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1 Introduction
We give a bundle method for the structured convex minimization problem
8, :=inf{8(:) :=c{-)+n()}, (L)

where ¢ ; R" - (—o0,00] and 7 : C — R are closed proper convex functions, and
C:=domo := {u: o(u) < o} is the effective domain of . Such problems may
appear via duality when the primal has a certain structure. For instance, consider the
two equivalent minimization problems

for=inf{ f(Ax) :xe X} =inf{ f(y) : y=Ax,x€ X}, (1.2)

where X C R” and 4 is an m x n matrix. For the Lagrangian L(x,y;u) = f(y) +
(u,Ax — y), minimization over (x,y) € X x R"™ yields (1.1) as a dual problem with

o(u):=f* (1) :=sup, {(u,y) ~ (1)} and m(u) s=sup{(—ATu,x) :x€X}. (1.3)

K.C. Kiwiel
Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland, E-mail:

kiwiel @ibspan. waw.pl



K.C. Kiwiel

We assume that ¢ is “simple” in the sense that minimizing ¢ plus a separable
convex quadratic function is “easy”. On the other hand, 7 is known only via an oracle,
which at any query point u € C delivers an affine minorant of 7 {e.g., (~Ax,") for a
possibly inexact maximizer x in {1.3)).

Our method is an approximate version of the proximal point algorithm [18,21]
which generates a sequence

A = argmin o () + () + 4| -0 fork=12,.., (1.4)

starting from a point 4! € C, where |-| is the Euclidean norm and #, > 0 are step-
sizes. It combines two basic ideas: bundling from the proximal bundle methods {9],
{7, Sect. XV.3] and their extensions {12, 13] to inexact oracles, and alrernating lin-
earization (AL for short) from [11,13, 16]. Here bundling means replacing 7 in (1.4)
by its polyhedral model #, < 7 derived from the past oracle answers. Since the re-
sulting subproblem may still be too difficult, we follow the AL approach in which
a subproblem involving the sum of two functions (here ¢ and #) is replaced by
two subproblems in which the functions are alternately represented by linear models.
Thus, (1.4) is replaced by the two easier subproblems

# = argmin Gy () + () 4 ol -~ (1.5)
w1 = argmin o'(-)+7_rk(-)+71;|4—17"[2A (1.6)

The first subproblem (1.5) employs a linearization 6;_ < & obtained at the previous
iteration. Its solution yields by the usual optimality condition a linearization iy < %
which may a posteriori replace &, in (1.5) without changing its optimal value and
solution, Similarly, the solution of (1.6) provides a linearization 8, < ¢ which may a
posteriori replace o in (1.6).

Qur method coincides with that of [13] in the special case of o being the indicator
function i¢ of C (ic(u) = 0 if u € C, oo otherwise). Then t**! in (1.6) is the projection
onto C of &% — 1,V ; this projection is straightforward if the set C is “simple”. For
more difficult cases, it is crucial to allow for approximate solutions in (1.6). We show
(cf. Sect. 4.2) that such solutions can be obtained by sotving the Fenchel dual of (1.6)
approximately; this is conceptually related to the use of Fenchel’s duality in [7, Prop.
XV.2.4.3 and p. 306].

For dual applications, we restrict our attention to the setup of (1.2)~(1.3) with
f closed proper convex and X compact and convex (since other examples of [16]
could be treated in similar ways). As in [13], even when the dual has no solutions,
our method can still asymptotically find £z-optimal primal solutions, where £ is an
upper bound on the oracle’s errors; in fact only the asymptotic oracle errors matter,
as discussed in [13, Sect. 4.2].

Actually, our theoretical contributions outlined above were motivated by appli-
cations to nonlinear multicommodity flow problems (NMFP for short); more con-
cretely, by the good experimental results of [1], where the analytic center cutting
plane method (ACCPM for short) exploited “nice” second-order properties of o.
This gave tremendous improvements over an earlier version of ACCPM [6] which
used a first-order oracle for . We show that our method can exploit such properties
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as well, obtaining significant speedups with respect to standard bundle on most in-
stances used in [1]. The alternative approach of [17] for adapting standard bundle to
NMFP is promising, but has not been tested on large instances (see Sect. 8.3 for rough
comparisons with our AL). Finally, we note that the ballstep subgradient method of
[14] is quite efficient only for fairly low accuracy requirements.

