management 
decisions, but all who are involved in decision-making processes, e.g., advisors, experts, 
as well as e.g., scientists, engineers, physicians, who make decisions in their work. 

3. Model-based decision-making support requires properly structured modeling environ­
ment composed of humans, workflows, processes, and computing infrastructure includ­
ing software tools. Such environments require substantial resources therefore reusing 
(or adapting) modular software is a must. 

4. Multiple-Criteria Analysis (MCA) methods and tools are key components of inte­
grated analysis of any non-trivial decision-making problem. Diverse MCA methods 
and tools have been developed to address needs of different types of problems. Proper 
methods, tools and processes greatly enhance decision support quality while improper 
support labels as optimal solutions often far away from rationality. 

5. Diverse characteristics of the problems and the associated decision-making processes 
call for diverse modeling approaches; however, methods and tools developed for a 
specific problem often can be reused or adapted for other problems, even of very 
different nature. 
The paper deals with development and analysis of models representing corresponding 

decision-making problems. The class of such problems and the users (problem owners 
and analysts) is implicitly defined by the following key attributes of the model and its 
analysis: 
1. specification for user preferences in the model analysis should enable analysis also by 

users without modeling knowledge and skills; 
2. large ranges (several orders of magnitude) of criteria values; 
3. large-scale models requiring long (several hours, or even days) wall-clock time for 

computations of optimization tasks; 

1 Abbreviations frequently used in this article: A/R - aspiration/reservation criteria values; MCA 
- multiple-criteria analysis (in general); MCAA - multiple-criteria analysis of a given set of discrete 
alternatives; MCMA - multiple-criteria model analysis (in general; also the name of the software tool 
described in this paper); 
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4. background model management and runs of optimization tasks should be transparent 
for users not interested in software technology; 

5. diverse modeling environments used for model development. 
The leading objectives of the presented work are threefold. First, development of 

methodology and corresponding software tools for supporting decision-making for prob­
lems of the above defined class. Second, integration of these methods and tools into a 
modeling environment suitable for Multiple-Criteria Model Analysis (MCMA). Third, 
application of such environments to real-life complex problems. 

The above objectives have been met through long-term activities interlinking devel­
opment of methods and tools with their applications to complex problems. Therefore, 
the actual objectives content have been periodically extended by challenges incoming 
from more and more demanding applications. The above characteristics of the class of 
problems determine the requisites for the modeling technology, i.e., the methods and 
tools, in particular for MCMA. Section 4.3 summarizes how the corresponding require­
ments are met by the implemented modeling environment. 

The paper reports also the energy-climate-water nexus model and its analysis, as 
well as the lessons from this case-study. The lessons are of two types: first, pertinent to 
the modelled problem; second, contributing to the MCMA experience and thus useful 
for further developments of MCA methods and tools. 

The remaining part of the paper is organized as follows. Concepts and notations are 
presented in Section 2; Section 3 follows with the theory and methods underlying the 
implementation of the modeling environment presented in Section 4. The energy-climate­
water nexus model and its analysis are discussed in Section 5. The paper concludes by 
Section 6. 

2. Concepts and notations 

The main purpose of model-based problem-solving (aka decision-ma.king) support is 
to analyze a given problem in terms of relations between decisions and consequences 
of their implementation in order to aid finding decisions that fit best the preferences 
of actual DMs. Such problems are typically composed of an underlying system (e.g. , 
interlinked energy, water, climate subsystems), and includes decisions (e.g., choice of 
technologies, capacities) aimed at controlling the system state or behavior. This topic has 
been researched since long ago and countless publications report diverse methodologies 
and experience. 

Model-based decision support is composed of two main stages. (1) development of a 
model representing the relations between decisions and consequences, and (2) processes 
and tools for analyzing these relations. This paper focuses on the second stage, therefore 
we restrict the discussion of the first stage to issues necessary to understanding these 
elements of the model development that determine the analysis quality. 

Moreover, we designed and implemented modular architecture in which model devel­
opment is encapsulated, i.e., it is separated from the MCMA. Therefore, modular MCMA 
can easily be linked into the corresponding modeling process and thus is available for 
diverse methods and tools for the model development. 
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2.1. Structured modeling processes 

Mathematical modeling is a wide and diversified research area, discussion of which 
is clearly beyond the scope of this paper. Readers interested in modeling methodology 
and tools may want to explore rich literature, e.g., [20]. Here we outline the modeling 
process elements directly related to main scope of the paper. 

A mathematical model (further on: model) is an abstract representations of the cor­
responding piece of reality developed for a specific purpose. Diverse modeling methods 
and tools have been developed for different needs and preferences. We have aimed at 
providing MCMA capable to interface different modeling tools. In order to present the 
underlying architecture we exploit the Structured Modeling (SM) paradigm developed 
by Geoffrion [28]. The SM provides a proven methodological background for effective 
modeling processes, including consistency of model specification, data used for model 
parameters, model analyses, and interpretation of results. 

Problem 
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Figure 1: Basic elements of structured modeling. 
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J l Model analjlsis 

Figure 1 illustrates the main elements of well structured modeling process summa­
rized below: 
• Modeling process starts with a thorough understanding of the decision problem and 

exploration how to represent the pertaining knowledge by a Symbolic Model Speci­
fication (SMS), which is an abstract representation of the corresponding problem by 
three types of entities: variables, relations between variables, and parameters used 
in specification of the relations. Section 2.2 summarizes the SMS, in particular the 
concepts applied to the modular architecture described in this paper. 

• A Data-Base (DB) used for management of data, in particular model parameters and 
results of model analysis. DB is a commonly known and widely used concept therefore 
need not to be discussed here. 

• Model instance composed of selected versions of the SMS and of the corresponding data 
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defining parameters. The model instance concept comes from the SM methodology; 
it greatly helps structuring the modeling process, in particular in interfacing modular 
tools for developing SMS, DB, and diverse methods and tools for model analysis. 

• Model analysis. 

2. 2. Symbolic model specification 

We present here a specific view on modeling, simplified for, and tuned to the paper 
purpose. We start with introducing compound entities, the concept used through the pa­
per, and follow with summarizing two views on model specification: from mathematical 
programming and decision-making perspectives, respectively. 

2. 2.1. Compo'Und entities 

For modeling efficiency and consistency, entities of all three types (variables, re­
lations, parameters) shall effectively share common attributes, and be organized into 
structures useful for model development and analysis. In terms of Object Oriented Pro­
gramming (OOP) diverse entities can be derived from a common abstract class; details 
of this approach are provided e.g., in [29], and are not discussed here. Modelers using di­
verse modeling systems may not be aware of this methodological background. However, 
proper structuring variables, parameters and relations is essential for any modeling sys­
tem. Such a structuring can be achieved in two ways: (1) by structuring single entities 
into compound entities, and (2) by organizing entities into compound entities according 
to diverse needs, e.g., their roles. We illustrate these concepts by simple examples. 

Single entities are actually used in mathematical programming tasks, while com­
pound entities are sets of the corresponding single entities. In order to illustrate this 
concept let us consider variables representing air pollution concentration defined for 
combinations of time-periods, regions, and pollution types. Such a set of single variables 
can be structured into a compound variable, e.g., cone defined as: 

cone = { conct,r,p}, t E T, r E R, p E Pr, (1) 

where T and R are sets of time-periods and regions, respectively; Pr is a set of pollution 
types considered in r-th region. A given set of indices and the corresponding sets are 
referred to as indexing structure. 

Compound entities can be further organized into containers (higher-level entities) , 
e.g., u composed of all variables representing decisions, see Section 2.2.3. Moreover, it 
also might be useful to optionally define indexed subsets of compound variables, e.g. , 
Ut E u composed of all variables representing decisions make in t-th period. 

