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Multiple Criteria Analysis of Discrete Alternatives with a Simple 
Preference Specification: 

Abstract 

Pairwise-Outperformance-Based Approaches 
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u National Institute ofTelecommunications, Warsaw, Poland 
•warsmv University o/Technology, Warsaw, Poland 

'International Institute for Applied Systems Analysis, Laxenburg, Austria 
"Systems Research Institute o/the PolishAcademy o/Sciences, Warsaw, Poland 

Many methods have been developed for multiple criteria analysis and/or ranking of discrete alter­
natives. Most require a complex specification of preferences. They are, therefore, not applicable 
for problems with numerous alternatives and/or criteria, where the decision maker cannot specify 
her/his preferences in a way acceptable for small problems, e.g., through pairwise comparisons. 
In this paper we propose new methods built on combining existing concepts with the developed 
outperformance aggregations that take into account inter-alternative factors. The methods have 
been applied for analyzing real-life problems like multiple-criteria analysis of future energy tech­
nologies, energy and climate poi i cy and controlling a space robot. Analysis of the first two cases 
involved large numbers of alternatives, the first case also large number of criteria. Moreover, the 
analysis was conducted by a large number of stakeholders without experience in analytical meth­
ods. This is why, a simple method for interactive preference specification was a precondition for 
the analysis. A comparison of the developed methods is presented, and experience of using them 
is sumrnarized. 

Keywords: Multiple criteria analysis, Decision analysis, OR in energy 

1. Introduction 

Multiple criteria analysis is a well established area of applied science, which was developed 
in response to a need for problem analysis that could not be met by single criteria optimization 
rnethods. A sample of diverse approaches and the corresponding tools can be found in [I, 3, 5, 7, 
12, 16, 35, 38, 39, 42, 43]. One could, therefore, ask why new methods stili need to be developed. 
To answer this question, we begin the paper by summarizing in Section 2 an application that was 
intended to be supported by one of the existing methods. However, the requirement analysis made 
it elear thai none of the existing methods could meet the requirements. Thus, the reported research 
was motivated by real needs. 
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The structure of the remaining part of the paper is as fellows. Basic terminology and the spec­
ification of preferences are discussed in Section 3. The fund am enta I requirement for the methods 
designed was simplicity of the preference specification, and this motivated use of the criteria rela­
tive importance for representation of preferences. Because of the strong demand for organizing the 
large number of criteria into the three pillars of sustainable development, the corresponding hier­
archy of the criteria was implemented. The main scientific result is presented in Section 4, which 
presents the proposed Pairwise Outperformance Measure that is based on differences of the co111-
pared achievements, as well as on their values. N ext, in Section 5 we define the Ordered Pairwise 
Outperformance Aggregation and show its applicability; this aggregation is based on comparison 
of pairs of achievements ordered (for each criterion) from the worst to the best. The transitiv­
ity property of the methods developed, and the Net-Flow approaches are discussed in Section 6. 
Section 7 summarizes the extensive experiments with the methods developed. Section 8 concludes. 

2. Motivation 

Multicriteria analysis was needed to support a large number of diversified stakeholders in in­
dividual analyses of preferences for diverse future energy technologies developed within the Eu­
ropean Integrated Project NEEDS. 1 The over 3,000 stakeholders invited to carry on the analysis 
carne from different backgrounds and typically had rather limited mathematical ski lis. Because of 
the number ofstakeholders and their geographical dispersion as well as the limited time available, 
the analysis was conducted using the popular Web browsers. Moreover, the users typically had lit­
tle time to become familiar with the tool supporting the analysis, and also to complete the analysis. 
The Web-based tool for multicriteria analysis thus had to be easy to use; in particular, specification 
of preferences had to be intuitive, and the corresponding multicriteria analysis method needed to 
be able to support an effective analysis of a large number of Pareto-efficient alternatives character­
ized by a large number of criteria organized in a hierarchical structure. Ear!ier approaches to this 
class ofproblems had been limited to the weighted additive value function [13]. 

A concerted effort on the part of European researchers resulted in over 20 technologies being 
defined in each of the four European countries analyzed. The set of26 energy generation technolo­
gies includes 2 nuclear, 16 fossil (10 coal and lignite, 6 natura! gas), and 8 renewable (biomass, 
solar, and wind). Each technology is characterized by approximately 40 attributes.2 

From a modeling point of view, for each of the four countries a multicriteria analysis was con­
ducted for a set of over 20 alternatives, each characterized by 61 criteria ( composed of attributes, 
three top-level criteria, and intermediate criteria) organized in a hierarchical structure forming an 
unbalanced criteria tree. 

The criteria were organized in a hierarchical structure composed ofthree subsets of criteria fol­
lowing the concept of sustainable development (i.e., environmental, economic, and social) criteria. 

1Information aboutthe NEEDS Project is available at http://www. needs-proj ect. org/2009/, and e.g., 
[20, 36]. 

2The description of technologies is available at: http://www. ii asa. ac. at/-marek/mca_doc/pdf_ 
needs/tech_en.pdf. The corresponding database report is available at: http://www. iiasa. ac. at/ 
-marek/mca_doc/pdf_needs/db_rep. pdf. Full description of the criteria and indicators is available at: 
http://www.iiasa.ac.at/-marek/mca_doc/pdf_needs/hier_en.pdf. 
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Figure I: lllustration of the criteria hierarchy used in the NEEDS case study. 

Figure I illustrates part3 of the criteria hierarchy. 
A detailed requirement analysis of the problem [20] showed that there were no multicrite­

ria analysis methods that would meet all these requirements [8], although various approaches to 
multicriteria analysis in energy have been u sed (see e.g., [ 4, I Ol). To provide adequate support for 
analysis of the class ofdiscrete decision problems with large number ofalternatives, numerous and 
structured criteria, and simultaneously involving multiple stakeholders, we developed and tested 
new methods. 

The ana lysis was anonymous and involved a large number of participants; thus no support for 
individual elicitation of preferences was possible. Moreover, it was elear that most users would 
not be willing to devote time needed for a non-trivia! specification of preferences, or to study the 
underlying methodological background. Therefore, a simple specification of preferences was the 
necessary cond ition for actual use of the des i red multiple-criteria analysis. 

To meet those challenges, the authors had many discussions with colleagues experienced in 
multiple-criteria analysis involving practitioners from the energy domain. The conclusion was 
that relative criteria impotiance would be the best way for specification of preferences. About 
30 versions ofmethods based on relative criteria importance were developed, and about IO of them 
were blind-tested4 by colleagues experienced in multiple-criteria analysis of energy technologies. 
The goal of these tests was to select the method most suitable to the planned analysis in terms 

3Only one branch from the top level criteria in shown. Therefore criteria belonging to the Economy and Social 
criteria sets are not displayed. 

4 The testers experimented with each method in row, without knowing its theoretical background. 

3 



of correspondence between changes in preference specification and the resulting change of Pareto 
alternative. As the result, the POA method with non-linear mapping of relative importance was 
recommended. More extensive tests done later motivated further development of the corresponding 
family of methods presented in this paper. Other methods are described in [ 18] and [ 41]. They 
were not used in the case studies discussed in this paper, but are stili subject to fu1ther development 
and will be presented in other publications. 

3. Problem definition 

3.1. Preference model 

In this paper we focus on the problem of analysis of a discrete set of alternatives (objects) Oj, 

j E J = {1, 2, .. . , m }. The set of all alternatives is referred to as Q = { Oj : j E J}. Objects Oj 

are described by numerical attributes (or criteria, selected outcomes) c;, i E J = {l, 2, .. , n}. 
Attribute values are denoted by% = c; ( Oj) specified for each pair { i, j}. 

In the process of problem analysis the user selects some of the attributes as criteria and de­
cides on each criterion type (minimization or maximization). Optionally, the user can define the 
hierarchical structure of criteria forming a tree, in which the leaves are the criteria defined by 
the selected attributes, and the higher-level criteria are defined to aggregate lower-level criteria; 
see (19] for details . 

There are three basie types of multicriteria analysis: 
• Choice: select the most preferred object, 
• Ranking: order all objects from the most to the least preferred, 
• Sorting: partition of the set of alternatives into severa! ordered categories. 

The essence of multiple criteria analysis is to help the user to find a solution (either an object, 
or ranking, or sorting) that best fits his/her preferences. The basie function of multicriteria analysis 
is to support the user in an interactive modification of his preferences when the corresponding so­
lutions are being analyzed. This approach substantially differs from the classical (single-objective) 
optimization which requires a prior specification of one objective function (optimization criterion). 

To facilitate the discussion we recall here the basie concepts of Pareto efficiency (Pareto­
optimal solutions) and preference models. 

An alternative is called Pareto-optimal, if no other alternative has : (]) at least one criterion 
with a better value, and (2) no criterion with a worse value. In other words (and assuming for the 
following definition that all criteria are maximized) alternative o1 E Q is Pareto-optima I if and only 
if: 

( 1) 

If such an alternative Oj exists, then we say that it dominates o1. A Pareto-optima! alternative 
is also called an efficient or non-dominated one. A Pareto-optima! set is composed of all Pareto­
optimal alternatives. A Pareto-optima! outcome vector is composed of values of all criteria for a 
corresponding Pareto-optimal alternative. 

It is elear that a dominated alternative is not a rational choi ce. Therefore, it is rat i ona I to analyze 
trade-offs between non-dominated alternatives only. Thus the purpose of multicriteria analysis is 
help the user to analyze the Pareto set to find either a Pareto efficient solution or a ranking of 
alternatives. 
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Let us now consider a pairwise comparison, i.e., decide which of two (say o1 and o2) selected 
alternatives (or corresponding outcomes) is preferred. Two situations can be distinguished: 
• One of these alternatives dominates the other; in this case the dominating outcome is clearly 

preferred. 5 

• I f the alternatives do not dominate each other, then it cannot be objectively decided which one 
is better than the other; however, the user either (subjectively) prefers one of them, or cannot 
decide which he prefers. 