As for the state-of-the-art in NMFP, we refer the reader to [1] for the develop-
ments subsequent to the review of [19].

The paper is organized as follows. In Sect. 2 we present our method. Its conver-
gence is analyzed in Sect. 3. Useful modifications, including approximate solutions of
(1.6), are given in Sect. 4. Application to the Lagrangian relaxation of (1.2} is studied
in Sect. 5. Specializations to NMFP are given in Sect. 6. Implementation issues are
discussed in Sect. 7. Numerical benchmarks on the instances of [I] and comparisons
with standard bundle and the method of [17] are given in Sect. 8.

2 The alternating linearization bundle method

We first explain our use of approximate objective values in (1.5), (1.6). Our method
generates a sequence of rrial points {u"},‘:":I C C at which the oracle is called. We
assume that for a fixed accuracy folerance €7 > 0, at each u* € C the oracle delivers
an approximate value Y and an approximate subgradient gk of & that produce the
approximate linearization of m:

()= a4 (b, — i) <m() with m(ef) =af > a(ut) - e @.h
Thus 7% € [m(1*) — &g, w(uF)], Whereas g¥ lies in the &x-subdifferential of 7 at &

asx”("k) = {gn (w() 2 ”("k) —&x+ (gm‘ - “k) }

Then 6F := 6¥ + =t is the approximate value of 8 at u*, where of := o' (u*).
At iteration & > 1, the current prox (or stability) center @ := u() € C for some
k({) < k has the value 6 ;= G,f(l) (usually 6f = min§=l 97); note that, by (2.1),
0F € [0(a*) — &, 6(a%)]. 2.2)
It 7r,ff < ﬁk(ﬁk) in (1,6) due to evaluation errors, the predicred descent
v 1= 0f — [o(F ) + T ()] (2.3)
may be nonpositive; hence, if necessary, # is increased and (1.5)-(1.6) are solved
again until v > Jué+ — 8512/2 as in [12,13,15]. A descent step to 15! 1= uk*1 is

taken if
05! < 8f — Ko (24

for a fixed & € (0, 1). Otherwise, a null step a*+! := i occurs; then i and the new
linearization 7, ; are used to produce a better model ) > max{ 7, Ty }.
Specific rules of our method will be discussed after its formal statement below.

Algorithm 2.1
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Step O (/niriation). Select u! € C, a descent parameter x € (0,1), a stepsize bound
tmin > 0 and a stepsize t; > tmin. Call the oracle at u' to obtain 7!:“l and g,lr
of (2.1). Set ity := & by (2.1}, and &o(-) := o (u!) + (p%,- — ') with p% €
do(u'). Seta' :=u!, 8} =0} =0} + ) withg! :==o@), il =0, k:=
k(0) :=1, 7 := 0 (k(I) — 1 will denote the iteration of the /th descent step).

Step 1 (Model selection). Choose #, : R™ — R convex and such that

max{irk_l,ﬂ:k} <H < 2.5

Step 2 (Solving the m—subproblem). Find #**' of (1.5) and the aggregate lineariza-
tion of %
() = MO + (Pl — ) with k= (@ - d ) /- Pkt
(2.6)
Step 3 (Solving the G—subproblem). Find u**! of (1.6) and the aggregate lineariza-
tion of ¢

Gi() = o (@Y + (5, —ut Yy with pk = (@ —dM -k 27)

Compute v; of (2.3), and the aggregate subgradient and linearization error

of 8
Po= (0 =" Y/ and &= v —nlpt (2.8

Step 4 (Stopping criterion). If max{|p*}, &} = 0, stop (8} < 6,).

Step 5 (Noise attenuation). If vy < —g, set 1= 101, if = k and go back to Step 2.

Step 6 (Oracle call). Call the oracle at u**! to obtain xi+! and g&*! of (2.1).