Compounding is a simple but powerful concept when properly used; in particular, 
instantiation of sets of single variables and relations from the corresponding compound 
entities through indexing structure has several advantages: it provides flexibility ( e.g. , 
through modifications of indexing sets), it supports consistency between parameters , 
variables, and relations, it helps in generating model documentation and diverse views 
on model results; finally, it eases interfacing modular modeling tools. 
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2.2.2. Mathematical programming view on SMS 
A model represents the corresponding problem by two types of entities: variables 

and relations between them. Many problems, including the case study in Section 5, 
are described by linear, often dynamic and spatial, models. A standard mathematical 
programming formulation of such models takes the form: 

(2) 

where vector xis composed of all model variables, and the matrix A, as well as vectors 
~ and x are the model parameters. 

The set X f of feasible model solutions x is defined by: 

X1 = {x: ~::;A· x::; x}. (3) 

If model (2) represents only logical and physical relations between variables defining 
a decision problem, then the set Xi is composed of many (typically, infinite number 
of) elements. Feasible solutions are defined implicitly by (2); therefore a completeness 
of set Xi can only be assured by the model verification. An empty set Xi indicates 
errors in either the model specification (2) or the data defining the model parameters. 
However, such errors often cause other, more difficult to diagnose, problems; namely an 
incomplete (although non-empty) set Xi , i.e. , a set that does not include all actually 
feasible solutions. 

2.2.3. The user view on SMS 
Complex models include many variables, typically hundreds of thousands or even 

millions. Therefore, specific and analysis analysis of the general model formulation (2) 
is impractical for the decision-making support needs. Such needs can be addressed by 
structuring the model through four types of compound variables, each representing a 
particular model role. 
• s - The system state; e.g., temporal and spatial distribution of capacities, flows, various 

costs. 
• u - Decisions (controls) considered for changing the system state; e.g., technologies 

for extending or phasing-out electricity supply capacities or water management. 
• y - Outcomes measuring the system state, in particular the consequences of decision's 

implementation; e.g., total costs, CO2 emission, ground-water extraction, uncovered 
fractions of electricity and water demands. 

• z - Auxiliary, i.e. , all other variables, i.e., variables not interesting for model users but 
useful for rational development of the SMS. In large models such variables constitute 
a vast majority of varia.bles; this is also a reason to distinguish s, u, and y variables. 

We focus on analysis of decisions aimed at improving the state of the system under 
consideration. The following specification, typical in control engineering, illustrates well 
such relations. In the example below we use only the t subscript to show the system dy­
namics; other indices (e.g., representing spatial resolution, or technologies) are omitted. 
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t ET, s E So, u E Uo, (4) 

where s, u are vectors of the system state and decision variables, respectively; so is a 
given initial state of the system, matrices Bt , C1 are parameters, T is a set of periods, 
So and Uo are sets of feasible states and decisions, respectively. Sets So and U0 are 
typically defined implicitly, i.e., by additional relations augmenting (4). Note, that a 
one-step decision-making situation can be represented by model (4) having one-element 
set T. On the other hand, the template equation ( 4) is often generalized; in particular, 
for handling typical elements of dynamic process, such as delays, accumulations, and 
deteriorations of e.g. , investments, equipment. These and many other issues of model 
specification are beyond the scope of this paper; discussion on related topics can be 
found e.g., in [30]. 

A complex system state is characterized by many s variables; therefore, a small set 
of outcome variables y is defined for the first stage analysis augmented by more de­
tailed analysis in the state variables s sub-spaces. The latter analysis often leads to 
modifications of the y specification. Outcome variables are named differently in various 
application fields , e.g. outcomes, criteria, objectives, goals, indicators, metrics , (perfor­
mance) indices, attributes. In this paper we call such variables outcomes. Formally, 
outcomes are implicitly defined by decisions u and system states s: 

y = F(s, u), (5) 

where mis the number of outcome variables, F(·) denotes a set of relations defining y, 
and YJ is the set of feasible outcomes; note that, by definitions, Yi c X 1. Relations (4) 
and (5) are amalgamated into (2) ; therefore, they are rarely considered explicitly. 

2.2.4. Compound and outcome variables summary 
Compound entities and outcome variables are the two concepts not yet widely used 

but key for the approach described in this paper. Therefore, we summarize here two 
corresponding issues. 

First, depending on the context, one considers either all model variables x or its split 
into components according to the role diverse compound variables represent: 

x= {y,u,s,z}. (6) 

Accordingly, we focus in Sections 3 and 4 on either all or outcome variables. Comments 
on the state and decision variables are included in Section 5. 

Second, we summarize the role and desired features of outcome variables, and the 
corresponding guidelines for their specification. 
• One should define in SMS as many outcome variables as helpful for evaluating dif­

ferent aspects of the model solution. Such definitions are very easy during the SMS 
development and do not increase computational requirements. A surplus (compared 
to typically small number of outcomes initially considered for criteria) of outcome vari­
ables increase flexibility and efficiency of model instance analysis; moreover, outcome 
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variables are also helpful in model verification. 
• Note, that (5) defines y, therefore usually neither lower nor upper bounds for y are 

appropriate for representing logical and physical relations. In particular, it is important 
to refrain from representing preferences by constraining y values in SMS; such bounds 
typically cause problems in the model analysis; Section 3.1 provides more comments 
on this issue. 

• Outcome variables are actually used in traditional (single-criterion) optimization ap­
proaches to model analysis, see Section 3.1. 

• Subsets of outcome variables serve as criteria in MCA of a model instance, see Sec­
tions 2.3 and 3.1. 

2.3. MCA preliminaries 

2.3.1. Outcomes and criteria 
Before summarizing the key concepts of MCA we comment on the relations between 

outcomes y defined in SMS and the criteria q interactively defined during the MCMA: 

q E Y, (7) 

where n is the number of selected criteria. Thus, n :S m, and Q C Y. In other words, 
each criterion is defined by the corresponding outcome variable. This approach might 
be surprising; therefore, we provide two key arguments. First, the approach enables 
separation of the SMS development from the MCMA, and thus provides a very effective 
linkage between them by outcomes y. Second, it provides MCMA with flexibility of 
selection (without model instance modifications) diverse criteria sets that fit different 
user preferences. 

2.3.2. Preference structure 
We briefly summarize basic concepts of preference used in this paper. A comprehen­

sive discussion of preference models can be found e.g., in [14, 16, 31, 32]. The simplest, 
preference model assumes that when two elements are being compared only two sit­
uations can be distinguished: preference of one element to the other (relation >-- ), or 
indifference of one element to the other (relation ~). In this paper we assume even 
simpler preference model that is still adequate for this paper presentation. 

Assume, only for simplifying presentation of this preference model, al l criteria to be 
minimized. Consider two vectors q1 , q2 of criteria values; then: 

(8) 

Moreover, if neither q 1 >-- q2 nor q2 >-- q 1 then q 1 ~ q2 . Indifference means that the two 
entities are not objectively comparable. 

Further on, following the common practice, definition (8) is used in terms of domi­
nance, i.e., q1 dominates q2 if, and only if q1 >-- q2 . Moreover, we use such dominance 
concept also to other entities of MCMA. 
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In the plain language, q1 is preferred over q2 , if all q 1 values are at least as good 
(smaller or equal for minimized criteria) as the corresponding values of q2 , and at least 
one criterion value is strictly better (i.e., smaller). We use the dominance (preference) 
concept because it simplifies the presentation, in particular enables uniform treatment 
of minimized and maximized criteria, as well as combinations of these criteria types; the 
latter very often occurring in practice. 

2.3.3. Pareto efficiency 
Noting that q E Q C Y C X, also here we simplify the presentation. Namely, we 

refer to q as a vector composed of all criteria values that belong to a solution x. For 
short, we also often use the term solution q for vector of criteria values belonging to 
the corresponding solution x. Analogously, q and CJ., denote attainable (feasible) and 
optimal solution in criteria space Q, respectively. Finally, the set of all attainable q is 
denoted by Q f. 

A solution q is called Pareto-efficient, if there is no other feasible solution that 
dominates it. Other attributes are often used instead of Pareto-efficient, e.g., non­
dominated, Pareto-optimal, or simply Pareto. For the sake of brevity we don't deal here 
with more advanced concepts, e.g., properly efficient solutions; these are discussed e.g., 
in [20]. 

