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On the asymptotic accuracy of reduced-order models 

Daniele Casagrande, Wiestaw Krajewski, and Umberto Viaro 

Abstract: Popular model reduction methods can easily be adapted to retain the asymptotic re­
sponse to inputs with rational transform. To this purpose, the forced response of the high-order 
system is decomposed into a transient and a steady-state component. Then, the reduced--0rder 
model is obtained by combining the unaltered steady-state component with an approximation 
of the transient component. Examples show that forcing the reduced-order model to retain the 
steady-state component does not compromise the transient accuracy. 

Keywords: Model reduction, Steady-state response, Transient response, Balanced truncation, 
Hankel norm 

1. INTRODUCTION 

The model reduction problem has received consider­
able attention since the dawn of system and control the­
ory (see [l] [2] [3] [4] for recent surveys) and, in many 
respects, the subject has reached a high level of maturity, 
even if important new impulses to research are still com­
ing from emerging areas [5] [6] [7] and clever ideas [8] [9] 
[10]. In fact, despite the increase of computing capabili­
ties witnessed in recent years, reduced-order models are 
being widely used for both analysis and design purposes; 
suffice it here to recall the control of flexible mechanical 
structures (11], the simulation of integrated circuits [12], 
the study of power grid networks (13] and climate mod­
elling (14]. 

Usually, reduced-order models are obtained by refer­
ring, either explicitly or implicitly, to the minimisation 
of a norm or a semi-norm of the approximation error in 
the response to suitable inputs. For instance, the clas­
sic Pade technique and the so-called moment- matching 
methods set to zero the error transform at specific fre­
quencies (s = 0 in the classic Pade method), which, for 
stable systems, entails zeroing asymptotically the error in 
the response to harmonic input signals at these frequen­
cies (step and, possibly, other canonical inputs in the clas­
sic Pade method). These techniques, however, do not en­
sure stability retention, at least in their original versions. 
On the other hand, popular stability-preserving methods, 
such as balanced truncation (15], Hankel-norm approxi­
mation [16] andl.,i model reduction (1) [22], do not ensure 
the retention of the asymptotic response to any canonical 
input ( except possibly for the step, at the expense of exact 
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optimality, by resorting to singular perturbation approxi­
mation [17) (18]), even if their transient accuracy is usu­
ally very good compared to alternative techniques. More­
over, fairly robust (and easily accessible) algorithms exist 
for their implementation (19) (20] [21] (22] [23], which 
makes them applicable to the reduction of very large-scale 
systems despite their non-negligible numerical complex­
ity (related to the solution of high-dimensional Lyapunov 
equations in the case balanced truncation or the iterative 
solution of interpolation problems in the case of Li ap­
proximation). 

This note suggests a simple way to ensure the retention 
of the asymptotic response to predetermined persistent in­
puts with rational transform. To this purpose, the trans­
form of the related original forced response is decomposed 
into the sum of a system component and an input compo­
nent, according to the terminology in (24) (25) . For sta­
ble systems, the first component accounts for the system's 
transient behaviour, whereas the second accounts for its 
asymptotic behaviour. Then, the approximation procedure 
is applied only to the system component whereas the in­
put component is reproduced exactly. In a sense, a similar 
approach has been followed in [26] [27] [28] (29) for ap­
proximating unstable systems via stable/antistable decom­
position. 