Step 7 (Descent test). If the descent test (2.4) holds with 851 := g(uf+1) 4 i+t
set gF 1 o= k! ghF i gh+1 1 i 0, k(14 1) = k+ 1 and increase { by

6%, and i}t = ¥ (null

1 (descent step); otherwise, set 2+ 1= g, g&+1

step).
Step 8 (Stepsize updating). If k(I) = k+ 1 (i.e., after a descent step), select fir| >
tmin; Otherwise, either set x| := g, or chooS€ fi4 1 € [fmin, f¢] if *l=p.
Step 9 (Loop). Increase k by 1 and go to Step 1.

Several comments on the method are in order. Step 1 may choose the simplest
model &, = max{fy_1,m }. More efficient choices are discussed in [13, Sect. 4.4]
and [15, Sect. 2.3]. For polyhedral models, Step 2 may use the QP methods of [3,8,
10}, which can handle efficiently sequences of subproblems (1.5).

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which
involves the aggregate linearization 8, := &; + 7, and the optimaliry measure

Vi := max{|p*|, &+ (p*,2%)}. 2.9)
Lemma 2.2 (1) The vectors p and p% of (2.6) and (2.7) are in fact subgradients:
Pk e am(EtYy and pk e do(uktly, 2.10)
and the linearizations iy and &, of (2.6) and (2.7) provide the minorizations

<%, 6 <0 and ék:=7_l.'k+0-'k56. (2.11)
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(2) The aggregate subgradient p* of (2.8) and the linearization 8y above satisfy

pr=ph+ph =@ - e, (2.12)
() = Bl )+ (B =Y. (2.13)
(3) The predicted descent vy of (2.3) and the aggregate error & of (2.8) satisfy

=08~ Q) =Pt and g = 0F — B (a). (2.14)

(4) The aggregate linearization By is expressed in terms of p* and g as follows:
O — &+ (ph — ) = & () <6(). (2.15)

(5) The optimality measure Vy of (2.9) satisfies Vi, < max{|p¥|, &} (1 + [&*]) and
0F <B(u)+Vi(t+ul) foraillu. (2.16)
6) Wehavev, > —g & rk|pk|2/2 > —g = vy 2 1l pFH/2. Moreover, vy > g, — € <

€ and

ve > max {14/ 2, [l } if v —¢&, (2.17)
Vi < max{(2vi/n) 2w ) (1+10Y) if v > —g (2.18)
Vi < (282/1)2 (1 + || i w<—g&. (2.19)

Proof (1) Let 9%, ¢% denote the objectives of (1.5), (1.6). By (2.6), the optimality
condition 0 € d¢%(t*+!) for (1.5) with V&r_) = p&~! by Step O and (2.7), i.e.,

0 € JPE(TY) = It (1) + ) 4 (! — ) 1 = A () — pk,
and T (it 1) = 7 (")) yield pt € 9 (#*!) and 7 < &. Similarly, by (2.7),
0.6 agE(H!) = ph+ () 4+ () ) = 0 () - pl
(using V7, = p&) and G (t*t1) = o (u**!) give p¥ € do(s**!) and & < ©. Com-
bining both minorizations, we obtain that 7 + & < i+ 0 < 0 by(2.5)and (1.1).
(2) Use the linearity of 0 := 7 + &, (2.6), (2.'7) and (2.8).
(3) Rewrite (2.3), using the fact that 8(*) = 8, (u*+1) + 1 {p*[? by (2).
(4) We have 8% — g = 8,(2*) by (3), 6, is affine by (2) and minorizes 8 by (1).
(5) Using the Cauchy~Schwarz inequality in the definition (2.9) gives
Vi < max{[p*], &+ 17¥)18° ]} < max{|p*], &} + |p*)12"] < max{|p¥l, e} (1+144).
Since |al|b| + ¢ < max{|a|,c}(1 +|b}) for any scalars @, b,c, in (2.15) we have
—(P* )+ et (0,8 < pFllul+ e+ (0%, %) < max{|p] e+ (o, 8 (14 Jul).
(6) The equivalences follow from the expression of vy = #p*|* + & in (3); in
particular, v; > &. Next, by (2.14), (2.11) and (2.2), we have
-8 = Bi(4) - 6f < O(#*) - 6f < &,