Generally, it is elear that if one outcome dominates another, then it is better than the other. 
In trnly multicriteria problems, however, no alternative dominates all other alternatives. In other 
words, the best (in terms of strict mathematical relations) alternative cannot be distinguished be­
cause the nondorninated outcomes are incomparable on the basis of the specified set of criteria. 
However, a user usually has preferences that help him to se!ect an alternative that best fits these 
preferences. 

A preference structure (32] (which can be used in definition of advanced preference models) is 
a collection of bi nary relations defined on the set of alternatives Q such that exactly one relation is 
satisfied. The simplest preference model assumes that when two different elements of the set Q are 
being compared only two situations can be distinguished: preference of one element to the other 
(relation >- ), or indifference of one element to the other (relation ~ ). Note that >- is asymmetric 
while ~ is reflexive and symmetric. Such a simple preference model can be defined by apreference 
structure composed of two disjoint binary relations on Q x Q: 

(>-, ~). (2) 

The preference model (2) is called complete, iffor any pair ofalternatives (o1 , o2 ) either o1 >-
02 or 02 >- 01, or 01 ~ 02. The preference model (2) is called transitive, iffor any three alternatives 
01, 02, 01 the following implications hold: 
• if 01 >- 02 and 02 >- 03 then 01 >- 03, and 
• if 01 ~ 02 and 02 ~ 03 then 01 ~ 03. 

By extending the properties of the bi nary relations, various more specific preference structures 
called orders (e.g., total, weak, semi-order, interval) can be defined. For example, outranking 
methods are based on preference strnctures called partia! and quasi order. The details of various 
preference strnctures can be found, for example, in (32] . 

In multiple criteria analysis it is assumed that preferences depend only on the evaluation of 
attributes included in the outcome vectors. This implies that the preference structure (>-, ~) is 
equivalently defined on the corresponding outcome vectors. 

For any pair ofalternatives (o1 , o2) with outcome vectors ą 1 and ą 2 

01 >- 02 s=> ą 1 >- ą2 and o1 ~ o2 s=> ą 1 ~ ą 2 

We will use both of them interchangeably. Note that the preference model must fulfill: 

ql = q2 =;- ql ~ q2. 

5This does not mean that the dominated alternative is a bad one. Actually, the implemented ranking procedure 
assigns dominated (but "close") alternatives a next (or even the same) ranking position, i.e., will rank them above 
other (originally non-dominated) alternatives. 
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The preference model for any pair of outcome vectors ą 1 and ą2 (corresponding to alternatives 
(01, 02)) 

ąl <'.'. ą2 => ąl :,.. ą2 or ąl ~ ą2. (3) 

It is called strictly monotone, if additionally 

ą1 <'.'. ą2 and ą1 =/- q2 => qI :,.. q2. ( 4) 

Note that the monotonicity properties of the preference model are crucial for its consistency 
with the Pareto-optimality principle. Actually, within the monotonie preference model no Pareto­
dominated alternative can be strictly preferred to a dominating one. The strict monotonicity guar­
antees that any alternative maxima! according to the preference relation is Pareto-optima!. 

The preference models can also have numerical representations. The most common numerical 
representations of preference models is a value function v : Q ---t R defined for each alternative. 
In such cases while considering a pair of two alternatives (o1 , o2 ): 

• Alternative o1 is preferred to o2 (i.e. , o1 :,.. o2), ifand only ifv (o1) > v(o2) ; 

• Alternatives o1 and o2 are indifferent (i.e., o1 ~ o2 ), ifand only if v (o1) = v(o2). 

The preference model defined by a value function is obviously complete and transitive. 
As the preference model is based on the outcome vectors, the value function al so has to be 

defined on outcomes, thus representing some aggregation of the criteria. The scalarizing function s 
may have various constructions and properties depending on the specific approach to preference 
modeling applied in the corresponding methods. Nevertheless, most scalarizing function s or, more 
generally, preference model constructions, can be viewed as two-stage process: 
• First, the individual outcomes are rescaled to same uniform measures of achievement with re­

spect to severa! criteria and preference parameters. Thus, the individual achievement functions 
a, : R ---t R are built to measure the actual achievement of each outcome in a uniform scale, 
say [O, I]. We denote individual achievements for each alternative by a,j = a,(q,j) , and the 
entire achievement vector by aJ = (a1j , a2j, ... , anj) , 

• Second, the outcomes transformed into a uniform scale of individual achievements are compared 
in order to build a preference model. Using the value function concept they are aggregated at 
the second stage to form a fina! scalarization. The aggregation may measure, for instance, the 
average or the worst individual achievement. Typically, the aggregation is im partia! or symmetric 
with respect to the individual achievements. lt thus treats all individual achievements as equally 
important as long as no criteria importance is introduced. 

While building the preference model over the uniformly scaled and equally important achieve­
ments, a small improvement of the worst achievement value is usually preferred over a worsen ing 
of the much better achievement by the same value. To illustrate this feature !et us consider three 
equally important criteria, and alternatives o1 and o2 , with the corresponding achievements shown 
in Table I. 

Typically, o2 is preferred to o1 (although the sum of differences in achievement values is equal 
to O) because the improvement of the worst value of a 1 is usually preferred over the worsening 
of the much better performing a2 by the same value. This can be formalised by the c!ass ical 
(Pigou-Dalton) principle oftransfers (see e.g. , [14] and the references therein): 

a;,> a," => a - c:e;, + c:e;u :,.. a for O<€ :'S (a;, - a;u)/2 (5) 
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altematives 
achievements 01 02 ... Om 

a1 O.O O.I . . . I 
a2 I.O 0.9 ... 1 
a3 0.5 0.5 ... o 

Table I: Sample achievement vectors 

where e; denotes the i-th unit vector in the criterion space. We say that the preference fulfills the 
achievement equitability if it complies with the principle oftransfers (5). Note that the principle of 
transfers is equivalent to the property of decreasing marginal achievement uti lity 

a;,>a;" =;, a+c:e;n>---a+c:e;, forc:>0. (6) 

Further, preference models may treat the uniformly scaled and equally important achievements 
impartially thus focusing on the distribution of achievement values white ignoring their ordering. 
This means that the preference model is based on a set of achievement values that do not take into 
account which outcome is taking a specific value. Such a preference model is called (achievement) 
impartial (anonymous, symmetric), if it fulfills the following property: 

(a1r(l), a,r(2), ... , a,r(m)) ~ (a1, a2, ... , an) for any permutation 1r of I (7) 

which means that any pennuted achievement vector is indifferent in terms of the preference rela­
tion. 

3. 2. Specification and aggregation of preferences 

Analysis of Pareto-optima! alternatives aims at finding the alternative that has the best (in 
terms of the user preferences) trade-offs between the criteria values. The corresponding analysis 
support is composed of two concerted mechanizms. First, an effective way for specification ofuser 
preferences; second, an aggregation of the preferences in a way that results in finding a Pareto­
alternative that possibly well fits the user preferences. 

Preference information is generally considered in two categories: 
• lnformation between the criteria (e.g., relative importance of criteria); 
• lnformation within each criterion (e.g., satisfaction/utility levels for different values of a crite­

rion). 
Because of the requirements explained in Section 2, the methods developed had to have a very 

simple representation of preference specification that is also suitable for users without analytical 
skills. Although we refrain from detailed specification of preferences within each criterion, the 
inter-criteria preferences model needs to be specified. For the criteria types (maximized or min­
imized), and very diverse orders of the criteria value magnitudes to be dealt with rationally, all 
criteria values are linearly mapped into the [O, 1] interval of achievements, where O and I corre­
spond to the worst and best value, respectively. Moreover, the lack of specification by the user 
of intra-criterion preferences is to some extent compensated for by the pairwise outperformance 
measures presented in Section 4. 
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During extensive discussions with practitioners it was agreed that specification of the relative 
importance of each criterion using the importance categories was the most suitable way of speci­
fying preferences. The preferences for each criterion are therefore specified interactively through 
selection of one of eight levels which are interpreted as the corresponding value of ri; , i E I as 
fellows: 
• ri; = 4 denotes average importance; 
• ri; values 5 through 7: more, much more, vastly more, important than average, respectively; 
• ri; values 3 through I: less, much less, vastly less, important than average, respectively; 
• ri; = O stands for temporally ignoring the criterion (and is children in the criteria hierarchy, if 

one is specified). 
The non-zero values of ri are mapped inte weights w; , i E I in one of the following ways (de­
pending on the method selected). 

The first is the simplest lineai· (standard) mapping defined by: 

{!; = ri;/7, i= 1, ... ,n. (8) 

The second is the multiplicative mapping which, though is less popular than the linear one, has 
a number of advantages (see e.g., [16)); it is therefore used by all methods described in this paper. 
The multiplicative mapping is defined by: 

{!; = ( v'2)2(ri;-4) = (2t•-4 , i= 1, ... , n. (9) 

In other words, the values of weights are selected from the ordered set according to the position 
defined by the relative importance ri. 