2.3.4. Pareto set 
Set of all Pareto solutions is denoted by Qp and is defined by: 

Qp = {CJ. : 0 q : q >- CJ.)} (9) 

Pareto set and its characteristics a.re key concepts of MCA. Therefore, we summarize 
the basic corresponding attributes. 

Figure 2 illustrates Qp for an example of two minimized criteria. For the discussion 
sake, let q1 represent cost, and q2 the CO2 emission. The Qp set is marked by the 
thick line; extreme points of Qp (marked by E and D) correspond to the best solutions 
in terms of q1 and q2, respectively; e.g., point E shows the minimum value of cost 
and the corresponding worst (maximum within Qp) value of CO2. The broken top 
Qp segment (and the corresponding break of the q2 axis) illustrate the situation in 
which huge compromise in one criterion is needed for relatively small improvement of 
another criterion, i.e., a. minimum cost solution would result in huge emission, while a 
relatively small increase of cost results in drama.tic emission decrease. Section 5 presents 
real-life examples of solutions close to both extremes ( close to utopia and nadir values, 
respectively) of the cost criterion. 

The point U is defined by the best values of both criteria, qf, q!f, respectively; this 
point is called Utopia because it is not attainable. The point Nadir point denoted by N 
is defined by the worst (within Qp) values of both criteria, qf,q!j, respectively. In the 
shown example it is attainable, but this is not always the case. 

Selected Pareto solutions a.re marked by letters C, K, P, L, and M. Solution D is 
expensive but clean, solution E is cheap but has high emission; solutions located on the 
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Figure 2: Pareto set, utopia, nadir, aspiration , and reservation points. 

Pareto frontier between these two extreme solutions match different trade-offs between 
costs and the corresponding emission; solutions B and Mare substantially cheaper than D 
and for both the corresponding worsening of emission is substantially smaller than for 
yet cheaper solutions L, K , and C. More comments on these solutions, as well as on the 
points marked by letters A and R, are available in Section 3.3. 

Analysis of trade-offs between the criteria values , and finding the solution having a 
preferred trade-off is easy for two-criteria problems; actually for such problems MCA 
is not recommended , see Section 3.2. However , for problems with more criteria MCA 
recommended for exploring Qp representation that help the users for find solutions 
fitting their preferences. The concepts of dominance, Pareto set, as well as Utopia and 
Nadir are very helpful in such exploration. 

3. Theory and methods 

3. 1. Model instance analysis 

A selected model instance ( composed of given versions of SMS and of data defining 
parameters) implicitly defines relations between decisions and outcomes. The main 
purpose of the instance analysis is to find decisions that result in outcomes possibly 
best fitting the user preferences. As shown by (6) both decisions and outcomes are 
components of a solution x of the corresponding mathematical programming problem (2). 
In other words, one attempts to generate such a solution of (2) that meets the user 
preferences (represented by outcomes y) and defines decisions u leading to the desired 
outcomes. 

However, an a priori definition of desired outcomes that are attainable is impossible 
for complex decision problems. This widely known observation had led to commonly 
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Figure 3: Iterative process of model instanee analysis for decision support. 

applied iterative process of model instance analysis, shown in Fig. 3. The process is 
composed of the following steps controlled by the user: 
1. Analyze previously obtained solutions and decide either to break the analysis ( e.g. , 

because one of solutions is satisfactory or no more analysis progress is recognized) 
or decide to continue analysis, and select a solution to serve as the base for finding 
another one with more preferred outcomes. 

2. Define preferences for improvement of outcomes y. 
3. Supporting software or staff represents the preferences in terms of mathematical pro­

gramming, i.e. , together with the model instance define the corresponding optimiza­
tion task. 

4. The optimization task is passed to a suitable solver; solution of such a task, tradition­
ally denoted x, is added to the set of optimal solutions. 

5. The process continues with step 1. 
Formally, the above process can be defined as: 

x = argmax P(y) , 
x E XJ 

(10) 

where P(·) represents the user preferences. The preferences can, of course, be also speci­
fied in t erms of all model variables, as well as be minimized instead of maximized. Simple 
transformations of (10) can handle such, and several other, alternative formulations of 
optimization problems. 

Summing-up: optimization serves as a tool for selecting from the set of all feasible 
solutions Xf one solution that fits best the user preferences P(·) . The users modify spec­
ification of P(·) while learning diverse attainable outcomes during the iterative process 
outlined above. Effectiveness of such a process critically depends on a clear distinction 
of the two submodels of the optimization model: 
• Objective, in which a complete Xt is defined by (2) representing in the selected model 
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instance only relevant physical and logical relations between decisions and outcomes, 
i.e. , core model (2) does not include constraints representing preferences. 

• Subjective, representing preferences P( ·) that are iteratively modified by the user. 
An aggregation of both submodels enables solution of (10) and thus provides a solu­

tion optimizing the given specification of P (·). Such solutions, corresponding to diverse 
specifications of P(·), implicitly define set Xa of admissible (i .e., acceptable in terms of 
the user preferences) solutions. Obviously: 

(11) 

Distinguishing feasible (objectively possible) and admissible (acceptable for users) 
solutions is helpful from both methodology and implementation perspectives. Accept­
ability depends on preferences that usually differ amongst the users; moreover, often a 
particular user changes, sometime dramatically, preferences during the model analysis. 
Feasibility is independent of preferences; it is determined by the SMS and selection of 
data defining the model parameters, and should be verified before model analysis start . 

The formulation (10) covers all optimization-based approaches to model analysis. 
Before discussing in Section 3.3 the MCMA methods we briefly characterize more tradi­
tional approaches. 

3.2. Traditional approaches 
Most approaches amalgamate preferences into model (2) and use a selected model 

variable or a relation as optimization criterion, traditionally called Goal Function (GF). 2 

A similar approach consists of using as GF a so-called utility function, which represent 
a priori specified preferences. Usually, application of a GF is augmented by specifica­
tion of bounds on selected outcome variables. Such approaches have widely recognized 
shortcomings; we refrain from commenting them here, as t hey are discussed in many 
publications, see e.g., [23, 33, 21, 34]. 

However, the traditional methods, known as Goal Programming (originating from [35]) 
provided a basis for a family of methods referred to as Reference-Point (RFP). These 
methods are based on the two-step approach: 
• define a reference (aspiration, goal) point composed of the desired values of all criteria; 

one of the first RFP methods [36] used the displaced utopia point as the aspiration. 
• find a Pareto solution that is (in a sense) closest to this point. 

However, such two-stage procedure causes two types of problems in effective repre­
sentation of user preferences: 
• Selection of a measure for the distance between the RFP and the Pareto set; it is 

hardly possible for users to effective control the distance definition. 
• The method provides dominated solutions, if the specified goal is attainable . 

Figure 2 illustrates both problems. Different distance definitions make any Pareto 
solution between points B and C to be closest to the goal defined by point A. The goal 

2 In the traditional formulation of Linear Programming (LP), the first neutral row, often called cost 
function , serves as GF. 
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defined by point A1 will be reached for any distance definition, i.e., a non-Pareto solution 
will be found. 

The experience with RFP methods led to the development of t heory and so~ware 
for aspiration-based decision support methods, summarized in [18]; relations of these 
methods to the Goal Programming are summarized in [37]. Another stream of the de­
velopments in this field is outlined in [38]. A comprehensive discussion of the theoretical 
background of the reference point methodology, tools for their implementation as well 
as a detailed presentation of several applications can be found in [20]. 

3.3. MCMA theory 

The MCMA method and implementation described in this paper has actually been 
pioneered by the ISAAP [39]. The ISAAP methodology has been enhanced, and the 
implementation reworked. Both elements were motivated by the challenges of the class 
of demanding problems characterized in Section 1 and by the qualitative improvement 
of the software technology capacity since the ISAAP release in 1990s. The MCMA 
methodology is presented next, and its implementation in Section 4. 