Finally, to obtain the bounds (2.17)~(2.19), use the equivalences together with the
facts that vy > &, —& < €, and the bound on V; from assertion (5). o
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The optimality estimate (2.16) justifies the stopping criterion of Step 4: V, =0
yields 0,4‘ < inf@ = 8,; thus, the point #* is eg-optimal, i.e., 8(1*) < 6, + &5 by (2.2).
If the oracle is exact (x = 0), we have v, > £ > 0 by Lemma 2.2(6), and Step 5 is
redundant. When inexactness is discovered at Step 5 via v; < —¢& and the stepsize 7
is increased, the stepsize indicator i¥ # 0 prevents Step 7 from decreasing f, after null
steps until the next descent step occurs (cf. Step 6). At Step 6, we have u**! € C and
vi > 0 (by (2.17), since max{{p*|, e} > 0 at Step 4), so that 2¥*! € C and 95*! < 6f.

3 Convergence

With Lemma 2.2 replacing [13, Lem. 2.2}, it is easy to check that the convergence
results of {13, Sect. 3] will hold once we prove [13, Lem. 3.2] for our method. To this
end, as usual, we assume that the oracle’s subgradients are locally bounded:

(g%} is bounded if {u*} is bounded. 3.1
Further, as in [13], we assume that the model subgradients pf, in (2.10) satisfy
{p%} is bounded if {«*} is bounded. 3.2

Remark 3.1 Note that (3.1) holds if C = R™ or if 7 can be extended to become finite-
valued on a neighborhood of C, since g% € 9, (1) by (2.1), whereas the mapping
de, 7 is locally bounded on C in both cases [7, Sect. XI.4.1]. As discussed in [13,
Rem. 4.4], typical models 7 satisfy condition (3.2) automatically when (3.1) holds.

A suitable modification of the proof of {13, Lem. 3.2] follows,

Lemma 3.2 Suppose there exists k such that for all k > k, only null steps occur and
Step 5 doesn’t increase ty. Then Vy — 0.
Proof Let ¢¥ and 9% denote the objectives of subproblems (1.5) and (1.6). First,
using partial linearizations of these subproblems, we show that their optimal values
@k (ik+1y < gk (4+1) are nondecreasing and bounded above for k > k.

Fix k > k. By the definitions in (1.5) and (2.6), we have 7 (i#+!) = % (#+!) and

# = argmin{ G5(-) 1= () + Ghmy () + 5|~} (3.3)

from V@E(#+1) = 0. Since ¥ is quadratic and PX(#+!) = ¢%(**!), by Taylor’s
expansion

() = OR(H*) + |- IR, 34

Similarly, by the definitions in (1.6) and (2.7), we have &, (1**!) = o(1tt!),
W = argmin{ B4 () i= Al + &)+ 2]~} 35
Fo() = 05T+ ]~ (3.6)

Next, to bound the objective values of the linearized subproblems (3.3) and (3.5) from
above, we use the minorizations ; < 7 and 6.y, 6 < ¢ of (2.11) for 8 := w40

PR g 1 2 = R < 0(a"), @72
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QAT + oLl — kP = gi(ah) < B(2), (3.75)

where the equalities stem from (3.4) nn_d (3.6). Due to the minorization &_; < g,

the objectives of (3.3) and (1.6) satisfy ¢X < 9. On the other hand, since a**! = at,

teyl S (cf. Step 7), and 7 < Ay by (2.5), the objectives of (3.5) and the next
subproblem (1.5) satisfy g% < ¢k+!, Allogether by (3.4) and (3.6), we see that

¢k(vk+l) __l_luk+l vl(+l}2 ( L+I) < ¢ (uA+l) (3.8a)

PRy 4+ 4 IvA+2 W2 =GR < gRTLR), (3.8b)

In particular, the 1nequalmes PR < @R (k1) < 9+ (3442) imply that the non-

decreasing sequences {¢ﬂ(“k+l)}k2l' and {5 (A+1)} 51, which are bounded above

by (3.7) with 2% = 2* for all k Z_I_c, must have a common limit, say ¢.. < 6({2’;).
Moreover, since 1. S #; for all & > k, we deduce from the bounds (3.7)-(3.8) that
k(ﬁkﬂ) ¢k(u“'H)T¢ sy -0, (3.9)

and the sequences {i#**!} and {i**'} are bounded. Then the sequences {g%} and
(p,,} are bounded by (3.1) and (3.2).