For both methods the vector {! is normalized to obtain 

W; =(!;/L{!i, i= 1, ... , n. (IO) 
i=l 

They are treated as the fina! criteria weights w; = w;, if no criteria hierarchy is considered. 
Ifa criteria hierarchy is defined, then the following procedure is applied: 

I. Compute weights tli defined by(! O). 
2. Define sets Sk, k = 1, ... , K composed of siblings (i.e., nodes having a common parent node) 

of criteria. 
3. Normalize subsets of siblings: 

Lk 

w1 =w1/ Lw1 , z E sk, k = 1, ... , K ( 11) 
ł=l 

where Lk is the number of elements in Sk. 
4. For each leaf-criterion define 

i= 1, ... , n (12) 

where set M; is com po sed of indices of the following criteria: i-th leaf criterion, intermediate­
level criteria belonging to the brancl1 of the active criteria tree leading to the i-th criterion. 
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Note that weights w generated by the above procedure are rational numbers, and are normalized, 
i.e ., 

The weights representing criteria importance can be introduced into methods either within the 
aggregation level or within the individual achievement model. We now outline both approaches 
u sed for the same three pairwise outperformance measures. In other words, we present six methods 
organized into two sets characterized by the way in which the weights are used for aggregation of 
preferences. These two sets of pairwise outperformance methods are presented in Sections 4 and 5, 

respectively. 
The traditional weighted sum aggregation 

s(a1) = Lwi%, jEJ (13) 
i=l 

is one of the oldest approaches to multicriteria analysis. The weights in (l 3) are typically inter­
preted in terms of a tradeoff preference model. This implies an additional scaling of individual 
achievements introduced in order to transform them into equally important units, while the ag­
gregation itself remains impa1iial (symmetric). Depending on the method (or aggregation applied 
later), the individual achievements are multiplied either by w; or by 1/w;. This approach is stili 

popular because it is believed to be simple, intuitive, and reliable. Actually, however, the weights 
applied in the form of ( 13) off er only poor support to analysis of Pareto sets, and are often contra­
intuitive. A discussion ofthis approach is beyond the scope ofthis paper, but it can be found, for 
example, in [I 7, 21, 26, 27]. 

Formula ( 13) may also be interpreted as the weighted average achievement with imp01iance 
weights introduced at the aggregation level. This interpretation follows the rule that the impo1iance 
weights w; define a repetition measure within the distribution (population) of achievement values 
while the impartial aggregation takes into account this repetition measure. For example, !et us 
consider two symmetric achievement vectors a 1 = (O, 1) and a 2 = (1, O); introducing importance 
weights w1 = 0.75 and w2 = 0.25 we replace a 1 = (O, 1) with the distribution taking value 
O with the repetition measure 0.75, and taking value I with the repetition measure 0.25; while 
a2 = (1, O) is replaced with the distribution taking value O with the repetition measure 0.25, and 
taking value I with the repetition measure 0.75. In this specific case, the distributions can easily 
be equivalently interpreted in terms of four-dimensional space of equally important achievements 
(measui•e 1/4 each) where the original first achievement has been triplicated, thus a1 = (O, O, O, 1) 
and a2 = (1, 1, 1, O). 

Certainly, different interpretations of the weighted sum aggregation do not change its prop­
erties. This shows, however, how the importance weights can be utilised in more complicated 
aggregations. We will use this approach in Section 5 to exploit the importance weights to define 
ordered achievements. 

Note that in the presence of importance weights, the preference model may stil! fulfill the 
property of equitability with respect to equally important achievements. However, the preference 
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model needs then to comply with the importance weighted generalization [29] of the transfers' 
principle (5): 

• 

4. Pairwise outperformance aggregation (POA) 

4.1. Motivation and basicfeatures 

for O < c < _a_;,_-_a_i'_' 
- Wi1+Wi" 

(14) 

We present here the background, motivation, and implementation of three methods based on 
the pairwise outperformance aggregation approach. Further on, we assume the achievements are 
normalized to [O, l ], where O and I correspond to the worst and best values, respectively. This 
assumption serves only to simplify the presentation: the approach is applicable to criteria that are 
either minimized or maximized, and that have any range ofvalues. 

A natura! improvement of the weighted sum aggregation is to transform individual achieve­
ments by a nonlinear (uti lity) function. The scalarizing function is then defined by: 

n 

s( aj) = L w,u(%), j EJ. ( 15) 
i=l 

The uti lity function u(%) may be used to amplify the impact of increasing weak values (much) 
more than that of good values. A concave increasing utility function guarantees that an improve­
ment of a smaller value may result in a larger satisfaction increase than the same improvement 
(in terms of the criterion value) of a larger value. Further, standard (user-defined) impo1tance 
weights w; are applied at the aggregation level. Thus, the entire scalarization may be viewed as the 
weighted average of nonlinear utilities. 

As already mentioned, such a scalarizing function can be used for defining outperforrnance 
aggregation. Let us consider two alternatives Oj and o1, and apply a nonlinear aggregation to a 
simple preference model, for example: 

n 

Oj >- 01 {c} L w;[u(%) - u(a,1)] > O and Oj ~ 01 {c} L w;[u(%) - u(a;1)] = O. 
i=l i=l 

In the case of a strictly increasing and strictly concave utility function, the resulting preference 
model is monotonie and equitable with respect to the equally important achievements in the sense 
of(l4). 

Such a preference model is based on scalarizing functions defined for each alternative sep­
arately, and therefore does not take into account inter-alternative factors. However, the inter­
alternative factors are strongly desired for pairwise comparisons, and this observation has moti­
vated the authors to develop a new approach to pairwise outperformance aggregation. This ap­
proach is especially useful for problems for which the user cannot make pairwise cornparisons 
directly because of a large number of alternatives or criteria. 

Various approaches to aggregation ofpreference-relations are discussed in [3]. One ofthese is 
the widely used outranking procedure. Pirlot presented in [33] a common framework for defining 
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outranking procedures. These procedures use pairwise comparisons instead of attempting numer­
ical evaluation of each alternative using a common scale. The ELECTRE methods are examples 
of outranking procedures and be long to the class of weighted majority relation with veto. In these 
procedures the statement alternative Di outranks Oj is equivalent to the statement that it is at least 
as good as Oj. The procedure of checking if one alternative outranks another is based on sem i order 
S, and veto relation ¼. The semiorder Si is determined by: 

% Si q,1 {ce}% 2: qil, 

and the veto relation ¼ is defined as: 

ąit¼%{cc}qil>%+Vi 

where vi is a given value representing the maximum acceptable tolerance for worsening the i-th 
criterion value. 

Then, OJ outranks 01 (denoted by Oj t: 0 01), ifthe following condition is fulfilled : 

L Wi 2: ó and there is no i on which ąu V; % 
iEl: QijSiQil 

where w, denotes nonnalized weights and ó E [0.5, 1] stands for the majority threshold. The 
above formula means that the sum of weights of the criteria having better values with respect 
to Si is greater than a given threshold ó, and thai there is no veto (¼) on worsening any other 
criterion. This outranking relation is used in ELECTRE I. There are more advanced definitions of 
the outranking relation S, for example, used in ELECTRE II and III, as well as in PROMETHEE I 
and Il. However, these outranking procedures are not applicable to problems with many criteria; 
as pointed out in (6), the ELECTRE methods are suitable for decision models with more than five 
criteria, and preferably fewer than thirteen. Moreover, the methods based on pairwise comparisons 
are not really suitable for problems with more than six alternatives. 

For pairwise comparison it is desirable to evaluate i-th achievements from the perspective of 
both compared alternatives, and then to aggregate these evaluations for all criteria. Let us consider 
two alternatives o1 and o1• While evaluating the i-th achievement value of alternative 01 from the 
perspective of alternative Oj we consider the difference of the values relative to aij: 

i= 1, 2, ... ,n (16) 

where /3( ·) is a convex, decreasing, and positive internal scaling function. 
The role of /3(-) is to amplify differently the impact of a given difference between criterion 

va lues for both alternatives. The amplification for weak achievements (values close to O) is stronger 
than for strong ones (i.e., values close to l), thus implementing the equitable preferences. 

Returning to comparing alternatives Oj and o1, we also consider the comparison from the per­
spective ofalternative o1• Symmetrically to (16), we define 

dc'J1i=/3(ai1)(ai1-G;J) i=l,2, ... ,n. (17) 

By aggregating both comparisons we define for each criterion the following components dej/i 
of the outperformance aggregation: 

dejti = deili - de'Jli = (/J(G;J) + /J(au))(a,j - au) i= 1, 2,.. , n. (I 8) 

Thus, the two factors of components dej/i have the following roles: 
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• Factor (a;j - a;1) is a difference between i-th criterion values ofboth alternatives compared. 
• Factor (/3(%) + f3(a;1)) averages the amplification of the difference of the achievements com­

pared. The amplification depends on both achievements' values under comparison, and thus 
averages the scaling of the difference of the achievements in order to treat both alternatives 
equally. 

One should also note the following properties of (18) : 
•Fora large absolute value of(% - a;1) one element of (f3(a;j) + f3(aa)) is also large, and thus 

the value of dcjli is large. 
•Fora small absolute value of (a;j - aa) the value of dcjli depends on whether the corresponding 

achievements are weak (small) or strong (large). 
Based on the above discussion we aggregate the components deju defined for each criterion 

by (18) into the following Pairwise Outperformance Aggregation (POA) measure POA(oj, 01) for 
use in comparing altematives (Oj, oi): 

i=l i=l 

In other words, we define the POA preference model as: 

POA(oj, 01) > O =:. Oj>- 01 and POA(oj, 01) = O =:. Oj~ 01. (20) 

The aggregated outperformance measure (I 9) allows us to build the correspondingly valued 
preference relation. Note that the values of the component measures dcjlk and dc1jk have different 
signs but equal absolute values. Similarly, dj1 = -dlj, where 

(21) 

Hence, we can define the preference model (20). We will refer to this preference model as the 
outperformance relation and will say that alternative Oj weakly outperforms alternative 01 (oj ~ 01) 

if djl ~ o. 
Such a weak outperformance relation is quite different from the commonly used outranking 

relations. However, it is similar in the sense that it is a binary relation defined on Q x Q such that 
Oj ~ o1, if there are enough arguments to decide that Oj is at least as good as 01, while there is 
no essential reason to reject that statement [34, 39]. To account for both the differences and the 
similarity, we use the slightly different naine, that is, outperformance instead of outranking. 

The outperformance relation can be lexicographically enhanced by comparison of the original 
differences once the scaled lead to equal results, i.e. 

Oj >-e 01 {c} djl > o or ( djl = o and tw;(U;j - aa)> o) 
n (22) 

Oj rve Ot {c} djl = o and L w;(U;j - a;1) = O. 
i=l 

Note that while the enhancement narrows the indifference relation, it does not affect the weak 
outperformance relation, as 
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4.2. Properties of POA 

In this section we analyze the dependence between the form and parameter of functions /3(-) 
defined above, the concavity and monotonicity properties of POA, as well as their relationship with 
the corresponding valued preference relations. 