The applied MCA Aspiration-Reservation methodology, for short called here the AR 
approach, is an extension of the aspiration-led MCA outlined above. It is composed of 
two interlined elements: 
• Criterion Achievement Function (CAF); its role is to map the user preferences and the 

criteria values into a comparable scale. CAF is discussed in Section 3.3.1. 
• Sca.larizing Function (SF) aggregating CAFs into a GF used in parametrized single­

criterion optimization problem that provides a Pareto-solution fitting best the user 
preferences. Section 3.3.2 presents the SF details. 

Further on, n denotes number of criteria, and index i E {1 , . .. , n} is used for entities 
of i-th criterion; e.g., q = {q1 , ... , qi, .. . , qn}-

3.3.1. Criterion Achievement Function 
A Criterion Achievement Function (CAF) is defined for each criterion independently; 

t herefore, for the brevity, we skip in this Section the criterion index. Thus, a selected 
criterion value (i.e., an element of q) is here denoted q; simi larly, qu , qa , qr, qn denote the 
utopia, aspiration, reservation, and nadir values, respectively. Index i is used only when 
needed, i. e., qf denotes the utopia value of i-t h criterion, utopia values of all criteria a.re 
denoted by qu. 

CAFs have been proposed long ago, see e.g., [40]. The functions had different names 
and specifications, but their role was the same; namely, to map criteria values , specified in 
diverse measurement units and/or scales, into a common measure of criteria performance. 

MCMA uses the CAFs that non only conform to the necessary conditions (specified 
e.g, in [14, 31]) but also enable handling of criteria taking values from even huge ranges. 
We denote CAF for i-th cri terion by caf;(·). The corresponding CAF properties are 
presented below. 

The shapes of CAFs are illustrated in Figure 4 for maximized and minimized criteria, 
respectively. Strict monotonicity of cafi(-) is the main necessary property. We adopt 
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Figure 4: Criterion achievement functions for: maximized (left), and minimized (right) criteria, respec­
tively. 

the CAF's interpretation in terms of achievements, i.e. , the more the better. Therefore , 
CAFs are strictly increasing/decreasing for maximized/minimized criteria, respectively. 
Finally, cafi ( qi) needs to be defined for all values between q';,:- and q7t-

Following the common practice, CAFs are specified as Piece-Wise Linear (PWL) 
functions. Such definition enables CAFs representation as a part of a Linear Program­
ming (LP) problem. Thus, optimization MCMA tasks are of the same type as the model 
instance; therefore, the same solver can be used for both single- and multiple-criteria 
analysis. 

CAFs are parametrized by the user preferences; namely, by the two desired criterion 
values: 
• qf - aspiration (goal), i.e. , the criterion value the user wants to achieve, and 
• q[ - reservation, the worst criterion value the user considers acceptable. 

The UI of the MCMA enforces only the obviously justified condition: 

qf >-- qf >-- q[ >-- q';:-. (12) 

In other words, the user can specify any values of aspiration and reservation provided 
they conform to (12). In particular, it does not matter whether or not the specified 
values are attainable. Various combinations of aspiration and reservation (marked by 
A and R, respectively) are shown in Figure 2. For example, the pair (A2 , R-2) defines 
preferences typical for initial analysis stage, when often non-attainable reservation values 
are specified. The values shown by (A, R) are typical for users already having good 
feeling of realistic expectations. Preferences defined by (A 1 , R 1 ) are rare, but still occur 
for problems with many criteria, especially, when in a previous iteration a non-attainable 
reservation was specified. 
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Each cafi(·) is defined by a three-segments PWL function, parametrized by the user 
preferences represented by qu and qr. The middle CAF segment is defined by these 
values, and by the corresponding function values set by MCMA: 

caf;(sci(qf)) = a, cafi(se;,(q[)) = 0, (13) 

where sc; is the scaling transformation described below. The remaining segments are de­
fined by the corresponding end-point of the middle segment and by the slope determined 
by the MCMA implementation. 

In typical CAF implementations no criteria-value scaling is used, a is set equal 
to 1, and slopes of outside segments are defined either by the utopia and nadir points, 
or by multipliers of the middle segment slope. Such approaches work well for well­
scaled problems, i.e., ranges of criteria values that do not cause numerical problems for 
CAFs defined in traditional ways. However, these approaches cause problems for model 
instances characterized by huge ( or very small) ranges of criteria values. 

Detailed specification of the scaling transformation is beyond the paper scope. There­
fore, we only summarize the main features of the resulting CAF: 
• Auxiliary variables and linear transformations are defined in such a way that 

/sc;(qf) - se;,(q[)/ = a, se;,(q[) = 0. (14) 

• Parameter a is set to 1000. 
• Slopes of the external PWL segments are set in a consistent way for all criteria, and 

assure that: 
o all CAFs are strictly monotone and concave, and 
o the slopes are neither too flat nor too steep, i.e., the corresponding optimization 

problem parameters do not cause numerical problems. 
The CAF defined by (13) with the scaling transformation (14) conforms to all require­

ments; in particular, they provide appropriate (for numerical properties of the underlying 
optimization problems) scaling in criteria and achievement spaces. The scaling transfor­
mations are based on the aspiration and reservation values, which often differ orders of 
magnitude less than the utopia and nadir values. This property is justified by the prac­
tice and common sense, which show that for problems with large/huge range of values 
between utopia and nadir, the interesting analysis ranges (implied by the aspiration and 
reservation) is orders of magnitude smaller. 

The CAF values have a very easy and intuitive interpretation in terms of the degree of 
satisfaction from the corresponding value of the criterion. Values of a and 0 indicate that 
the value of the criterion exactly meets the aspiration and reservation values, respectively. 
CAF values between 0 and a can be interpreted as the degree of satisfaction of the 
criterion value, i.e., to what extent this value is close to the aspiration level and far away 
from the reservation level. These interpretations correspond to the interpretation of the 
membership function from fuzzy set theory, which is discussed in [39] . In the latter, as 
well as in fuzzy sets, a is set to 1; for the reasons explained above we use much large 
values of a , but this does not change interpretation of CAF's values. In fact, the CAF 
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extends the membership function concept because the CAF also takes negative values 
(for criteria values worse than the reservation) , and values greater than a (for criteria 
values better than the aspiration). This extension is necessary for proper handling of 
any qa and qr values, which in turn frees the users from concerns regarding attainability 
of the considered aspiration and reservation levels. 

3.3.2. Achievement Scalarizing Function 
Achievement Scalarizing Function (ASF), denoted by asf(caf), aggregates CAFs 

into a variable that serves as a GF of the optimization task providing Pareto solution 
fitting best the preferences specified by the user for the criteria. MCMA uses the estab­
lished approach for asf (·) definition, see e.g., [20]: 

. E ~ asf(caf) = mm( cafi(·)) + - · ~ cafi(·), 
iEla N 

iEI 

(15) 

where caf;( ·) is defined by (13), Ia and N denote the set of indices of active criteria, and 
the number of all criteria, respectively. The choice of criteria activity for each iteration 
is done by the user. All criteria are active by default; the user may, however, declare one 
or more criteria to be inactive. This is especially useful for problems with many criteria, 
when it is often desired to analyze trade-offs between subsets of criteria. 

The main role of the ASF defined by (15) is to aggregate the CAFs; this is achieved 
by the first term. However, ASF defined by only the min term would not guarantee 
Pareto-efficient solutions. The latter is achieved by the second, regularizing term. 

The max-min aggregation is motivated by the Rawlsian principle of justice [41] inter­
preted as preference for improving the situation (performance) of the weakest element 
(e.g., member of society or family). In the MCA context, it means improving the achieve­
ment of the worst performing criterion. This in turn implies that t he ASF measures the 
overall achievement by the smallest value of caf; in practice, usually the worst CAF 
values are equal for two criteria. 

The regularizing term guarantees an E-properly Pareto-efficient solution. Formal 
explanation of this concept is beyond the scope of this paper; it can be found e.g., 
in [42]. Informally, it means that small (in terms indirectly defined by the E-value) 
deviations of criteria value may be ignored when Pareto-efficiency is determined. 

4. Modeling environment for MCMA 

Multiple-criteria model analysis environment actually implemented and described in 
this paper is composed of three modular and interlinked parts: 
• Modeling environment used for development and maintenance of the model instances. 
• MCMA tool. 
• Computational infrastructure. 

