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KYBERNETIKA - MANUSCRIPT PREVIEW 

ROUTH-TYPE L2 MODEL REDUCTION REVISITED 

WIESLAW KRAJEWSKI AND UMBERTO VIARO 

A computationally simple method for generating reduced- order models that minimise the L2 
norm of the approximation error while preserving a number of second-order information indices 
as well as the steady- state value of the step response, is presented. The method exploits the 
energy- conservation property peculiar to the Routh reduction method and the interpolation 
property of the £2-optimal approximation. Two examples taken from the relevant literature 
show that the suggested techniques may lead to approximations that are not worse than those 
afforded by popular more cumbersome techniques. 
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1. INTRODUCTION 

The model reduction problem has aroused a continual interest in the engineering com­
munity since the dawn of control and system theory [40], [71], its importance being 
evident not only in system simulation and controller synthesis but also in many prob­
lems related to robustness and uncertainty issues. Indeed, despite the dramatic increase 
of computing capabilities that make the need for simplified models less compelling, the 
new challenges facing the control engineer have led to a revival of studies on this topic 
with particular emphasis on optimisation and algorithmic efficiency (see, e.g., [1, 2], [4], 
[7], [11, 12], [14]- [59], [61], [65], [69, 70]). 

Besides the reduction methods based on the conservation of first- order information 
indices ( e.g., coefficients of suitable series expansions), such as the classic Pade technique 
and its numerous variants [8, 9] that are characterised by remarkable computational 
simplicity and ease of implementation, the methods based on second- order information 
indices (e.g., principal components, Hankel singular values, impulse- response energies) 
[16]- [19], [27], [31 , 32], [43], [45], [GO], [63], and on suitable quadratic criteria, such as 
the L2 norm of the error [7], [14], [21]- [24], [29], [33]- [35], [49], [62], [GG]-[68], [70], [72], 
have enjoyed an increasing popularity since the late Seventies and early Eighties, and 
dedicated software has been developed for their implementation. 

The advantages of the aforementioned methods are certainly related to an intuitively 
appealing definition of the reduction criterion and to the possibility of determining 
bounds on some error norms [18]. However, their computational complexity increases 
rapidly with the dimensionality of the original system [20], which has stimulated research 
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on efficient numerical algorithms [30], especially in view of the very high order of certain 
circuits and structures [17], [10]. 

This paper presents a computationally efficient model reduction technique that com­
bines the advantages of the Routh approximation [25], [36] in terms of conservation of 
resolvent- kernel energies [6] with those of the LToptimal rational approximation. Es­
sentially, the reduction algorithm requires: (i) the construction of a Routh table, (ii) 
the solution of an algebraic equation of degree equal to the order of the approximat­
ing model, and (ii) the satisfaction of a set of interpolation conditions (conditions for 
L2 optimality [21], [28], [29], [35]). Moreover, the algorithm can be adapted to ensure 
the desired asymptotic behaviour in the response to step inputs, a characteristic tha.t 
is not exhibited by most popular reduction techniques such a.s Hankel- and L2- norm 
a.pproxima.tions a.nd pure balanced truncation. 

Among the numerous choices for generating stable reduced- order transfer functions, 
it seems reasonable to form their denominators in such a wa.y that the approximating 
models share some essential characteristics with the original system. The choice made in 
this paper is to generate these denominators by means of Routh's algorithm because it 
leads to the conservation of some resolvent kernel energies which play a fundamental role 
in the determination of a.II forced responses, as shown in the next sections. Examples 
do not defy expectations. 

The rest of this paper is organised as follows. Section 2 recalls the basic recursion of 
the Routh algorithm and the energy- conservation property of the Routh approximation, 
while Section 3 recalls the interpolation conditions that are satisfied by the L2- optimal 
reduced models. Section 4 presents the suggested reduction algorithm a.nd discusses its 
computational complexity. Section 5 shows the results of the application of the algorithm 
to a pair of examples ta.ken from the literature on model reduction. 

2. ROUTH'S ALGORITHM AND ITS USE 

This section briefly illustrates the properties of the Routh algorithm that are relevant to 
Lhe reduc:Lion procedure described in Section 4 (for other interesting properties of this 
remarkable algorithm see [3], [6], [26], [50] and [64]). 

The Routh algorithm generates a sequence of polynomials of descending degree start­
ing from the even and odd parts of a. given real polynomial of degree n 

(1) 

according to the recursion 

(2) 

where 
li/2J 

Q;(s) = L Ti ,i- 2ksi- 2k, 0 :Si :Sn, (3) 
k =O 

a.nd qi - 1 is the ratio of the leading coefficients of Qi(s) and Qi- 1(s), respectively, i.e., 

ri ,i 
qi- 1 = ---, 1 :Si :Sn, 

1'i - 1,i- 1 
(4) 
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which ensures that t he degree of t he right- hand side of (2) is i - 2 like its left- hand side. 
T he entries of t he row of order i in the standard Routh t able for Pn ( s ), shown in Table 
1, are precisely t he coefficients of t he decreasing powers of s in (3) . 