2. DECOMPOSITION OF THE FORCED 
RESPONSE 

The suggested reduction technique is based on the ad­
ditive decomposition of the forced response outlined next. 
Denote the strictly-proper rational transfer function of the 
original system by 

B(s) 
W(s) = A(s)' ( 1) 
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where A(s) and B(s) are coprime polynomials, and the 
proper rational Laplace transform of the input u(t) by 

U() = N(s) 
s D(s)' (2) 

where N(s) and D(s) are also coprime polynomials. 
Throughout, it is further assumed that B(s) and D(s) 

are coprime as well as N(s) and A(s). In this way, no 
cancellation occurs in the expression of the strictly-proper 
Laplace transform of the forced response y 1(t) 

B(s)N(s) 
Y1(s) = W(s) U(s) = A(s)D(s). (3) 

If polynomials A(s) and D(s) at the denominator of (3) 
have common roots, they can be expressed as 

A(s) 

D(s) 
A(s)CA(s), 
D(s)Cv(s) , 

(4) 

(5) 

where CA(s) is a factor containing all the roots of A(s) 
(with their multiplicities) that are also roots of D(s) and 
Cv(s) is a factor containing all the roots of D(s) (with their 
multiplicities) that are also roots of A(s). Denoting the 
product of these two factors by 

C(s) := CA(s)Cv(s), (6) 

the three pairs (A(s),D(s) ), (A(s),C(s)) and (C(s),D(s)) 
are all formed by coprime polynomials, so that Y1(s) can 
be expressed uniquely as the sum of three strictly-proper 
rational functions as: 

Y1(s) = Yw (s) + Yu(s ) + Yc(s), (7) 

where 

Nw(s) Nu(s) Nc(s) 
Yw(s) = A(s) , Yu(s) = D(s) , Yc(s) = C(s) , (8) 

as may easily be proved by resorting to the Bezout identity 
(see, e.g., [30, p. 204]). 

Since the inverse Laplace transform Yw(t) of the first 
addendum on the right-hand side of (7), whose poles are 
those of W(s) not in common with U(s), is a combina­
tion of system modes, it is called system component in 
[24]. Similarly, Yu(t) = LT- 1 [Yu(s)] is a combination of 
the modes of u(t) that are not in common with w(t) and is 
therefore called input component. The poles of the third 
addendum Yc(s) in (7) are those common to W(s) and 
U(s), but their multiplicity is the sum of the multiplici­
ties of the same poles in W(s) and U(s); therefore,yc(t) = 
LT- 1 [Yc(s)] can reasonably be called resonant component. 
A characterisation of these components in terms of the so­
lution of either a homogeneous or a non-homogeneous 
differential equation is provided in [24] together with some 
suggestions on how to extend the definitions to non-rational 
input and system transforms. 

In most cases, A(s) and D(s) have no common factors 
so that the forced-response is given by the sum of the sys­
tem and input components only, i.e.: 

YJ(t) = Yw(t) +Yu(t). (9) 

This simplifying assumption will be made in the sequel 
since the consideration of the more general case would 
entail a substantial increase in notation without a corre­
sponding gain in insight. 

Although the decomposition (9) holds for stable and un­
stable systems, as well as for both persistent and vanish­
ing inputs, it is particularly meaningful for the purpose 
of model reduction when u(t), and thus Yu(t), is persistent 
and w(t), and thus Yw(t), tends asymptotically to zero, i.e., 
the system is BIBO stable. In this case, Yu(t) corresponds 
to the steady-state (or asymptotic) response and Yw(t) to 
the transient response. In the sequel, reference is made to 
such a situation. 

3. REDUCTION PROCEDURE 

According to the previous considerations, it is assumed 
next that: 
(i) the original system is BIBO stable, 
(ii) all of the poles of U(s) are in the closed right half­
plane so that A(s) and D(s) are necessarily coprime and 
all of the modes of u(t) are persistent. 

The suggested reduction procedure consists of the fol­
lowing steps. 

I. Find an approximation 

Y, ( ) = Nw,(s) 
w, s A,(s) (10) 

of the original transient response transform Yw(s) ac­
cording to a suitable reduction criterion (e.g., balance 
truncation, Hankel- norm approximation or Li reduc­
tion). 

2. Form the reduced-order forced response transform 
Y1,(s) as 

where 

Y1,(s)=Yw,(s) + Yu(s) + Ya(s) , (11) 

Ya(s) =Na(s) 
Aa(s) 

(12) 

is an auxiliary strictly-proper stable rational function 
whose task is to guarantee that the successive step ad­
mits a solution. 