The properties of POA(-) depend on the choice of /3(·). The following two forms of the 
function f3(x) have been analyzed and implemented: 

f3(x) = ,>_-X 

.>--1 
/3( x) = 1 + ( A - l) 

where ci: E [O, l] stands for normalized values of criteria and the parameter A > 1. 

(23) 

(24) 

The choice of the form of f3(x) and its parameter A not only implies the analytical properties 
of the POA( •) but also the behavior of the corresponding multicriteria method. The following two 
elements are important from the implementation point of view: 
• The ratio A of values of /3( ·) for the worst and best values of normalized criteria: 

>- = /3(0)/ /3(1) (25) 

which characterizes the amplification depending on the performance (weakness or strength) of 
the corresponding criterion. Note that for f3(x) defined by either (23) or (24) the ratio A is 
actually equal to the parameter A. Experiments show that values of A of abo ut I O are satisfactory. 
However, advanced users should have a means of controlling the value of A. 

• Consistency of the aggregation (19) in the sense of monotonicity with respect to the Pareto 
dominance relation (4), i.e.: 

(26) 

lf (26) does not hold, then the application of (20) does not guarantee that a non-dominated al­
ternative will be selected. To avoid such situations, a preprocessing of alternatives is needed 
to fi I ter-out the dominated alternatives before the pairwise outperformance aggregation (19) is 
applied. Such preprocessing is very easy for discrete alternatives problems but cannot be ap­
plied for MCA ofmathematical models (where an auxiliary parametric optimization problem is 
generated for each specification of preferences). 

For brevity's sake we use in this section a simplified notation for POA. For any alternative Oj 
we consider a relative outperformance function comparing any vector y = (y1 , y2 , ... , Yn) in the 
achievement space (any possible achievement vector a even if not attainable for any alternative) 
with the achievement vector aj defined by the alternative Oj, and denote: 

P;(Y) = POA(y , aj)= L w,Pji(Yi) where Pj,(y,) = (f3(y,) + f3(aij))(Yi - U;j), (27) 
i=l 

First of all, note that the POA preference model is monotonie and equitable. and that the 
following statement is valid. 
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Proposition 1. For any positive and decreasing interna! scaling Junction /3(-) the POA prefer­
ence relation (20) is strictly monotonie and equitable with respect to equally important achieve­
ments (14). 

Proof. Let us consider an achievement vector aj and a vector a ,f- aj, a 2 aj. Obviously, 
a = aj+ I:~=l E:; e; with E:; 2 O for all i E J and at least one positive among them and computing 
value Pj( a) we get 

Pi( aj+ L E:;e;) = L E:;(f](a;j + E:;) + f](a;j)) > O. 
i=l i=l 

Hence, POA( a, ai) > O, and a>- aj, whichjustifies the strict monotonicity. 
Let us further consider an achievement vector ai with a;,j > ai"i, and compute 

€Will ~I + CWi' ~li) = 
w;,(/J(a;,j - E:W;u) + /J(a;,j))E:W;n + W;n(/J(ai"j + E:W;,) + /J(ai"j))cw;, 

where e; denotes the i-th unit vector in the achievement space. Note that 

Pj(ai - E:W;ne;, + E:W;,e;u) > o 

since 

implies 

Hence, 

and 

which completes the proof. D 

Let us further note that the outperformance function Pi(Y) is strictly increasing whenever all 
partia! functions Pji are strictly increasing and concave whenever all partia! functions are concave. 
The two propositions be low deal with the concavity and monotonicity properties of POA for /3(-) 
defined by (23) and (24), respectively. 

Proposition 2. For any alternative (achievement vector ai) the corresponding relative outper­
formance functions Pji are concave and strictly increasing with respect to each achievement y; 
whenever f](x) = >,-x with l ::; >. ::; e. 
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Proof. Calculating the derivative offunction P1i(Yi) we get 

pji(y;) = (1-µy; +a;Jµ)).-Yi +>,-•,;], i= 1,2, ... ,n 

where µ = In>.. If 1 :::: >. :::: e, then O :::: µ :::: 1 and 1 - µy; + a;Jµ 2: O for any O < Yi < 1 and 
O :::: % :::: 1. Therefore, P1;(y;) > O for all O < y; < 1. 

Further, calculating the second derivative we get 

p;;(yi) = (µ 2 yi - 2µ + a;Jµ 2 )).-Yi, i= 1, 2, ... , n. 

lfl :::: >. :::: e, then O :::: µ :::: 1 and (y; - a;J)µ :::: 2 for any O < y; < 1 and O :::: % :::: 1. Therefore, 
P1;(y;) :::: O for all O < Yi < 1, thus guaranteeing the concavity properties. O 

Corollary 1. For any alternative (achievement vector a1) the corresponding re/ative outpe1for­
mance fimctions P1 is concave and strictly increasing with respect to each achievement y; when­
ever f3(x) = >,-x with 1:::: >.:::: e. 

To sum up, the POA defined by ( 19) with /3(·) defined by (23) is concave and strictly increasing 
for>. E [l, ej. Such a rather small range of values of >. results is a rather small amplification of 
weak criteria values. Thus, the corresponding method may either have undesired behavior for same 
problems (if applied with >. < e) or does not guarantee that a Pareto-efficient solution for>. > e 
will be found. 

Although the latter problem may be effectively addressed by filtering-out dominated alterna­
tives i n the preprocessing phase of multicriteria analysis, we have found an alternative form of /3( • ), 
which guarantees concavity and monotonicity of POA for any >. > 1. 

To demonstrate this, !et us now consider /3(·) defined by (24). By applying /3(·) defined (24) to 
( 16) one obtains 

>. - 1 1 
dcJti = -~-~-(% - a;1) = -::--(iiiJ - ii.il) 

1 + (>. - l)a;J aiJ 
(28) 

where 

_ 1 1 
a;J=3::+(l-3::)%- (29) 

In other words, the criteria values are rescaled by (29) from [O, I] to[½, l], which in tum allows 
application of the standard inverse-proportional scaling. 

Similarly, 

and 

d II d , 1 (- _ ) 
cili = Ctii = a~ ail - aiJ 

il 
i= 1, 2, ... , n (30) 

i= 1, 2, ... ,n. (31) 

The corresponding relative outperformance function (27) comparing any achievement vector 
y = (y1, Y2, ... , Yn) with achievements of o1 is then based on scalar functions 

p1i(Y;) = fi; _ ii;t = 1 + (>. - l)yi _ 1 + (>. - l)ail ). 
ii.il Yi 1 + (>. - l)ait 1 + (>. - l)yi 

(32) 
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Proposition 3. For any alternative (achievement vector aJ) the corresponding partia/ relative out­
performance functions (32) are concave and strictly increasing with respect to each achievement 
y; whenever /3(·) is defined by (24) with A> 1. 

Proof. Calculating the derivative of function Pji (y;) we obtain 

P' ( ) (.X - 1)(1 + (.X -1)%) A - 1 
J• y, (1 + (.X - l)y;)2 + 1 + (.X - 1)%' 

i= 1, 2, ... ,n. 

If .X > 1, then P};(Y;) > O for all O < y; < 1. 
Further, calculating the second derivative we get 

P'.'.( ·) = -2(.X - 1) 2 (1 + (.X - l)a;j) 
J• y, (l + (.X- l)y;) 3 , i= 1,2, ... ,n. 

If A > 1, then P}; (y;) :c,; O for all O < y, < 1, thus guaranteeing the concavity properties. • 

Corollary 2. For any alternative (achievement vector aJ) the corresponding relative outperfor­
mance Junction Pj with partia! functions (32) is concave and strictly increasing with respect to 
each achievement y, whenever /3(·) is defined by (24) with A> 1. 

Note that by choosing a (very) large value of A for (3(-) defined by (24) the values of the 
achievements rescaled by (29) can be made very close to the original achievements, and the POA 
aggregation will be driven by improving the worst achievements' values. This is, in a sense, con­
sistent with the Rawlsian approach (improve the weakest) which is a methodological justification 
for using the max-min scalarizing functions in the reference point approaches. 

4. 3. Illustration of PDA properties 

In this section we illustrate some properties of Pj(y) using a sample problem with two criteria 
and nine alternatives. We focus our discussion on two pairs ofalternatives (os, os) and (03, 07) 

with achievement va lues as shown in Table 2. The criteria va lues are normalized: values of O and I 
correspond to the worst and best values of the corresponding criterion, respectively. Moreover, 
criteria are assumed to have equal relative importance. 

06 Os 03 07 os - os 03 - 07 

a1 0.80 1.00 0.20 0.40 -0.20 -0.20 
a2 O.OS 0.00 0.75 0.70 O.OS O.OS 

Table 2: Values ofachievements a, and a 2 for alternatives 0 6 , 0 8 , o3 , o7 , and their differences for pairs (oo, os) and 
(03, 07). 

Although these four alternatives differ substantially, they were defined in such a way that the 
pairs (06, os) and (o3 , o7 ) have the same differences in achievement values for criterion I and 
criterion 2, respectively. We focus on two pairs of comparisons, namely ( 0 6 , os) and ( o3 , o7 ). We 
observe that both alternatives of the pair (06, os) perform very well with respect to criterion 1, and 
very poorly for criterion 2; while alternatives (03, 01) perform moderately on criterion I (20% to 
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40% of the best value, respectively) but quite well on criterion 2 (75% to 70% of the best value, 
respectively). For both pairs, the trade-off (in terms of the difference between the achievement 
values) between the two corresponding alternatives is the same: 20% of improvement/worsening 
of achievement a 1 for 5% of worsening/improvement of achievement a 2 . Thus, any method that 
does not take into account inter-criteria relations6 will result in either 0 6 >- 0 8 and o3 >- o7 , or 
DG -< os and 03 -< 07. 