Such architecture effectively exploits the proven modeling paradigms, combined with 
DBMS, XML, and the Web technologies, provides an efficient and robust implementation 
framework. The framework exploits encapsulation of the corresponding processes and 
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enables use of MCMA tool with different modeling environments. Use of a modeling 
environment preferred for a specific problem has at least two obvious advantages: 
1. The model development is encapsulated, i.e., model instances are developed in en­

vironment best suited to the needs of the developers. This also includes dedicated 
and/ or adapted tools for the model verification and analysis. 

2. Optimization solvers available in each environment are also used for solving optimiza­
tion tasks of the MCMA. 
The two-way linkage between model development environment and MCMA is com­

posed of: 
• Model instance conforming to the requirements summarized in Section 3.1 is interac­

tively uploaded to MCMA. 
• Solution of each MCMA iteration is provided to the user. 

Currently two formats of model instances are implemented: the standard MPS­
format, and two versions of the GAMS-formats (either a single file or a structured 
collection of GAMS specification and data files). Solutions are provided in formats 
corresponding to the model instance, i.e., either a standard MPS-format output file or 
the format defined in GAMS specification for the output. 

The above outlined architecture has been proven by applications in diverse fields 
and modeling environments. The latter include model development tools dedicated for 
specific applications, e.g., modeling of agro-ecological zones [43], regional water quality 
management [44, 45], and regional air quality [46]. General purpose modeling environ­
ments were used for other MCMA applications, e.g., GAMS for assessment of nuclear 
power in global energy system [47], and GNU for the case study described in Section 5. 

Discussion of model development environments is beyond the paper scope; it can be 
found in many publications, e.g., a comprehensive overview is provided in [30]. Further 
on we focus on the MCMA tool and follow with outlining configuration of the related 
computational infrastructure. 

4.1. MCMA tool 

4 .1.1. Functionality from the user point of view 
The implemented environment for MCMA also has modular structure. We focus its 

presentation on the functionality provided for users through the User Interface (UI), and 
only outline the underlying technology. 

Following the SM paradigm also the MCMA process is structured and helps the user 
in effective and efficient analysis. The UI illustrated in Figure 5 provides users with 
flexible control of the all analysis elements, and thus enables organization of the process 
according to users' needs. The interface is available through Web-browsers, thus allows 
for the anytime-anywhere access; in particular, the analysis can be paused anytime; the 
defined tasks are anyway processed in background by servers, results stored and made 
available whenever the user decides to continue analysis. 

We illustrate only one example of the interaction, namely the screen showing the 
distribution of solutions (in the left-side chart) and the control-panel for specification 
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of preference (in the right-side panel) . Before discussing this main interaction, we sum­
marize other MCMA functions controlled by the user through the green buttons (the 
corresponding screens are not shown): 
Admin: Each MCMA user has private space for handling model instances and results 

of analysis. However , group of users may share their models and results. Therefore, 
MCMA supports administration of user groups, and privileges of group members. 

Computations: MCMA provides information on the status of optimization tasks that 
have been generated but not yet finished, see Section 4.2 for explanation. 

Problem: The corresponding set of dialogs supports uploading of model instances pro­
vided in one of the formats discussed above. The uploaded model instance is consid­
ered as the MCA problem. 

Instance: For each the user may define several MCA instances. Each MCA instance 
is specified by the interactively defined criteria. The definition of each criterion is 
composed of selected: 
• Corresponding outcome variables. The list of such variables is extracted from the 

uploaded model instance; filters for names of variables support selection for large 
models. 

• Criterion type (either minimized or maximized). 
• Criterion name. This is optional because the criterion name is initialized to be the 

same as the name of the corresponding outcome variable. 
Analysis: The user may define for each MCMA instance several analyses. Each analysis 

18 



I is composed of iterations outlined above and discussed detail below. Defining several 
analyses is especially useful for extensive MCMA in which each analysis is composed 
of many iterations; moreover, separate analyses can have different focus and/or be 
done by different users. This issue is commented below. 
Moreover, the white Contact button (at the top right corner of the blue control 

panel) provides link to the developers. 

4 .1. 2. Preparatory computations 
MCMA performs several background tasks in order to prepare for the user initial 

information for interactive analysis. The tasks are automatically generated and run after 
the user defines a new instance or a new analysis ( the initial analysis is also generated 
automatically). We briefly summarize these background computations. 

For each new instance the utopia and nadir values are computed. This requires 4 * N 
automatically generated optimization tasks, where N is the criteria number. First N 
tasks compute the utopia values, for each criterion by the selfish optimization of the 
corresponding outcome variable. Next 3 * N tasks sequentially improve approximation 
of the nadir values. After completing these tasks, the initial analysis is automatically 
created. 

For each new analysis N + 1 iterations are automatically generated to provide the 
user with initial set of solutions. This set contains iterations in which only one criterion 
is active, and one iteration with the so-called compromise preferences, i.e., qa and qr 
set for each criterion at equal (in terms of the fractions of utopia and nadir range) 
values. Thus the user starts specification of his/her preferences with knowledge about 
the extreme (selfish-criterion) and compromise preferences. The example of the initial 
iterations is provided in Table 1 in Section 5. 

4 .1. 3. Interactive specification of preferences 
After the automatically generated iterations are completed, the user takes full control 

of further iterations. For each iteration the user analyzes the Pareto-solutions obtained in 
previous iterations, selects one solution as the basis for next iteration, and then considers 
which criteria he/she wants to improve and which should be compromised. Preferences 
for a new desired trade-off between criteria values are then expressed through aspiration 
and reservation values for each criterion, respectively. While defining new preferences 
one should consider that the basis solution is Pareto-efficient, i.e. , an improvement of one 
criterion (or more criteria) is possible only, if at least one other criterion will worsen. An 
improvement of a criterion performance can be triggered by setting a more ambitious 
( closer to the corresponding utopia value) reservation value for this criterion, option­
ally augmented by also higher aspiration. Also optionally, one can select a criterion 
(or criteria) to compromise; this can be done by relaxing (i.e., worsening) the corre­
sponding reservation value(s). In such a way the user preferences are defined for each 
iteration. For any given preferences, the multi-criteria problem is represented by an aux­
iliary parametric single-objective optimization problem defined through the achievement 
scalarizing function (15); solution of the corresponding optimization problem provides a 
Pareto-solution best fitting the user preferences. 
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Figure 6: Distribution of criteria values. 

The criteria values of the previously obtained (within the same analysis) solutions 
are presented in a chart composed of normalized parallel coordinates shown in Figure 6. 

Typically, the MCMA users explore various areas of the Pareto frontier (e.g., cheap 
and expensive having the corresponding bad and good values of environmental criteria) 
before deciding which compromises between the criteria values fit best their preferences. 
Examples of such exploration are discussed in Section 5; more methodological back­
ground on the Pareto set analysis is available e.g., in [20, 39, 21]. 

4.2. MCMA computational infrastrnctnre 

The MCMA computational infrastructure is composed of: 
UI: User interface application, implemented in Java, installed at a Tomcat servlet con­

t ainer, thus providing users with the MCMA interface through Web-browsers. 
MCMA-solver: Dedicated solver, written in C++, transparent for the MCMA users; 

it manages most of t he MCMA background tasks. 
TM: Dedicated task manager; handles jobs generated and queued by MCMA-solver. 
D B: Dedicated data-base, manages all persistent data of MCMA. We list below on ly 

examples of data to illustrate data scope: 
• Configuration of the MCMA components; e.g., on solvers, functionality options avail­

able for diverse users and applications. 
• Uploaded model instances, and their analysis. 
• Status of all generated tasks. 
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• Users and user groups with privileges of members. 
The DB also supports versioning. The schema of the MCMA DB is far too complex to 
be even outlined in this paper. We only point out that handling MCMA component 
configuration data through a DB greatly improves robustness and maintenance of this 
rather complex system. 

Solvers: Set of optimization solvers distributed over the workstation network; the same 
solvers as used for the single criterion model optimization. 