We now show that the approximation error § 1= nf*' — 7, (4¥+1) vanishes. Using
the form (2.1) of m ¢, the minorization M < 7y of (2.5), the Cauchy-Schwarz
inequality, and the optimal values of subproblems (1.5) and (1.6) with i = G for
k >k, we estimate

Bo= ”L+l A (ul+l) =My ](vk+2) T_Fk(llk+l)+ (g:'r+lyuk+1 _uvk+2>

< ”k+l(u _ﬂk(”k+l)+lgk+llluk+l vk+2|
= gt (@) - () + AT+ Ag + gl -, (3.10)
where 4% = Jut+! — @}2/2n, — @2 — dH2/21, and AL = 0f ) — G, (4 2); in fact,

Ak = —(p" #*+2 — 4ty by (2.7). To see that 45 — 0, note that
P42 g g (T b e gy e g2

Step 7. These properties also give 4% — 0, since by (2.7) and the Cauchy-Schwarz
inequality,
88| < [PEIIF*? — 1] with [ph] < Jut ! — aF|/n+ 0k,
where {p,,} is bounded. Hence, using (3.9} and the boundedness of {g%*'} in (3.10)
yields Timy & < 0. On the other hand, & = 85! — 8 (u**+!) from & (u**+!) = of*! in
(2.7), while for k > k the null step condition 6"“ > 8% — kv gives
8= [0 - 0] + [0F — ()] > —rvi+ v = (- k)w 2 0

by (2.14), where k < 1 by Step 0; we conclude that & -+ 0 and v - 0. Finally, since
v = 0, £ >ty (cf. Step 7) and a* = ¥ for k >k wehave V; =0 by (2.18). o

Juk+1 — |2 is bounded, #+2 — uk+! — 0 by (3.9), and fmin < figy < 4 for k > k by

Our principal result on the asymprotic objective value 67 = limy 6“ follows,
Theorem 3.3 (1) We have 9" ,I, 07 < 6., and additionally lim; Vi = 0 if 8, >

(2) 6. <lim, 9(a*) <Timy e( *) < 07+ .
Proof Use the proof of [13, Thm. 3.5], with obvious modifications. [
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4 Modifications
4.1 Looping between subproblems

To obtain a more accurate solution to subproblem (1.4) with 7 replaced by #, we
may cycle between subproblems (1.3) and (1.6), updating their data as if null steps
occured without changing the model 7. Specifically, for a given subproblem accu-
racy threshold X € (0,1), suppose that the following step is inserted after Step 3.

Step 5’ (Subproblem accuracy test). If
() + B (") > 85 - Ry, 4.1

set 8y (-) := G (), p&! .= p and go back to Step 2.

The main aim of this modification is to avoid “unnecessary” null steps. Namely,
if the test (4.1) holds with & < K and the oracle is exact enough to deliver f+! >
% (u*+1), then the descent test (2.4) can’t hold and a null step must occur, which is
bypassed by Step 5.

When the oracle is expensive, the optional use of Step 5 with k € [x,1) gives
room for deciding whether to continue working with the current model % before

calling the oracle.
Convergence for this modification can be analyzed as in {13, Rem. 4.1]. Omitting
details for brevity, here we just observe that for the test (4.1) written as (cf. (2.14))

Byo= Y — m A > (1= v,

the & above may play the role of , in (3.10}.

4.2 Solving the ¢-subproblem approximately

For a given tolerance xy € (0, [ — x), suppose Step 3 is replaced by the following.

Step 3’ (Solving the G—subproblem approximately). Find a linearization &; < & s.t.
PEIPT) < Go (), “2)
o () — G, (") < vy, (4.3)

for ut+! given by (3.5) and vy by (2.14). Set p* and g by (2.8), and p¥, :=
V&y.
Before discussing implementations, we show that Step 3’ does not spoil conver-
gence. In Sect. 2, &, (u¥™!) replaces o(u¥*!) in (2.3), (2.7) and (2.10). In Sect. 3, it
suffices to validate Lemma 3.2.