(a) Function PG(Y) , ,13(x) = 10-• (b) Function P3(y), f3(x) = 10-x 

(c) Function P6 (y), ,13(x) = e-• (d) Function P3(y), f3(x) = e-x 

Figure 2: lsolinecontours offunctions PG(Y) and P3(y); ,13(x) =>.-•,for >. equal to IO and e, respectively. 

6 Such methods use separable component achievement scalarizing functions, i.e., functions built for each criterion 
separately. 
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All alternatives are shown in Figure 2 as points marked with the corresponding numbers I 
through 9. The coordinates of the points correspond to the achievement values (achievement a 1 is 
shown on the horizontal axis). It is easy to see that all alternatives except o2 are Pareto optimal. 
Figures 2(a) through 2(d) provide isoline contours for different functions Pi(-); namely, frorn the 
perspective of 06 (A(y) in Fig. 2(a) and 2(c)), and of o3 (A(y) in Fig. 2(b) and 2(d)), respectively. 
These two pairs offigures differ by the applied function f3(·). The values offunctions A(·) and 
A(·) are in the ranges : P6 (y) : [-1.021, 0.993], and [-1.258, 1.412], for,\ equal to 10 and e, 
respectively. P3(y) : [-1.21, 0.654] and [-1.469, 1.161], for,\ equal to 10 and e, respectively. 
The contour lines are displayed for the values that differ by 0.05, and increase in the upward and 
right-hand directions . In other words, the outperformance relation can easily be seen by comparing 
the isolines corresponding to the respective alternatives. 

Let us first consider alternatives a6 and a8 . The ratio of improving (between alternative 6 and 8) 
the value of achievement a1 (0.8 and I, respectively) to compromising the value of achievement a.2 

(0.05 and O, respectively) is equal to 4. For both alternatives, a1 performs quite well while a2 
performs very poorly. In other words, a preference of a8 over a6 (a6 -< a8) means that a large 
improvement in the already well performing criterion is preferred over a small improvement of 
the very poor achievement. Conversely, a preference for improving the poor achievernent irnplies 
0 6 >-- 0 8 . Such preferences are represented by different values of the ,\ param eter of the {3( ·) 
function that scales the achievements' differences in the relative outperformance function (27). 
To show the difference in the scaling effects caused by different values of>., let us consider the 
isoline contours offunction A(y) for f3(x) = 10-x and for f3(x) = e-x shown in Fig. 2(a) and 
Fig. 2(c), respectively. From the isoline contours around alternatives 6 and 8 it can be seen that 0 6 

is preferred over 0 8 for,\ = 10, and 0 8 is preferred over 06 for,\ = e. From the analytical point 
of view, to prefer the small improvement of the very weakly performing criterion 2 over the much 
larger improvement of the very well performing achievement a 1, the sum of the two functions f3(·) 
in (27) for achievement a 2 needs to be mare than four times larger than for achievernent a1. By 
easy calculations it can be shown that this is the case for,\ 2: 5, and 06 >-- os, while ,\ '.':: 4.9 results 

in 06 -< os. 
The pair of alternatives { a3 , a 7 } illustrates another situation; namely, that the moderately per­

forming criterion I is improved much mare than the clearly better performing criterion 2. In 
such situations (under the assumption of the equal relative importance of both criteria) a typ i cal 
preference is that o7 >-- o3. Figures 2(b) and 2(d) show isoline contours of functions A(y) for 
f3(·) = 10-x, and /3(·) = e-x, respectively. It is easy to see that in both cases o7 >-- o3 . This shows 
the desired properties of the POA: achievement a1 is clearly weaker than achievement a2 for these 
two alternatives; therefore a larger (relative to compromising a2) improvement of a1 is preferred 
(let us recall that the relative importance of criteria is assumed to be equal). 

The examples presented illustrate the useful property of the developed pairwise outperformance 
aggregation; namely, that it includes an effective mechanism for controlling the trade-offs be­
tween improvements and compromising the criteria values by taking into account the correspond­
ing achievements. This is achieved by a rather simple interna] scaling through the parameterized 
function f3(·), where parameter ,\ has an intuitive interpretation that corresponds well to the prac­
tice of pairwise comparison. For problems with a large number of alternatives or criteria, methods 
based on pairwise comparison done directly by users are impracticable, but the POA approach is 
effective independently of the number of alternatives and criteria. 
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5. Ordered Pairwise Outperformance Aggregation (OPOA) 

5.1. Background and basicfeatures 

Standard multiple criteria optimization problems with a generał preference structure essentia!ly 
assume the criteria to be incomparable (i.e., there exists no way for their comparison). Neverthe­
less , in our approach, as in many typical multiple criteria optimization methods, the individual 
achievement functions are built to measure the actual achievement of each outcome (a criterion 
value) with respect to the corresponding preference parameters. Thus, all the outcomes are trans­
formed into a uniform scale of individual achievements within intervals [O, l]. This enables com­
parison of the achievements of criteria with a possibly large ranges of values. 

In the case of equally important attributes, the outperformance aggregation can easily be ap­
plied to the ordered achievement values, thus guaranteeing comparison of the worst results, the 
second-worst, etc. This can be formalized as follows. First, we introduce the ordering map 
8: R"--+ Rn such that 8(y) = (01(Y), 02(Y) , ... , 0n(Y)), where 01(Y) '.5: 02(Y) '.5: · · · '.5: 0n(Y) 
and there exists a permutation T of set I such that 0i(Y) = Yr(i) for i E I . N ext, we define the 
single criterion outperfonnance components in a similar way as in Section 4.1: 

k = 1, 2, ... ,n. (33) 

In particular the role offunction /3(·) is the same as discussed in Section 4.1; namely, to amplify 
the influence of improving weak achievements, and to lessen the impact of improving al ready good 
achievements. 

The ordered pairwise outperformance relation is based on the aggregated quantities: 

(34) 

In the ordered outperformance aggregation (34) only distribution of the values of achievements 
is evaluated, and the resulting preference model is impartial in the sense of (7). When two al­
ternatives Oj and o1 result in different achievement vectors ai and a 1 that are built of identically 
distributed achievement values, they lead to a zero value of the ordered outperformance value. In­
deed, for two achievement vectors a i and a 1 which differ only in terms of the order of individual 
achievement values, one obtains 8( ai) = 8( a 1), and thereby odi1 = od1i = O. For instance, 
having a i = (0.1, 0.2 , 0.3) and a 1 = (0.3, 0.1 , 0.2) we get unordered outperformance measure 
dit = 2/3(-0.2) - (3 (-0 .3) - /3(-0.3) which is negative due to convexity of /3, white obviously 
for the ordered measure odj1 = odti = O. 

The ordered outperformance aggregation (34) is built for equally important achievements. Im­
portance weights of achievements can be introduced into the aggregation following the rule that 
importance weights wi define a repetitio n measure within the distribution (population) of achieve­
ment values, similarly to [28, 31]. The outperformance components are then calculated within 
specific quantiles ofthis distribution that are small enough to guarantee the constant values of the 
ordered achievements for both alternatives. For instance, !et us consider two symmetric achieve­
ment vectors a 1 = (O, 1) and a2 = (1, O); the ordered outperformance measure (34) for these 
achievements od12 is equal to O. By introducing importance weights w1 = 0.75 and W2 = 0.25, 
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we replace the achievement vector a 1 = (O, 1) by the distribution taking value O with the repe­
tition measure 0.75, and taking value I with the repetition measure 0.25; similarly, a 2 = (1, O) 
is replaced by the distribution taking value I with the repetition measure 0.75, and taking value O 
with the repetition measure 0.25. In this specific case, the distributions may easily be equiva­
Iently interpreted in terms offour dimensional space of equally important achievements (measure 
1/4 each) where the original first achievement has been triplicated, thus a1 = (O, O, O, 1) and 
a2 = (1, 1, 1, O). The ordered outperformance aggregation calculated for subsequent quantiles of 
size 1/ 4 results in: 

od12 0.25(1 + 1)(0 - O)+ 0.25(1 + 0.1)(0 - 1) + 0.25(1 + 0.1)(0 - 1) 

+ 0.25(0.1 + 0.1)(1 - 1) = -0.55. 

Certainly, not all the cases need to be transformed to equally important achievements so that the 
appropriate aggregation value can be calculated. The pairwise analysis may be split into (various 
size) quantile intervals of constant ordered achievements for both alternatives instead of quanti le 
intervals of equal size. For the above straightforward example, this takes the following form: 

od12 = 0.25(1 + 1)(0 - O)+ 0.5(1 + 0.1)(0 - 1) + 0.25(0.1 + 0.1)(1 - 1) = -0.55. 

Independently of the importance weighting patterns, there are actually no more than 2n such quan­
ti le intervals to be analyzed. This approach can also be mathematically formalized as follows [31]. 
First, we introduce the right-continuous cumulative distribution function (cdf) ofachievement val­
ues: 

Fj(d) = L WiÓij(d) (35) 
i=l 

where Óij ( d) = 1, if a;j :<,; d, and Óij = O, otherwise. N ext, we introduce the quanti le function 

F}- 1) as the Ieft-continuous inverse of the cumulative distribution function Fi, i.e., F}-1>(0 
inf {77: Fi(17) 2'. O for O<~:<,; 1. Finally, 

OPOA(oj, 01) = odjl = [ (/J(F}-1l(~)) + /J(F/-1l(~)))(F}-1\0 - F/-1)(0) ~. (36) 

and the symmetry property holds, i.e., 

Note that in the case of equal weights W; = 1/n, for any alternative oj one obtains the corre­
sponding quantile function defined as a stepwise function with the same regular grid ofbreakpoints 

k-1 k 
for--<~:<,;-, 

n n 
k=l,2, ... ,n 

thus allowing us to reduce formula (36) to the unweighted formula (34). However, not in all 
cases the formula (36) can be simplified in this way. Nevertheless, as both F}-1)(~) and F/-1)(0 
are stepwise functions with n breakpoints, the entire integrated function is also stepwise with no 
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more than 2n breakpoints. The ordered outperformance aggregation (36) can therefore simply be 
computed as a sum of 2n terms [9]. 