3. Determine the strictly-proper reduced-order transfer 
function W,(s ) as 

Y1,(s) B,(s) 
W,(s) = U(s) = A,(s)Aa(s)' (l3) 

where deg[B,(s)] = deg[A,(s)] +deg[Aa(s)] -1. 
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A few considerations are in order. 

Remark 1: The auxiliary term (12) is needed because, 
otherwise, the reduction procedure would not admit a so­
lution, except for the case of impulsive inputs (see Remark 
3 below). 

Remark 2: The poles of Y0 (s) must lie in the open left 
half-plane not to influence the asymptotic response. Also, 
these poles should lie far away from the poles of Yw,(s) not 
to affect appreciably the transient behaviour at the domi­
nant frequencies of the reduced model. 

Remark 3: The order of Y0 (s), i.e., the degree of its 
denominator, depends on the order of the component Yu (s) 
that must be retained and, thus, on the order of the input. 
To clarify this point, consider equation (13) which, in view 
of (10), (11) and (12), leads to the polynomial identity: 

B,(s)N(s) = 

Nw,(s)D(s)Aa(s) +N.(s)A,(s)Aa(s) +Na(s)A,(s)D(s) (14) 

whose degree, given the properness of U(s) and the strict 
properness of Yw,(s), Y.(s) and Y0 (s), is 

N = deg[D(s)] + deg[A,(s)] +deg[A0 (s)] - I. 

It follows that, by equating the coefficients of the equal 
powers of son both sides of (14), a system of N + I equa­
tions is obtained. In order for this system to admit a unique 
solution, an equal number of unknowns must be present. 
Now, if the denominator A0 (s) of Y0 (s) is fixed beforehand 
to ensure that its roots are far away to the left, the only 
unknowns are: (i) the coefficients of B,(s), whose num­
ber is deg[A,(s)] + deg[A0 (s)], and (ii) the coefficients of 
N0 (s), whose number is deg[A0 (s)]. In conclusion, the sys­
tem of equations admits a unique solution only if N + I = 
deg[A,(s)] + 2 deg[A0 (s)], that is, 

deg[D(s)] = deg[A0 (s)]. (15) 

Remark 4: A consequence of Remark 3 is that the 
order of the reduced model W,(s) is greater than the or­
der of the simplified transient term Yw,(s) by an amount 
equal to deg[D(s)] . For steps, ramps and sinusoidal inputs, 
deg[D(s)] :-:; 2 which is usually quite negligible compared 
to the order of the approximating model of a very high­
dimensional system [31]. 

Remark 5: The aforementioned approximation proce­
dure ensures that the reduced--0rder model is strictly proper 
like the original system, whereas the the balanced trun­
cation procedure and its DC-gain-preserving variant, il­
lustrated, e.g., in [18], lead, in general, to exactly-proper 
reduced--0rder models. 

4. EXAMPLES 

To show the performance of the suggested reduction 
technique, two benchmark examples are worked out next 

by assuming that the asymptotic response to be retained is 
the one in the ramp response. In both cases, the reduced­
order transient response to such an input is determined by 
minimising the Hankel norm of the approximation error 
using the Matlab® function [28] hankelmr. Of course, 
other simplification methods could be employed as well. 
The results of the suggested approximation procedure are 
then compared with those afforded by the balanced trun­
cation and Hankel-norm approximation methods applied 
directly to the original system without consideration of the 
asymptotic response to a ramp input. Note, however, that 
the Matlab® function balred adjusts the reduced model 
derived by truncating the original balanced realisation in 
such a way that the steady-state value in the response to a 
step input is retained exactly [28]. This adjustment obvi­
ously entails that the reduced model is no longer a perfect 
truncation of the original balanced realisation. 