Lemma 4.1 Lemma 3.2 still holds for Step 3 replaced by Step 3’ above.
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Proof We only sketch how to modify the proof of Lemma 3.2. First, referring to
(3.5) instead of (1.6), replace ¢X by ¢X throughout, and (3.8a) by (4.2). Second, let
AL = G (k) — 8, (#+2) in (3.10). Third, by (4.3), the null step condition yields

Gy 4 Y > 0F — v+ G () — o (T > BF ~ Rwe
for K := k+ ky < 1, and hence
& = 6 (W + it ~ 8 (WM > (1= B 20,
5o that the proof may finish as before. [n]

Step 3' can be implemented by solving the Fenchel dual of (1.6) approximately.
Indeed, using the representation 6(-} = sup,{(z,-) — 6*(z)} in (1.6), consider the
Lagrangian

L(w,2) 1= (5) ~ 0°(2) + B(u) + 5 Ju— 2, @4
and associate with each dual point z € dom ¢* the following guantities:
i(z) :=argmin, L{u,z) = a* —1 (pf,—{—z), 4.5)
G(2) = (z,") — 07 (2), 4.6)
£(z):=o(i(z)) - '(H(ZJ;Z) =0(#(2))+0*(2) - {z.4(z)), @7
v(2) = 8 — [ m(a(2)) + 6{@(2):2)), 48

where ii{z) is the Lagrangian solution (with p& = V), &(-;2) is the linearization of
o, £(z) is its linearization error at ii(z), and v(z) is the predicted descent. Maximizing
L{a(z),z) or minimizing w(z) = —L{#(z},2) leads to the following dual problem:

w, := min { w(z) 1= 6% (@) + $ipE + 2P ~ (5,84 ~ A(ah) ], 4.9
with a unique solution z* giving u* := ii(z") such that u* € 80‘(2'), 2 €do(u*)and
o) +0° (") — (I, u") =0, 4.10)

not suprisingly, «* is the exact solution of (1.6) and z* is the corresponding p% in
(2.7). Note that (4.9) can be restricted to the set D := domdo* := {z: do*(z) # @},
which contains z*.

Now, suppose we have a method for solving (4.9) with the following properties:
(1) It starts from the point z! 1= p&~! € D such that o, (-) = (z!,-) — o* (¢! ) thus,

by (3.3), (3.4) and (4.4)-(4.6), w(z!) = — ¢ (@+1) from w(z )~ —L(u(z ),2h.
(2) It generates points z' € D with w(z’) < w( 1Y such that Z¥ — 2%, 0*(z') = 0*(2*)

and o{i(z')) = o), where @(z') — u* by (4.5).

Then £(z') — 0 by (4.7) and (4.10), whereas w@') = v(z*) by (4.8). Thus, if

v(z*) > 0, we will eventually have £(z) < kwv(z ) Then the method may stop with

WF = 32, veo= w(Z), 6u() i= &(+7) and p¥ =2 to mect the requirements of
Step 3', with (4.2) following from — g% (uf!) = w(z) < wizl) = — ¢k (t*1); see (1)
above and (3.5).

As for the assumptions in (2) above, note that 6*(z') — ¢*(z*} if ¢* is continu-
ous on D := domdc* (e.g., in Sect. 6.3). Similarly, g{i#{z')) = (") holds if o is
continuous on dom @& and #(z') € domdo for large i.
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5 Lagrangian relaxation
‘We now consider the application of our method to (1.2) treated as the primal problem
¢ :=sup {Q(y) = —f(¥)} st ylry)=y-Ar=0,xcX, (51
assuming that f is closed proper convex and the set X # @ is compact and convex. In
view of (1.3) and (2.1), suppose that, at each u* € C, the oracle delivers
ghi= —ar* and m():=(—A¥) forsomex € X. (5.2)
For simplicity, let Step 1 retain only selected past linearizations for its kth model

ﬂk(-):=mz}x7rj(<) with ke, C{1,...,k}. (5.3)
J€0

Then (see (2.10) and [13, Sect. 4.4]) there are convex weights vj"f > 0 such that

(7, ph, 1) = Y vE(my8h,1) with o= {jed:vi> 0}, (5.4)
i€k
and for convergence it suffices to choose Ji O J; U{k+ 1}, Using these weights and
(2.7), we may estimate a solution to (5.1) via the aggregare primal solution (£, $*):

o= ): ijxj and  §* 1= p’f,, 5.5)
JE€

We first derive useful expressions of ¢ (¥*) and w(#,$%).
Lemma 5.1 We have 2 € X, o(5) = 8% — & — (p*,2%) and w(#*,5%) = p~.