As with the unordered approach, we introduce the ordered outperformance preference model 
as: 

o; >- 01 <=} od;1 > O and o; ~ 01 ś=} od;t = O. (37) 

The model can be lexicographically enhanced by comparing the unscaled ordered differences when 
the scaled ones lead to equal results. However, for unscaled ordered differences we get: 

Hen ce, the comparison of the unscaled ordered differences is equivalent to the comparison of the 
average achievements, and the enhanced preference model can be formalized as follows: 

Oj >-e Ot ś=} od;t > O or (ond;t = O and t w;(a;; - a;1) > O) 
(38) 

Oj rve Dl ś=} od;t = O and Lw;(U;j-ail) = O. 
i=l 

5. 2. Properties 

The ordered outperfonnance aggregation (36) retains the property that only a distribution of the 
achievements' values is evaluated. In the presence of importance weights, the impartiality prop­
erty (7) means that two alternatives are indifferent, ifthey lead to the same cumulative distribution 
function of achievements: 

Fa,= Fall => a' rv a". (39) 

When two alternatives Oj and o1, both built of identically distributed achievement values taking 
into account the importance weights w;, result in different achievement vectors ai and a 1, then 
they lead to the zero value of the ordered outperformance value. Indeed, two achievement vectors 

aj and a 1 then result in the same cumulative distribution functions Fi and F1• Therefore, F}-1) = 
F;'- 1) and thereby od;1 = odi; = O. 

Moreover, the ordered outperformance aggregation (36) has the properties of monotonicity 
and equitability [ 14, 15]. Note that for the preference model based only on distribution of achieve­
ments (39), the equitability with respect to equally important achievements (14) can also be ex­
pressed through the cumulative distribution functions. The classical results of majorization the­
ory (22] , and the theory of stochastic orders (25] actually provide us with various alternative an­
alytical characterizations of equitability with respect to equally impo1iant achievements (14). In 
particular, whenever a' = a - €W;n e.;, + €W;, e.;u with some o < € :::; ( a;, - a;n) I ( w;, + W;n ), then 

l " F~;-1\0d~ 2 l ' pJ-ll(Od~ (40) 

for all a E (O, l]. where at least one strict inequality holds. The latter is equivalent to the Second 
Stochastic Dominance (SSD) relation (25]. 
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Proposition 4. For any positive and decreasing interna/ scalingfunction /3(·) the OPOA prefer­
ence relation (3 7) is strictly monotonie and equitable. 

Proof. Suppose that ai 2: a1 and ai =I a1• Then F}-1\e) 2: F;{-1\e) for all o < e :::: 1 witl, a 
strict inequality holding for some subinterval ci '.5: e :5: c/'. Hence, the strict monotonicity follows 
simply from the fact that values of function /3(·) are positive. 

To prove the equitability, we need to reformulate the OPOA(oj, o1) aggregation formula (36): 

odjl = [ /3(Fj~1)(e))(Fj~1)(e) - F/-l)(e)) ~ + [ /3(F/-l)(O)(Fj~1)(0 - F/ -i)(e)) de 

( 4 I) 

where 

with et = o and el = L7=1 Wr; (i) for k = 1, 2, ... , n, and symmetrically for F/-1)(e). Hence, 

n ei 
odjl = I)/3(0k(ai)) L k (F}-1)(e)- F/-1\m ~] 

i=l f.k - 1 

n re' + I)/3(0k( al)) lt! k (F}-1)(0 - F/-1\m ~] 
i=l lk-1 

t[f3t [t (F}- 1\0 - F/-1)(m ~l + t[/3i [i (F}-1)(0 - F/ - 1)(el l deJ (42) 

where 

and accordingly defined /31. 
If ai = a1 -EW;ue;, +Ew;,e;" withan EE (O, (al, - aj,,) / (w;, +w;u)] then, dueto (40) , 

for all O < e :5: 1. Note !hat for decreasing function /3( ·) all values /3k and /3k are nonnegative. This 
implies odj1 2: O which proves equitability. • 

For any alternative Oj let us consider a relative ordered outperformance function comparing 
any achievement vector y = (y1 , y2 , . . . , Yn) with the achievement vector ai defined by the alter­
native Oj, and denote: 
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For the POA aggregation we have shown that for our interna! scaling functions /3(·) the corre­
sponding relative outperformance functions Pj(y) are concave. While considering ordered argu-
111ents without importance weighting one obtains the so called Schur-concave functions ( concave 
sy111111etric functions) [15, 22]. If achievements are considered with the importance weights, then 
the corresponding aggregation function may stili fulfill equitability with respect to the equally 
important achievements. We say that function fis equitable if: 

f( a') = f( a") 

f( a - €W;n e;, + €W;, e;n) > f( a) 
ai' -ai" 

for O<€<---. 
-wi,+Wi11 

(44) 

(45) 

The relative ordered outperformance function (43) depends on the application of POA relative 
outperfor111ance functions Pji (y;) defined by (27) to the ordered achievement values (inverse cdf). 
Therefore, as the theory of majorization [22] and stochastic orders [25] take advantage of rational 
weights [30], the monotonicity and concavity propetties of the POA relative importance functions 
lead to monotonicity and equitability of the relative ordered outperformance function (43). 

Proposition 5. For any achievement vector aj the corresponding relative ordered outperformance 
fimctions P1 (43) is equitable and strictly increasing with respect to each achievement y, whenever 
f3(x) = A- , (Eq. (23)) with 1 :SA '.Se or f3(x) = (A - 1)/(1 + (A - l)x) (Eq. (24)) with A> 1. 

6. Transitivity property and Net-Flow approaches 

6.1. Transitivity property of PDA and OPOA 

Unfortunately, neither standard nor enhanced preference models developed for POA and OPOA 
111eet the transitivity requirement. This means that, although alternatives are pairwise comparable, 
there 111ay not exist the best alternative (i.e., the one that (weakly) outperforms all others). This 
situation is also known as the Condorcet paradox (see e.g., [3]), and it can be illustrated by a simple 
exa111ple ofthree alternatives with two attributes. 

Let us consider alternatives o1, o2 and o3 with the corresponding achievement vectors a 1 = 
(0.7255, 0.3110), a2 = (1.0, 0.2285) and a3 = (0.2230, 0.9992), respectively. Using the pair­
wise outperfor111ance aggregation (19) with f3(x) = 10-x we obtain: POA(o1 , o2) = O.Ol, 
POA(o2, o:i) = 0.0101, and POA(o3, o1 ) = O.Ol. Hence, Ot >- 02, 02 >- 03, and 03 >- Ot, 
which contradicts the transitivity. lndeed, alternatives o1, o2 and o3 generate a cycle according to 
the pairwise outperfor111ance aggregation ( 19), in which each alternative outperforms an alternative 
and is outperfor111ed by another alternative. 

The transitivity property is summarized by the following proposition. 

Proposition 6. Any a/ternative Ob selected by the linear search algorithm either weakly outper­
forms all the alternatives Oj (j E J) or belongs to a cycle Ob '.'.: 0j1 '.'.: 012 '.'.: ... '.'.: Oj" t Ob (with 
possible alternative repetitions oj,, = oj,,,) such that for any alternative Oj (j E 1) there exists 
allernative o1, that belongs to the cycle and (weakly) outperforms Oj. 

Proof. lf Ot re111ains the selected alternative after the linear search algorithm then obviously 
o_; f- o1 for any j = 2, 3, ... , m and thereby o1 t Oj for any j E J. Otherwise, the algorith111 
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builds the sequence of subsequent outperforming alternatives o1 = oii --< oh --< ... --< oj,, = ob and 
it identifies the following relations: 

o]l '.'.: 0ii+1, o]l '.'.: 0j,+2,,,, OJ! ~ Oj,-1, 

Oj, ~ Oj,+!, Oj, ~ 0j,+2, ... Oj, '.'.: 0j,-1, 

If Ob does not outperform weakly all the alternatives then an alternative outperforming ob exists. 
If alternative Oj, outperforms Ob then we get cycle ob --< oj, --< 0ji+I --< ... --< ob, lf alternative 
oj,+t outperforms Ob then we get a longer cycle ob --< Oj, --< Oj<+, --< ... --< ob, If an alternative Oj„ 

(k < i) outperforms all alternatives of the cycle then we need to extend the cycle by additional 
cycle oj, --< Oj• --< 0jk+, --< ... --< oj,. If an alternative 0j"+t (k < i) outperforms all alternatives 
of the cycle then we need to extend the cycle with additional cycle Oj, --< 0j,+t :::5 oj,, --< Oj .. , --< 
... --< Oj;, If needed, the cycle can be extended further to get finally a cycle with repetitions, such 
that for any alternative Oj (j E J) there exists alternative oi' belonging to the cycle, and (weakly) 
outperforming Oj, • 

Generally, for large problems it is difficult to either prove or disprove the transitivity property 
for pairwise outperformance methods (both POA and OPOA approaches). Indeed, for some meth­
ods, rather extensive tests (see Section 7) were needed to detect the Condorcet paradox. The use 
of these methods is thus risky because either dominated alternatives may be returned as Pareto­
efficient or the algorithm may loop infinitely. On the other hand, the pairwise comparison methods 
are attractive because of their convincing background. Fortunately, it is possible to exploit the 
advantages of the pairwise outperformance method by applying the approach outlined below. 

6.2. Net-Flow enhancement 

The pairwise outperformance relations are built as the corresponding valued preference rela­
tions. To guarantee existence of the best alternative, one may thus use the standard way of obtaining 
a ranking method associated with valued preference relations, the so-called Net Flow Method. The 
Net Flow method is the only ranking method that is neutral, strongly monotonie, and independent 
of circuits (2]. 