The workflows between elements of the MCMA infrastructure are actually hidden 
from the MCMA users, who interact primarily with the UI application. We briefly 
summarize the basic functions and dependences of the MCMA components. 

The functionality related to uploading the model instance, specification of MCA 
problem instances, creation of analyses, and interactive analysis of solutions and specifi­
cation of preferences is described above. Now we summarize flows and actions triggered 
by confirming preferences for each iteration: 
1. Preference confirmation is done by the Solve request, which triggers storing the prefer­

ence information and the iteration status in the DB; then the MCMA-solver is called, 
and the user may either wait for the solution, or switch to another iteration. 

2. The MCMA-solver reads the iteration data from the DB, generates the MC-LP sub­
mode!, stores it on the server file-system, and updates the iteration status in the DB, 
which queues the corresponding optimization task. 

3. The task manager is actually a daemon-type application, i.e. , it runs it the back­
ground, frequently checks the queued tasks, and allocates their run on available servers 
and solvers. 

4. Solvers are of three types: 
• Preprocessor: it merges the MC-LP with the model instance representation and 

generates input files for the selected optimizer , executes the suitable optimizer, 
waits until optimization finishes, and then calls the postprocessor. 

• Optimizers: solvers of the optimization problems. 
• Postprocessor: extracts from the optimization results solution of the MC-LP part, 

stores it in the DB, and calls back the MCMA-solver. The full solution remains 
available for the user. 

5. MCMA-solver processes the solution, in particular prepares data for generation of the 
chart shown in Figure 5. 
Each application updates the task status in the DB at the beginning and at the end 

of executions. Thus other application can check status and provide the user with the 
corresponding information, e.g., about execution stage for yet unfinished jobs, or charts 
and values for finished iterations. 

4.3. Meeting the requirements 

The requirements for the MCMA methods and implementation were implicitly de­
fined by the following key attributes of the model and its analysis, summarized in 
Section 1. We summarize how each of them is addressed by the MCMA design and 
implementation: 
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1. Specification of the user preferences is done in easy interactive way. Preferences 
are specified in a natural way by aspiration and reservation values; such values have 
obvious meaning for the users familiar with the problem, and can be specified either as 
numbers (in the units used in the model specification) or by moving a slider, position 
of which corresponds to the degree (in term of utopia-nadir range) of reaching the 
utopia value. Moreover, the UI assures that A value dominates the R value. There 
are no other requirements for obtaining a Pareto solution. Therefore, the analysis can 
be effectively done also by users without modeling knowledge and skills. 

2. Large ranges (several orders of magnitude) of criteria values are handled by appropri­
ate internal criteria value scaling applied in the CAF specification, see Section 3.3.1. 

3. Computations are organized in such a way models can be analyzed irrespective of the 
required computation time. The only condition is that the provided model instance 
can be solved for single-criteria optimization for each of the selected criterion. The 
same solver is used for MCMA and for the model development, and the computa­
tional complexity of single and multicriteria optimization is practically the same, see 
Section 4. 

4. MCMA can supports users with diverse backgrounds and skills. The main part of 
MCA is typically done in the criteria space. This functionality is fully supported 
by the UI. The user only needs to iteratively specify preferences, click the Solve 
and wait for the results displayed in the same screen. For longer computations the 
optimization status is displayed. Users interested in details of the generation and runs 
of the corresponding tasks can use the provided links to full solutions and logs of all 
related activities. 

5. MCMA uses a provided model instance; therefore, diverse modeling environments 
can be used for the model development. Thus, MCMA can be used in a concerted 
way with other diverse approaches to model analysis, including problem-specific post­
optimization analysis and reporting. 

5. Energy-climate-water nexus 

5.1. The case-study problem and model 

The interrelations of decisions on the energy and climate policies are commonly 
known and therefore do not require any comments here. Water availability is a key 
development factor in many regions; Saudi Arabia is a country facing water scarcity. 
Especially in such countries management of both energy and freshwater are required for 
meeting the development goals of societies. 

Rational policy-making requires integrated energy and water systems planning, es­
pecially considering interrelations of these systems. Water plays a key role in the supply 
of energy in many regions globally, primarily for thermal power plant cooling and hy­
dropower generation [48]. Constraints on the availability of water resources in these 
regions therefore pose risks to energy service reliability. At the same time, a significant 
amount of energy is required to extract, treat and distribute freshwater resources [49]. 
Constraints on the freshwater services supply therefore pose risks of additional energy 
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requirements. These interdependencies promote integrated planning of water and energy 
infrastructure systems. Moreover, international commitments call .for including in such 
planning also the climate impacts of the considered solutions. 

The above outlined energy-water-climate nexus has motivated the model develop­
ment described in [50] . Similar modeling activities appear to be needed for supporting 
policy-making also in many other countries. 

5.1.1. The problem 
The considered decision problem mainly deals with the infrastructure planning. In­

frastructure here refers to the technologies or processes that enable energy and water 
services supply to consumers . Planning and design of regional energy and freshwater 
infrastructures involve a concerted choices of technologies and consideration of a wide 
variety of economic, social and environmental conditions, which makes it difficult to 
decide which technologies to invest in, and in what order. Exploration of rational com­
binations of technologies and level of investments requires appropriate methods and tools 
for development of the corresponding model and its analysis. 

5.1 . 2. Outcomes and criteria 
We present here only those model outcome variables that serve as criteria in the 

presented analysis case. In order to deal with a manageable number of criteria the corre­
sponding variables represent the corresponding aggregations of the spatial and temporal 
problem dimensions, i.e., the p lanning horizon (2010-2050) and all sub-national regions 
(13 provinces). 

The following five criteria were selected for the presented case: 

Cost - the total investment cost (in 1012 US$) of the infrastructure transformation. 

CO2 - the total CO2 emissions (in 109 metric tons). 

Wat - the total groundwater extraction (in 103 km3 ). 

Ele_def - the maximum ( over regions and time) domestic electricity deficit, i.e., short­
age of covering the corresponding given demand (in fractions of the corresponding 
given demand, see (16)). 

Wat_def - the maximum irrigation water withdrawals deficit i.e., shortage of covering 
the given demand) . 

The case with the first three criteria is presented in [50]. Here we present the anal­
ysis with the two additional criteria aimed at exploring how such a ( controlled by the 
corresponding decisions) deficit can improve the performance in terms of the other three 
criteria. Specification of the first three criteria is straitforward therefore we don't discuss 
it . However, specification of the remaining two criteria desire short discussion. 

Let K = { wat, ele} denote the set of the deficit kinds, namely water and electricity, 
respectively, and R, T denote sets of regions and time-periods. The deficit criteria are 
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defined by: 

Ele_dcf = max Oete rt, 
rER, tET ' ' 

WaLdef= max Owatrt, 
rER,lET '' 

(16) 

where Ok,r,l E [O, 1] are decision variables defining fractions of the corresponding unmet 
demands. 

5.1. 3. The system-state variables 
All five criteria defined above support analysis of outcomes aggregated over regions 

and time-periods. In order to augment such analysis by examination of consequences in 
specific regions and/or t ime-periods, the system-state variables were introduced. These 
variables represent such system properties as the chosen electricity-generation technolo­
gies, capacities of the power plants, water balances in specific locations, water transfers 
between regions. 

As an example of state variables we define below the covered parts of the given 
electricity and water demands. The former three-criteria analysis assumed that all base­
line projected demands (specified in [51]) were met. To enable analysis of controlled 
shortages (in terms of unmet demand of irrigation water and domestic electricity) the 
decision variables ok,r,t and two criteria defined by (16) were added. These criteria are 
also defined at the aggregated level. Therefore, other system-state variables represent 
the covered parts of the corresponding demands; these are denoted by dk ,r,t, and defined 
by: 

dk,r,t = bk,r,t · ( 1 - Ok,r,t ) , k E K , r E R , t E T, 

where bk,r,t stands for the baseline projected demands. 