Proof First, #* € co{x/} ;.5 C X, () = (—A#*,-) and pj; = —A#* by convexity of
X, (5.2), (5.4) and (5.5). Then p* = 5 — A#* = y(#*,9*) by (2.12), (5.1) and (5.5).
Next, by [20, Thm. 23.5], the inclusion $* := p%, € do(¢**1) of (2.10) with o := f*
in (1.3) yields o (") = (151 9% — F(3*); thus (F%) := — F(9*) = Ge(0) by (5.1)
and (2.7). Since f(0) = 0 in (2.11), (2.15) gives 8,(0) = 8i(0) = 0f — & + (p*, 4%,
as required. ]

In terms of the optimality measure Vj of (2.9), Lemma 5.1 says that
FeX with oF)20f-Vi, (W& M| <Ve (5.6)

We now show that {(*,7*)} has cluster points in the set of &g-optimal solutions of
(5.1)

Zey = { (1) €XxR": 0(3) 2 @1 — £, ¥(x.y) =0}, 7
unless ¢, = —o9, i.e., the primal problem is infeasible. Note that (5.2) with X compact
and (5.4) yield (3.1)-(3.2), as required for Theorem 3.3.

Theorem 5.2 Either 8, = —oo and 9,‘2‘ | oo, in which case the primal problem (5.1)
is infeasible, or 8, > —os, 9: 1607 €[0.— &g, 6.], limg a(*) < 07 + &g and lim, Vy, =
Q. In the larter case, let K C N be a subsequence such that Vi g* 0. Then:
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(1) {(& 7)}eex is bounded and all its cluster poims lie in the set X x R™.

(2) Let (£,5) be a cluster point of the sequence {(¥*,5*) }rex. Then (°,5=) € Zs,.
(3) dz, ((#,5%)) := inf(y ez, | (#.74) ~ ) 2 O.

(@) If &5 =0, then 6f 1 6,, @(7) g ¢ = 6., and y(£5,9%) 2 0.

Proof The first assertion follows from Theorem 3.3 (since 6, = —eo implies primal
infeasibility by weak duality). In the second case, using 9,;' 167> 6i—€randV, 270
in the bounds of (5.6) yields limyc g @(¥*) > 6, — &, and limyeg w(#,7*) = 0.

(1) By (5.6), {#} lies in the compact X, and {J*};c is bounded by (5.1), (5.6).

(2) We have = € X, ¢(™) > 6, - & and y(£~,§~) = 0 by closedness of ¢
and continuity of y. Since 8, > @, by weak duality (cf. (1.1), (1.3), (5.1)), we get
©(5") > @, — & Thus (£, 7°) € Z, by the definition (5.7).

(3) This follows from (1), (2) and the continuity of the distance function dz, .

(4) In the proof of (2), 6. > ¢, > ¢(=) > 6, yields ¢, = ¢(§*) = 6,, and for
K' C K such that * i 5~ we have @(9) > imgegr @ (7) 2 limgex @(F) > 6, i,
o(#*) %? @« So considering convergent subsequences in (1) gives o(5) e O