For each alternative Oj we define the aggregate outperformance measure ds: 

where, depending on the method 

dsj = 0.5 L(djt - d1j) 
1eJ 

either djt = POA(oj, 01) or djt = OPOA(oj, 01). 

(46) 

Note that due to the symmetry property of PO A(-) defined by (I 9) and of O PO A(-) defined by 
(36), dsj defined by (46) can be redefined as: 

ds;= Ldjt = - Ld1j• (47) 
IEJ IEJ 

24 



Measure (47) assigns a real number to each alternative; it can thus be treated as a scalarizing 
(value) function for use in generating a complete ranking. Indeed, the preference model based on 
comparison of the measure values 

and (48) 

is complete and transitive, thus allowing the best alternative to be identified. In particular, for the 
three alternative cycle defined in Section 6. I we get ds1 = 0.02 - 0.02 = O, ds2 = -0.02 + 
0.0202 + 0.0002 and ds3 = 0.02 - 0.0202 = -0.0002 and the finał ranking 02 >-n 01 >-n 03 with 
o2 as the best alternative. Use of the linear search algorithm with relation >-n allows us always to 
identify the best alternative Ob such that Ob t:n OJ for all j E J. 

Following ( 4 7), the value function defining the Net-Flow ordering can be expressed as the 
following function of achievement vectors: 

v(y) = LPJ(Y), (49) 
JEJ 

where Pi are the corresponding relative outperformance functions defined according to the POA 
or OPOA methods. Hence, the following statements are valid. 

Proposition 7. Jf all outperformance fimctions Pi are strictly monotonie, then the Net-Flow va/ue 
fimction ( 49) is strictly monotonie and the best so/ution se/ected according to the net flow ranking 
t:n is Pareto-optima/. 

Proposition 8. Jf all outperformance functions PJ are concave, then the Net-Flow va/ue jimc­
tion (49) is concave. 

Proposition 9. {fal/ outperformancejimctions PJ are equitab/e in the sense o/(44)-(45), then the 
Net-Flow va/ue Junction (49) is a/so equitab/e. 

In the case of the POA methods, it leads us to the separable value functions 

v(y) = LW;LPJi(y;) (50) 
i=! JEJ 

defined as a combination of partia I outperformance functions PJi· 

Corollary 3. The Net-Flow enhancement of the PDA aggregation (19) is concave and strict/y 
increasing with respect to each achievement y; whenever f3(x) = >,-x (Eq. (23)) with 1 :::; >- :::; e 
or /3(x) = (>- - 1)/(1 + (>- - l)x) (Eq. (24)) with), > 1. 

Note that the value function (50) for Net-Flow refined POA methods cannot, in generał, be 
considered as the weighted utility function (15) because functions 

u;(y;) = LPJ;(y;) 
JEJ 
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may differ due to possibly different sets of values a;1, .. . , a;m for various i. Therefore, despite 
the concave value function , such methods do not guarantee that the finał ordering is equitable with 
respect to equally important achievements (14) . The latter property is satisfied for the Net-Flow 
enhancement of the OPOA aggregation as the corresponding value function is equitable in the 
sense of(44)-(45), thus leading to the preference model which is equitable with respect to equally 
important achievements (14). 

Corollary 4. The Net-Flow enhancement of the OPOA aggregation (36) is equitable with re1,pect 
to equally important achievements (14) and strictly increasing with respect to each achievement y; 
whenever f3 (x) = >.-x (Eq. (23)) with 1 ::o >. ::o e or (3(x) = (>. - 1)/ (1 + (>. - l )x) (Eq. (24)) 
with >. > 1. 

7. Case studies: experience and results 

7.1. Classification of the methods 

The new methods described above have been developed and modified successively on the bas is 
of analysis of their features and performance of earli er developed and/or modified methods. The 
methods have been implemented as the Web-based application called MCA,7 using the client­
server architecture (19) . We summarize here experience with the described methods to illustrate 
some of the methodological issues discussed above and to provide a justification of the methods 
selected for the public version of the MCA tool. 

A key feature of each method is the mapping of the preferences (specified as relative impor­
tance of each criterion)8 into the corresponding outperformance measure . We discuss here six 
different outperformance measures reflected by the corresponding method acronym: POA, POA­
E, POA-Inv, OPOA, OPOA-E, and OPOA-Inv. Note that the first three methods are described in 
Section 4 and the next three in Section 5. 
• POA uses the pairwise outperformance aggregation defined by (19) with /3 ( ·) defined by (23) for 

>. = 10. Thus alternative Oj dominates o1, if 

I:; w;(lO-a,; + 10- "")(a;j - ail) > O. 
i=l 

The safeguard defined by (22) is implemented in all POA methods to deal with the unlikely cases 
in which the above expression is equal to O. 

• POA-E differs from POA only by the value of>. = e. Thus alternative OJ dominates 01, if 

n 

I:;w;(e-a;; +e-"")(a;J -ail ) > O. 
i=l 

7The application is available free of charge for research and educational purposes at http ://www . i i asa ac. 
a t/ ~marek. 

8Relative criteria importance was the only preference information users submitted. This approach fits the reąuire­
ment analysis for the methods described, which needed a sim ple way of specifying user preferences; the reasons are 
explained i n Section 2. 
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• POA-lnv uses the pairwise outperformance aggregation defined by (19) with ,B(·) defined by (24) 
for A = 10. Thus alternative Oj dominates o1, if 

,2---. wi + (A - l)a;i _ 1 + (A - l)ail) > O. 
i:i' 1 + (A - l)ail 1 + (A - l)OiJ 

• OPOA, OPOA-E, OPOA-INV differ from the corresponding POA, POA-E, POA-INV method by 
the appl ied outperformance method; instead of the pairwise outperformance aggregation defined 
by ( 19) they use the ordered pairwise outperformance aggregation (36). 

There are two types of similarities between these methods: 
• The first three methods (POA, POA-E, POA-Inv) use linear aggregations, while the other three 

(OPOA, OPOA-E, OPOA-lnv) use quanti le aggregations. We will refer to these subsets of meth­
ods as LA (Linear Aggregation) and QA (Quanti le Aggregation), respectively. 

• Pairs of methods (POA, OPOA), (POA-E, OPOA-E), and (POA-Inv, OPOA-lnv) have the same 
representation of key elements of the corresponding outperformance measure. 

All six methods enumerated belong to the group of Loca/ (pairwise) methods where the scalar­
izing function uses only comparisons of pairs of alternatives. We have also built and analyzed 
the Global (Net-Flow enhanced) methods with the scalarizing function based on the Net-Flow ap­
proach (see Section 6). We thus consider POA-NF, POA-E-NF, POA-Inv-NF, OPOA-NF, OPOA­
E-NF, OPOA-lnv-NF methods to be the Net-Flow enhancements of the corresponding loca! meth­
ods defined above (i.e., having acronyms without the -NF suffix). 

7. 2. Problems usedfor exploring thefeatures of the methods 

The features of the methods developed have been studied using the following five real-world 
problems ofmulticriteria analysis. The details ofthese problems are summarized in Table 3.9 

eh de fr it robot 
Number of criteria 61 61 61 61 5 
Number of alternatives 19 25 26 21 184 
Number of unique preferences 235 96 179 60 32 

Table 3: Summary of test problems. 

Four problems are based on the analysis of the future energy technologies developed by the 
EU funded NEEDS project 10 for each of the four countries which in the follow-up discussion are 
denoted by the corresponding Internet code: eh - Switzerland, de - Germany, fr - France, it -
ltaly. Each of these problems has about 20 alternatives and 61 criteria organized in hierarchical 
structures. Over 3,000 stakeholders from severa! countries were invited to make an individual 
analysis using the Web-based application. In the end, 348 stakeholders initialized the analysis, and 
162 actual ly completed it. Of all preferences specified by these 162 stakeholders, 570 were unique; 

9The problems are documented (and available for further testing and use) through the dedicated application called 
MCA-NEEDS which is linked to http : //www . ii asa . ac. a t;~marek. 

'"Details are available at: http: //www. needs-proj ect. org/. 
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these preferences were extracted from the database, and used (with the corresponding problem) to 
explore the properties of all the methods described. 

The number of stakeholders who completed the analysis compared with those who initialized 
it shows that the specifying preferences for 6 I criteria was a challenging task, even for the im­
plemented (simplest) way of doing the specification. This observation illustrates an open method­
ological issue with respect to public participation in decisionmaking that involves analysis of a 
complex problem; namely, the complexity of the underlying analysis that on one hand should be 
understood by the participants, and on the other hand should cover all the important aspects. In the 
NEEDS project, the set of 61 criteria was decided du ring a fairly comprehensive research process, 
in which each of the criteria (and their hierarchy) was first discussed in detail with specialists in 
the corresponding domain. The results ofthese discussions were then discussed with specialists in 
the other two domains. Moreover, for each attribute (i.e., the lowest-level criteria) a methodology 
for evaluating its value was also carefully researched, and corresponding studies were organized. 
The set of criteria, and the values of the attributes were therefore very well justified. lt is, how­
ever, an open question whether a stakeholder analysis of a simpler problem (i.e., one defining a 
smaller number of criteria, and having less complex criteria hierarchy, or even no hierarchical 
structure at all) would provide more meaningful results, in the sense, that stakeholders would be 
more comfortable with specifying preferences for a small number of criteria. 

The Robot acronym is used for the path-design problem for remote control of a partly au­
tonomous space robot, see [I I]. This is quite a complex engineering problem for which a large 
number of instances have been generated ( each instance corresponding to a specific area of the as­
teroid to which the robot 11 was sent) . The instance ofthis problem which was selected to compare 
the MCA methods developed has a different characteristic from the four future energy technolo­
gies problems, namely it has 183 alternatives and only five criteria. The multiple-criteria analysis 
ofthis instance was clone by the researcher, who for the path-design problem specified 32 uniąue 
preferences during the corresponding analysis. 