5.2. Key results of the analysis 

(17) 

We now present the key results of the MCA in the criteria space defined in Sec­
tion 5.1.2. We start with discussing in Section 5.2.1 attributes of selected iterations. 
Then Section 5.2.2 overviews a sample of diverse solutions. We conclude the presen­
tation of key results with Section 5.2.3 containing selected results in the system-state 
space. 

5.2.1 . Discussion of selected iterations 
The common practice and the discussion in Section 3 show that a comprehensive 

analysis of any complex model involves many iterations. In this paper we can show only 
a small sample of iterations characterizing diverse criteria trade-offs. We will follow this 
by overview of the sub-set of a large number of iterations. 

Table 1 presents criteria values for iterations selected to discuss a representation of 
the trade-offs between the criteria. The Table is composed of four parts discussed in 
a row below. The first (top) part provides the utopia and nadir values. The second 
part contains results of selfish optimization of each criterion, as well as so-called neutral 
solution. The remaining two parts present diverse iterations, all sorted by increasing 
cost. 
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Cost CO2 Wat Elcctr. deficit Water deficit 

Utopia 0.11 (0%) 0.17 (0%) 0.03 (0%) 0 (0%) 0 (0%) 
Nadir 2.G7 (100%) 8.34 (100%) l.21 (100%) l.00 (100%) 1.00 (100%) 

Ut.opia-:k 0.24 (9.4%) 0.4fi (Ei.fi%) o.o:~ (0%) 0 (0%) 0 (0%) 
Nadir-3c 2.G7 (100%) 9.69 (118%) 1.26 (107%) 0 (0%) 0 (0%) 

Iteration Cost; CO2 Water Elcctr. deficit. Water deficit 

1599 0.11 (0%) 1.07 (11%) 0.28 (22%) 1.00 (100%) 1.00 (100%) 
1991 0.50 (17%) 0. 17 (0%) 0.13 (8%) 1.00 (100%) 1.00 (100%) 
1992 1.82 (67%) 1.80 (20%) 0.03 (0%) 0.67 (G7%) 0.67 (67%) 
HJ8D 0.88 (30%) 0.71 (17%) 0.13 (8%) 0. (0%) 0. (0%) 
Hi80 0.,12 (17%) l.fifi (17%) 0.2:~ (17%) 0.14 (17%) 0.14 (17%) 

16G9 0.14 (1%) 0.29 (2%) 0.28 (21%) 1.00 (100%) 1.00 (100%) 
1982 0.23 (5%) 8.00 (98%) 1.21 (100%) 0. (0%) 0. (0%) 
2008 0.24 (.'i%) .'i .72 (fi8%) 0.84 (fi8%) 0.14 (14%) 0.14 (14%) 
2007 0.25 (5%) 4.14 (49%) 0.61 (49%) 0.24 (24%) 0.24 (24%) 
2010 0.25 (5%) 6.28 (75%) 0.92 (75%) 0.05 (5%) 0.05 (5%) 
2011 0.29 (7%) 2.83 (31%) 1.09 (89%) 0.07 (7%) 0.07 (7%) 
2023 0.29 (7%) 2.81 (31%) 0.88 (71%) 0.07 (7%) 0.32 (32%) 
2022 0.30 (7%) 2.88 (32%) 0.43 (32%) 0.D7 (7%) 0.65 (65%) 
2004 0.30 (7%) 3.21 (37%) 0.58 (45%) 0.19 (19%) 0.19 (19%) 
2005 0.31 (8%) 3.40 (39%) 0.50 (39%) 0.20 (20%) 0.20 (20%) 
2014 0.31 (8%) 4.43 (52%) 0.65 (52%) 0.06 (6%) 0.06 (6%) 
200G 0.32 (8%) 1.87 (21%) 0.28 (21%) 0.42 (42%) 0.42 (42%) 
2012 0.32 (8%) 8.37 (39%) 0.48 (100%) 0.08 (8%) 0.08 (8%) 
2015 0.36 (10%) 3.64 (42%) 0.54 (42%) 0.07 (7%) 0.07 (7%) 
2013 0.42 (13%) 3.13 (36%) 0.42 (36%) 0.02 (2%) 0.02 (2%) 
2009 0.43 (13%) 2.87 (33%) 0.43 (33%) 0.03 (3%) 0.03 (3%) 

1999 0.57 (18%) 1.65 (18%) 0.25 (18%) 0.07 (7%) 0.07 (7%) 
2003 0.58 (19%) 1.28 (15%) 0.HJ (15%) 0 (0%) 0 (0%) 
2000 0.62 (20%) 1.41 (16%) 0.21 (16%) 0.06 (6%) 0.06 (6%) 
1718 0.62 (20%) 1.14 (16%) 0.21 (15%) 0.06 (6%) 0.06 (G%) 
2002 0.68 (22%) 1.20 (13%) 0.18 (13%) 0.05 (5%) 0.05 (5%) 
1736 0.68 (23%) 1.13 (12%) 0.17 (12%) 0.0G (6%) 0.06 (6%) 
2001 0.72 (24%) 1.04 (21%) 0.Hi (21 %) 0.04 (4%) 0.04 (4%) 
1.'J!J[j 0.77 (26%) 1.12 (12%) 0.14 (0%) 0.00 (0%) 0.00 (0%) 
lf,96 0.77 (2fi%) 0.82 (8%) 0.1:1 (8%) 0.08 (8%) 0.08 (8%) 
1700 0.78 (26%) 0.84 (9%) 0.13 (8%) 0.06 (6%) 0.06 (6%) 
1676 0.78 (26%) 0.56 (5%) 0.20 (14%) 0.05 (5%) 0.05 (5%) 
1701 0.79 (27%) 0.83 (8%) 0.13 (8%) 0.05 (5%) 0.05 (5%) 
1G27 0.83 (28%) 0.02 (10%) 0.13 (8%) 0.00 (0%) 0.00 (0%) 
1786 0.92 (:l2%) 0.fi9 (7%) 0.11 (7%) 0.o:l (:l%) 0.o:l (:l%) 
1610 1.27 (45%) 0.54 (5%) 0.08 (5%) 0.05 (5%) 0.05 (5%) 
1784 1.66 (60%) 0.51 (4%) 0.08 (4%) 0.02 (2%) 0.02 (2%) 
1682 2.5G (96%) 0.48 (4%) 0.08 (4%) 0.04 (4%) 0.04 (4%) 
lGDl 2.G7 (100%) 0.54 (5%) 0.04 (1%) 0.0] (1%) 0.01 (1%) 

Table 1: Utopia and nadir cri teria values , followed by values of criteria in selected iterations. Units 
for the c:riteria values: Cost [x 1012 USD], CO2 [x 109 metric tons], Wat [x 103 km3 ]. Values of the 
deficit criteria arc defined as fractions, see eq. (16). The -3c suffix to utopia/nadir labels denotes the 
corresponding values of the t hree criteria analysis presented in detail in (50]. 
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Criteria values are presented in the Table as pairs composed of the actual criterion 
value and the percentage of the utopia-nadir range ( of the five criteria analysis instance). 
The percentage can be interpreted as a relative criterion optimality loss ( compared to 
the corresponding selfish optimization) , and therefore provides a good yard-stick for 
assessing individual criteria performance/goodness. Thus, 0% and 100% stand for the 
utopia and the nadir criterion values, respectively. 

We start with commenting the first part of the Table. As discussed in detail in 
Section 3 the utopia and nadir values show the corresponding ranges of each criterion 
values for all Pareto-solutions. These ranges are huge ( especially, if one considers also 
the corresponding measurement units shown in the Table caption), and thus call for 
comprehensive analysis of diverse Pareto-efficient solutions. Moreover, it is worth to 
note that the utopia values for criteria Cost and CO2 for the five criteria instance are 
less than half of those for the three criteria problem instance, while the utopia value for 
the Wat criterion is the same for both instances. This shows the possibility of trade-offs 
between the Cost, CO2, and the two deficit criteria, and no such trade-offs with the Wat 
criterion. 

In the remaining discussion of Table 1 solutions are identified, for the brevity sake, 
by the #-character followed by the number (e.g., #1680 stands for iteration number 
1680). 