6 Application to multi dity network flows
6.1 The nonlinear multicommodity fiow problem

Let (A, o) be a directed graph with & := |#| nodes and m := | &/ arcs. Let E €
R¥*™ be its node-arc incidence matrix. There are n commodities to be routed through
the network. For each commodity i there is a required flow r; > O from its source
node o; to its sink node d;. Let s; be the supply N-vector of commodity i, having
components si; = ri, Sig, = —ri, sit = 0 if [ # 0;,d;. Our nonlinear multicommodiry
flow problem: (NMFP for short) is:

m

min f(y) =3 fi()) (6.1a)
j=1
"
stoy=Y x, (6.1b)
i=1
veXi={x:Ex=50<x <%}, i=ln, (6.1c)

where each arc cost function f; is closed proper convex, y is the tosal flow vector, x;
is the flow vecror of commodity /, and ¥; is a fixed positive vector of flow bounds.
Our assumptions seem to be weaker than those used in the literature, We add that
if dom f* C R, then the bounds ¥; are not needed in (6.1c): Even if they are absent,
our algorithm will proceed as if we had &;; = r; for all i and j cf. [14, Sect. 7.2).

6.2 Primal recovery

We may treat problem (6.1) as (5.1) with Ax = I x;, X = [T X;, and the oracle
solving shortest path problems to evaluate m(u*) = — T min{ (1*, x;} : x; € X;} at
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each u*. Thus the results of Sect. 5 hold. Yet, as in [14, Sect. 7.3}, for stopping criteria
it is useful to employ another aggregate solution (£*,5) with #* given by (5.5) and

= Ak = Z,\J‘ (6.2)

=1

which satisfies the constraints of (6.1). Thus f(3*) > f., where the optimal value f,
of (6.1) satisfies — f, = ¢. < 8, by weak duahty Hence, if the oracle is exact, 9[’;‘ > 0.
implies that the method may stop when f(3*) + 6“ < g for a given tolerance £ > 0,
in which case (£%,5*) is an e-solurion of (6.1). Thxs stopping criterion will be met for
some k under conditions similar to those in {14, Prop. 7.1].

Proposition 6.1 Suppose problem (6.1} is feasible and has a unique optimal toral
flow y* (e.g., f is strictly convex on R Ndom f) that satisfies y* € [0,¢) C dom f
for some ¢ € RY. Further, let ex = 0 (i.e., the oracle is exact), and let K C N be a
subsequence .mch that Ve g 0. Then #* 2 ¥, f*) g fo = — 8. and f(*) + 8k 2 O.

Proof By Theorem 5.2(3) and the uniqueness of y*, ¥* z y*. Hence yk y* from
Pk = (55 7 0 (ef. Theorem 5. 2(4)) where “>0by (6.2) with 3 cX
(Lem. 5.1). C0nsequemly, y* €[0,¢) gives 3* € [0,c) for all large k € K. Since each
function f; in (6.1a) is continuous on dom f; O {0,¢;), we have f() g F(»* )_f,
The conclusion follows from Theorem 5.2(4) with 6, = ¢, = — f..

An extension to the case where some arc costs are linear follows.

Proposition 6.2 Let problem (6.1) be feasible. Suppose that the first 11 components
of any optimal total flow y* are unique (e.g., f; are strictly convex on R} Ndom f;
for j < 1) and satisfy y; € [0,¢;) € domf; for some c; > 0, whereas the costs f;
are linear for j > . Further, let &5 = 0 (i.e., the oracle is exact), and let K C N be
a subsequence such that Vi g* 0. Then )‘?j‘ g Yjforj<im, 765 © fo=—0. and
FOR) +6f g O

Proof The proof of Proposition 6.1 gives y%, % g y3 and f3(7%), f;(%) 2 £3(3}) for
7 <, since $* € dom f by (5.6). For j >, f;(y;) = a;y; for some @; € R; thus
0j(uj) = f7(uj) = i(q;(u;). Then u‘“ = &% = a;in (1.6) yields p* = 0in (2.8), so
w;(#%,7%) = 0 by Lemma 5.1; since y" J¢ = y(#,5%), we have 3% = 3 for j > .

Therefore, by (6.1a), £(7*) f(y")+zj<,ﬁ[fj (%) — £;(3%)), where the sum vanishes
as k z* o0, Theorem 5.2(4) with ¢ := — f gives the conclusion. a

6.3 Specific arc costs
For specific arc costs, as in [1, 14], we shall consider Kieinrock's average delays
0 ify; >¢j,

i) = yillei =y ity € [0,¢)), (6.32)
yj/L‘/' ifyj <0,














