The approach outlined above provided large and diversified set of data for exploring the features 
of the methods developed. The data is composed of actual preferences of stakeholders having 
different backgrounds and preferences. The numbers of the unique preferences specified for each 
problem are presented in Table 3. Note that such an extensive sample of actual preferences is both 
very valuable and quite rarely available. 

7.3. Transitivity propertiesfor the designed methods 

A common feature of the methods described here is the automated pairwise outperformance 
approach. Pairwise comparison had to be automated because of the number of alternatives involved 
which makes human pairwise comparison impractical. A natural requirement for such a procedure 
is to assure the transitivity of preferences (see Section 6), a Jack of which is known as the Condorcet 
paradox (see e.g., [3]). 

In Table 4 we summarize for each method and each of the problems the percentage of prefer­
ences for which the Condorcet paradox occurred. For each problem we provide two numbers: 
• All which denotes all occurrences during the process of determining the ranking of alternatives. 

The ranking was based on an iterative procedure, in which the chosen Pareto alternative was 

11 The robot has the form of cube of I 0cm size; il is a 'Jumping" robot, thus difficult to control. 
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eh de fr it robot 
method All Par. All Par. All Par. All Par. All Par. 

% % % % % % % % % % 
POA 27.7 18.3 50.0 31.3 46.4 22.9 35.0 23.3 100.0 75.0 
POA-E 2.1 1.3 6.3 2.1 4.5 2.8 3.3 O.O 56.3 28.1 
POA-lnv 71.9 50.2 93.8 76.0 85.5 63.1 76.7 63.3 100.0 84.4 
OPOA 1.7 0.4 3.1 1.0 4.5 1.7 O.O O.O 90.6 43.8 
OPOA-E O.O O.O O.O O.O o.o O.O O.O O.O 25.0 9.4 
OPOA-lnv 7.2 3.8 13.5 8.3 23 .5 9.5 3.3 1.7 100.0 62.5 

Table 4: Sum mary of experiments related to the Condorcet paradox. 

removed from the set ofalternatives, and the next best Pareto solutions (for the same preferences) 
were found from sets of the remaining alternatives. 

• Par. which denotes the occurrences while the first Pareto alternative was searched for. 
The results collected during the ranking procedure can be considered as generation of a large 

number of subproblems (over 1 O times larger than the original problem) derived from each of 
original problems. However, we did not use these results for the comparison of methods because 
the preferences were specified by the users only for the full sets of alternatives. In Table 4 we do 
not report the methods belonging to the NF subset as they conform to the transitivity reąuirement 
by construction, and therefore the Condorcet paradox does not occur when they are used. 

lt is worth noting that is not easy to detect the Condorcet paradox for methods that do not 
conform to the transitivity reąuirement. In particular for the OPOA-E the transitivity problem was 
not detected for any of the 570 preferences (which is eąuivalent to the analysis of about 6,000 
combinations of problems and preferences) of the four energy problems. 

In our opinion the transitivity property is a necessary condition for any method being rec­
ommended for widescale use. The transitivity property obviously cannot be proven for the six 
methods belonging to the subset called Loca/. These methods have thus been shown for campari­
son with other approaches although the net-flow methods are preferred from the point of view of 
applications. 

7.4. Pairwise comparisons of methods 

For the reasons explained in Section 7.3, for actual use we recommend only the six methods thai 
form the subset called NF. However, we found it interesting to explore the similarities (understood 
as the correspondence between the specified preferences and the resulting Pareto solution) between 
each of these methods with the corresponding method from the subset Loca/ to provide indications 
of how often the results (for each of the considered 602 preferences) differ depending on which 
method from each of these pairs is used. The results of these comparisons are summarized in 
Table 5. lt is interesting to note that the corresponding pairs of the methods are fairly likely (on 
average in mare than 90% of cases) to provide the same Pareto alternative. Thus replacing a 
Loca/ outperformance rneasure by its corresponding NF scalarizing function does not change the 
characteristics of the method. 
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Loca! method Global method eh de fr it robot Average 
POA POA-NF 93.2 93.8 93.3 81.7 87.5 91.9 
POA-E POA-E-NF 87.7 83.3 81.6 95.0 68.8 84.9 
POA-Inv POA-Inv-NF 91.5 89.6 86.6 93.3 84.4 89.5 
OPOA OPOA-NF 95.3 93 .8 93.3 93.3 87.5 93.9 
OPOA-E OPOA-E-NF 99.6 100.0 98.9 93.3 96.9 98.7 
OPOA-Inv OPOA-Inv-NF 94.9 96.9 91.1 93.3 93.8 93.9 

Table 5: Consistency of global (Net-Flow) methods with their loca! origins. The numbers are percentages of 602 
computations, for which the corresponding pair of the methods returned the same Pareto solution. 

There is no elear recommendation for a choi ce of any of these six methods. U sers with analyt­
ical skills may have personal preferences based on the methodological background of a partie u lar 
method. However, from the point of view of mapping the preferences (specified as relative im­
portance of criteria) into the selected Pareto solutions, most of the methods are similar (i.e., most 
providing the same Pareto solution for a given preferences). To justify this statement we summa­
rize in Table 6 the results of 30 pairwise comparisons of the six net-flow-based methods with the 
corresponding Loca/ method, each run for 602 unique preferences specified for the five problems 
used for analysis of the properties of the methods. lt can be observed that two pairs of methods, 
namely (POA-NF, POA-E-NF) and (OPOA-NF and OPOA-Inv-NF), provide the same Pareto so­
lution for a given preferences in 99 .5% and 97 .8% of preferences, respectively. On the other hand, 
the pair (POA-Inv-NF, OPOA-E-NF) has the smallest (72.6%) similarity. 

POA-E-NF POA-Inv-NF OPOA-NF OPOA-E-NF OPOA-lnv-NF 
POA-NF 99.5 86.7 91.0 83.2 91.0 
POA-E-NF 86.7 91.0 83.2 91.0 
POA-Inv-NF 79.2 72.6 79.9 
OPOA-NF 87.4 97.8 
OPOA-E-NF 86.5 

Table 6: Comparison of the Net-Flow methods: average solution consistency. 

The methods have also been used for two large-scale analyses of energy scenarios; due to 
the space constraint we only summarize the research scope, and do not provide analysis of the 
corresponding results. The first was the integrated approach to energy sustainability based on 
multiple-criteria analysis of severa! thousands of energy-climate scenarios developed using the 
Message, an integrated assessment model. The analysis [23] showed synergies of possible energy 
portfolios and climate change policy providing potentially enormous costs savings: up to 600 
billion US$ annually by 2030 in reduced pollution control and energy security expenditures. The 
second is the IIASA Energy Multicriteria Analysis (ENE-MCA) Policy tool [24] 12 which provides 
an interactive analysis of the various synergies and trade-offs involved in attaching priorities to 

12http://www. iiasa. ac. at/web-apps/ene/GeaMCA. 
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four of the main energy sustainability objectives: climate change, energy security, air pollution 
and health, and affordability. Given that policymakers and public often assign different priorities 
to this set ofconflicting objectives, ENE-MCA helps users to explore how alternative world-views 
can lead to qualitatively different energy system futures. 

All rnethods described in the report have also been tested on several other problems, including 
the two problems described in [41], and several small problems (in terms of numbers of both 
criteria and alternatives). All experiments performed show that the methods support ana lysis of all 
Pareto alternatives in an intuitive and easy way (in terms of criteria specification). This is especial ly 
important for problems with a large number of criteria and alternatives. Thus the methods confonn 
to the basie necessary conditions of multicriteria analysis, namely, the requirements for an effective 
analysis of the whole Pareto set. An easy way of specifying preferences has elear advantages 
for users who do not have analytical skills and/or needs. However, analysts may prefer more 
advanced ways for specification ofpreferences, which provide also possibilities ofmore advanced 
explorations of certa in parts of the Pareto set. Severa I such methods have also been developed and 
i111ple111ented in MCA, see [ 18, 19] for details. 

8. Conclusions 

The newly developed methods described in this paper support effective multiple criteria anal­
ysis of problems with many alternatives and many criteria. The specification of preferences is 
carried out in very simple way that is especially suitable for users who have limited analytical 
skills and/or time for the analysis, as well as for applications (like the two energy studies surnma­
rized above) which require precomputations of a Pareto-set representations. Yet the methods and 
the way they have been implemented support an effective analysis of the who le Pareto-set. 

The methods exploit the advantages of approaches based on pairwise comparisons by model­
ing this type of comparison without asking the users to do it, which would be impracticable for 
problems with many alternatives. 

The pairwise comparison methods generally do not possess the transitivity property needed to 
guarantee the uniqueness of the solution. The Net-Flow methods have thus been applied to various 
pairwise comparison techniques to guarantee a unique selection of the alternative corresponding 
best to the preferences specified. Extensive tests using a large and diverse sample of actual user 
preferences have shown that the behavior (in the sense of mapping the preferences into the corre­
spond ing Pareto solution) of the pairs of methods (defined as a given method implemented with 
and without the Net-Flow approach) is rather similar. 

Within our implementation all dominated alternatives are eliminated in the preprocessing phase 
of the solver, thus always guaranteeing efficiency of the best alternative selected according to the 
Net-Flow method. If not eliminated, a method may select a dominated alternative if the corre­
sponding pairwise outperformance relation is not (strictly) monotonie (Proposition 7). Ranking, 
however, involves sequential solver executions; therefore, all alternatives (including those domi­
nated within a larger alternative set) are ranked. 

In the case of unordered pairwise outperformance relations, note that their monotonicity is re­
lated with properties of the /3( •) functions. For some /3( •) functions, their parameter has to conform 
to qui te strong restrictions in order to result in the strict monotonicity of the outperformance rela­
tion , while for other forms of /3(·) there areno such restrictions. On the other hand, the ordered 
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pairwise outperformance relations preserve monotonicity for any positive function {3 (-). Thus the 
properties of the developed methods that have been presented offer quite a lot of flexibility in 
modeling the amplification of differences within particular intervals of achievements. 
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