We move on with discussing the second part of solutions composed of selfish criteria 
optimization as well as the neutral solution. The first four iterations listed in this part 
show the selfish optimization results (these have the same criteria values for optimization 
of each deficit criteria, therefore only one of them is shown). Obviously, the optimized 
criterion reaches the corresponding utopia value at the expense of poor performance 
of at least one other criterion. It is worth to observe that performance of the other 
criteria is not always (very) bad (e.g., #1989). We recall that the latter is thanks to the 
regularizing term of the scalarizing function (15) that assures properly Pareto-solutions 
(see Section 3 for the explanations). Selfish optimizations very rarely provide acceptable 
trade-offs but often offer a good basis for exploring solutions focused on performance of 
the corresponding criterion. 

The neutral #1680 solution is the last one generated automatically, and attempts to 
reach possibly balanced (in terms of equal relative performance of all criteria.) solution. 
For our case-study it was possible to find a Pareto solution with equal (17%) performance 
of all criteria. From analytical point of view (e.g., in terms of the relative criteria 
performance defined above) such a solution might be considered as perfectly balanced. 
However, in actual decision-making it is not necessarily the best choice, e.g., because it 
might be rational to spend more money for achieving better values of at least some of 
the sustainability criteria. Therefore, such an analytical interpretation is typically not 
shared by all involved in the problem analysis. Nevertheless, #1680 provides another 
useful yard-stick. In particular, it shows that one cannot achieve performance better 
than 17% for all criteria simultaneously; it also indicates that at least one criterion shall 
reach a better value than 17%. Generally, the neutral solution often serves as a basis for 
starting various branches of analysis. 
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We complete the discussion of Table 1 by commenting on the results of the interac­
tively generated iterations. Such iterations are the main part of the analysis. However, 
due to the space considerations we have to limit the discussion to a small number of 
selected key issues. The results of the selected interactive iterations are split into two 
parts, each composed of results with costs lower or higher than the cost of the neutral 
solution, respectively. 

5.2.2. Overview of a sample of interactive solutions 
Each Pareto-optimal solution has a certain trade-off (compromise) between criteria 

values that correspond to a given preference specification through a choice of the as­
piration and reservation levels. Here we overview a rather large sample of iterations 
generated interactively within a specific analysis. 

There are different and complementary ways of analyzing such a large number of 
diversified Pareto-efficient solutions. We start with commenting on the distributions of 
the corresponding criteria values shown in Figure 6 explained in Section 3. Note that the 
criteria values' distributions of the four criteria (Wat, CO2, Wat_def, and Ele_def) are 
very similar and substantially differ from such a distribution of the Cost criterion values. 
This corresponds to the bias of the prevailing preferences applied in the analysis, i.e., 
the focus on exploring solutions aimed at reaching the environmental goals represented 
by these four criteria in a cost-effective way. Therefore, the lowest distribution quartile 
of the costs (corresponding to the 25% of worst, i.e. , expensive solutions) covers only 
about the third of the criteria value range while these quartiles of each of the other 
criteria values cover about 75% of the range. This shows that 75% of generated solutions 
have criteria values about either 25% (for all criteria but Cost) or 66% (for cost) worse 
than utopia. In other words, the preference bias was towards solutions rather reaching 
sustainability goals in cost-effective way than minimizing costs. 

Further on in this section we comment on the iteration sub-set that excluded itera­
tions similar in terms of the values of all criteria. 

Results of the five criteria analysis are summarized in Figure 7 showing the normal­
ized (in the same way as the values in Table 1) stacked criteria values. Worst normalized 
value is equal to 100. Therefore, the hight of each bar illustrates the cumulated perfor­
mance of the corresponding iteration. It is not surprising that low-cost solutions have 
much worse cumulative performance of the other criteria, and expensive solutions have 
generally very good cumulative performance. However, it is interesting to note that 
solutions with practically same cost often have very different cumulated performance. 

A complementary view on the cumulative criteria performance is shown in Figure 8, 
which shows the same set of solutions as Figure 7 sorted by the cumulative performance. 
Note that most solutions with low (up to 30) indices (i.e., at the left end of the chart) 
perform pretty well on all sustainability criteria and have moderate costs. 

Figure 9 shows the same set of solutions as but sorted by increasing values of worst 
(within each solution) performing criterion. Here, the solutions are sorted by decreasing 
balance of the criteria performance. Such interpretation implies that a perfectly balanced 
solution has an equal performance of all criteria (note that this property has solution 
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Figure 7: Values of all criteria sorted to increasing cost. Each bar stacks the normalized values of all 
criteria. 

#1680 shown in Table 1). 

5.2.3. Analysis in system state space 
Impacts of the criteria settings on the provincial-level technology build-out for se­

lected scenarios are provided in Figure 10. Depicted is the optimal annual electricity 
and freshwater supply mix in each region, as well as the interprovincial transfers and 
demand-levels. The cost-minimization solution (Figure 10a) involves expansion of rel­
atively low-cost combined-cycle natural gas generation, with existing renewable energy 
policy driving development of 50 GW of mostly solar generation capacity. Groundwa­
ter withdrawals are left unconstrained in the cost-minimization model, and under the 
parameterized costs dominate the fut ure water supply mix and displace existing inter­
provincial desalination transfers. Moreover, in the cost-minimization solution thermal 
power plants employ once-through freshwater cooling systems due to the low invest­
ment cost and lack of concern surrounding groundwater sustainability. The modeled 
extraction across sectors in this scenario likely exceeds available aquifer storage [52]. 

5.3. Lessons from the analysis 

Water and energy systems are increasingly interdependent, and will benefit from inte­
grated long-term development strategy. Multiple-criteria analysis support examination 
of trade-offs between attainable goals for diverse development objectives. In particular, 
the analysis shows diverse ways for reaching policy objectives in Saudi Arabia for 2050 
that reduce cumulative groundwater extraction and electricity sector CO2 emissions to 
levels likely needed to avoid local groundwater shortages and meet global climate stabi­
lization targets are associated with a significant increase in system investment costs. The 
MCMA framework enables revealing a suite of solutions that remain nearly ambitious at 
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Figure 8: Solutions sorted by sums of criteria performance. 

much lower costs. These savings would impact the the affordability of water and energy 
services in the rapidly developing nation of Saudi Arabia. 

The presented approach and the corresponding model focus mainly on the electricity 
sector, and its interrelation with water and climate issues. Possible future work can 
extend this approach by two elements. First, to explore investments in technologies 
improving efficiency of electricity and water use. Then the currently defined electricity 
and water demand deficits can be modified to represent the corresponding decreases of 
the planned demands, which will result from the increased efficiency. Second, comple­
mentary to the first, to consider expanding the system boundaries to allow assessment 
from resource extraction through to end-use services. This would allow mapping the im­
pacts from a more comprehensive set of technologies to energy and water sustainability 
metrics of interest. An important issue to address in this context is the linking of sur­
face and groundwater management, which was simplified in the analysis due to surface 
water scarcity in the case study region. Moreover, the effects of other criteria important 
to regional planners (e.g., air pollution, energy security, investment risk, etc.) on the 
optimal development strategy should be explored to fully highlight potential trade-offs 
or synergies. The general MCMA framework described in this paper can readily be used 
for analysis of an extended model including these features. 

6 . Conclusion 

Model-based support for decision-making in complex problems does, and will, require 
various elements of science, craftsmanship, and art (see, e.g. [21] for a collection of 
arguments that supports this statement). Science-based support for policy-making is a 
process, and quality of the support is determined by its weakest element. This paper 
focuses mainly on multicriteria analysis of attainable goals. The presented methods 
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Figure 9: Solutions sorted by increasing values of the worst (within each solution) performing criterion. 

and modular modeling environment contributes to meeting the needs of decision-makers 
and scientists . In particular, it enables multiple-criteria analysis of large-scale complex 
models developed in diverse environments. Moreover, such analysis can be effectively 
performed also by users without modeling background. 

The presented actual decision problem on energy-water-climate nexus illustrates not 
only the effectiveness of the presented environment but also lessons from its analysis. 
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