4.1. Hospital building 

This example, whose original equations can be found 
in [2] and [31], describes the dynamics of a hospital build­
ing with 8 floors, each having 3 degrees of freedom (hor­
izontal and vertical displacements and rotation). The or­
der of the original model (state-space dimension) is 48 
(twice the number of spacial coordinates). The input u(t) 
is the force acting in the horizontal direction of the first 
floor (state x1 (1)). The output of interest coincides with 
the derivative of the first coordinate (i.e., the 25th state 
x25 (t)). Fig. 1 depicts the original model (OM) response 
to a unit step input as well as the step responses of the 6th­
order models obtained using Hankel-norm approximation 
(HN), balanced truncation (with and without DC gain ad­
justment) (BY and BN, respectively) and the method (AR) 
outlined in Section 3. The last model has been obtained 
from the 4th--0rder approximation of the transient compo­
nent in the ramp response; of course, the approximation 
would be better if a 6th--0rder approximation were used 
for this purpose, but the resulting reduced--0rder transfer 
function would then be of order 8. Figs. 2 and 3 com­
pare, respectively, ramp responses and Bode diagrams. 
Observe that, although the ramp response of the balanced­
truncation model adjusted to retain the DC gain seems to 
coincide asymptotically with the original ramp response, 
it slightly differs from it fort • =. Clearly, the frequency 
responses of the reduced models obtained by minimis­
ing the Hankel norm of the error (HN) and by retaining 
the asymptotic ramp response (AR) are much closer to 
the original one at high frequencies since they are strictly 
proper like the original system. 

4.2. 1006th--0rder system 

A !006th--0rder model has been described in [32) and 
detailed in [31]. Fig. 4 depicts the original model response 
to a ramp input (OM) as well as the ramp responses of 
the 9th-order models obtained according to the Hankel-
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Fig I: Step responses of the models of the hospital build­
ing: OM (bold solid line), BN (dashed line), BY 
(thin solid line), HN (dash-dotted line), and AR 
(bold dotted line). The responses of models OM, 
BY and AR overlap asymptotically. 

norm approximation method (HN), the balanced trunca­
tion method (BY) (modified to match the original DC gain) 
and the method retaining the asymptotic ramp response 
(AR) outlined in Section 3. The last model has been formed 
from the 7th-order approximation of the transient compo­
nent of the ramp response ( of course, better results are ob­
tained if a 9th-order approximation of the transient term 
is used instead). This time, the model resulting from bal­
anced truncation without DC gain adjustment has been ex­
cluded because it leads to much poorer results. Observe 
that, although the ramp response of model BY seems to 
coincide with the original ramp response, it actually ex­
hibits a small asymptotic error equal to 0.074. Fig. 5 
shows the original Bode diagrams together with the Bode 
diagrams of all of the aforementioned 9th-order models. 
Clearly, forcing the retention of the asymptotic response 
(I--+=) to canonical inputs (steps and ramps) leads to a 
better approximation in the low frequency range ( w --+ 0) 
as is the case with the classic Pade approximation. Note, 
finally, that, the magnitude plot of the gain-adjusted model 
BY diverges from the original magnitude plot for w --+ = 
because its transfer function is not strictly proper. 

5. CONCLUSIONS 

It has been shown how model reduction techniques can 
be adapted to reproduce the asymptotic response to inputs 
with rational transform. The suggested procedure is not 
computationally demanding and entails only a small incre­
ment of the reduced model order with respect to the order 
of the approximating transient term. Benchmark examples 
have shown that the responses of the reduced-order mod­
els obtained in this way compare favourably with those 
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Fjg 2: Ramp responses of the models of the hospital build­
ing: OM (bold solid line), BN (dashed line), BY 
(thin solid line), HN (dash-dotted line), and AR 
(bold dotted line). Only the last response tends to 
reproduce exactly the original response. 

afforded by conventional reduction techniques that do not 
take care ab initio of the asymptotic response. 
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