Tab. 1: Routh table for polynomial Pn(s) = Qn(s) + Qn- i(s) generated according to 
recursion (2). Its entries correspond to t he coefficients of polynomials (3). 

n rn ,n Tn ,n - 2 Tn ,n-4 rn ,n - G 
n- 1 Tn- 1,n - l Tn- 1,n- 3 Tn - 1,n - 5 r'n - 1,n - 7 

n-2 Tn - 2 ,n - 2 Tn- 2,n- 4 Tn- 2,n- G 
n-3 Tn -3,n-3 Tn -3,n - 5 Tn-3,n - 7 

ri ,i ri ,i - 2 

3 r :i,3 r:i ,1 

2 r2.2 r2.o 

1 r1 ,1 

0 ro ,o 

As is well known, if and only if Pn ( s) is a Hurwitz polynomial, the leading coefficients 
rj ,J, like a ll t he other coeffi cients in t he table, are different from zero and have the same 
sign, so t hat the entire sequence of n + 1 polynomials Q J ( s), j = n , n - 1, .. . , 1, 0, 
containing only even or only odd powers of s , can he constructed and all t hen quotients 
( 4) are positive (Routh criterion). 

Now, a complete polynomial Pi(s) ca n be associated wit h every pair of consecutive 
polynomials in t his sequence according to 

P,(s) = Qi (s) + Q;- 1(s) , (5) 

t hus forming a sequence of complete real polynomials {PJ ( s), j = n, .. . , 1} . Clearly, two 
consecut ive polynomials Pi(s) and Pi- 1(s) share t he same even or odd part Qi- i(s) , 
and t he Routh table for Pi_ 1 (s) coincides with the "tail" of t he Routh tables for Pj(s), 
j = i, i + 1, . .. , n. As a consequence, all polynomials in t he sequence are Hurwitz if 
Pn(s) is so. From (2) and (5), t he fo llowing recursive relation between two consecutive 
complete polynomials is immediately obtained : 

P,- 1(s) = (1 + q;;i s) P,(s)-(-lY qi;I sP;(-s) (6) 

which is the so- called two- term form of Routh 's algori t hm as opposed to t he usual t hree­
term (or split) form (2) [38] . It is also called "step- down" fo rm because it generates 
polynomials of descending degree. 

T he Routh approximation method (cf., e.g., [36]) uses as t he denominator of the ith­
order reduced transfer function t he polynomial P;(s) in the sequence generated from 
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the original denominator Pn(s). Quite interestingly, besides stability, the reduced- order 
model obtained in this way keeps a number of original second- order information indices 
(impulse- response energies). To show this, consider the function 

I<;(s) = pi~s) , i < n, (7) 

and denote by k?\t) the h- th derivative of its impulse response k;(t), which is the so­
called resolvent kernel of the convolution integral that determines the forced response 
YJ,i(i;) to an input u(t) of an ith- order LTI system with transfer function 

N;(s) 
G;(s) = P;(s) = N;(s) I<;(s) , (8) 

where N;(s) = n; ,o + n;,1s + ... + n;,; - 1si- l , t hat is, 

(9) 

where 
du di- Iu 

n;(t) = ni ,ou(t) + n;,1 dt + ... + ni,i- 1 dti - i (10) 

is the right- hand side of the standard form of the differential equation describing the 
input- output behaviour of (8). 

Denoting by 

E;,h = f 00 [k;"\t)] 2dt 
./n 

the energy of the k- th derivative k?\1.) of k;(I;), it may be proved [G] that 

E.;,h = En,h, h = 0, 1, ... ,i-1. 

(11) 

(12) 

In other words, the ith- order model whose denominator is formed from the original 
denominator Pn(s) according to the Routh recursion (6) preserves the first i kernel 
energies of the n- th order (original) system with transfer function Gn(s). Also, these 
energies may be computed recursively using only the entries of the Routh table for Pn ( s) 
[6] . From the kernel energies and the coefficients of N;(s), the impulse-response energy 
for the system with transfer function G;(s) can easily be determined and equated to the 
impulse- response energy of Gn(s) (sec, e.g., [321). Of course, matching these energies 
does not entail minimising the £ 2 norm of the difference between the original and reduced 
impulse responses (approximation error). 

Remark 1. Another interesting link among the polynomials generated via Routh 's al­
gorithm is provided by relation (5) which shows that the roots of every complete Hurwiz 
polynomial P;(s) belong to the root locus for the equation Q;(s) -1- >.Q;- 1(s) , >.ER, 
whose departure and arrival points are the roots of it even and odd parts Q;(s) a.nd 
Q;- i(s) which alternate along the imaginary a.xis according to the Hermite-Bichler the­
orem [58]. In turn, equation (2) shows that the roots of Q;_2 ( s ), which separate those of 
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Q;- ;(s) along the same axis, belong to the root locus for the equation Q;(s )+ >- s Q;-i (s ), 
A ER, whose departure and arrival points are the roots of Q;(s) and sQ;- i(s). It fol­
lows that the roots of Q;- 2 (s) are contained in the convex hull of the roots of Q;(s) , 
which allows us to establish some root clustering properties of Routh 's algorithm [37]. 

The next section reviews briefly the conditions under which an ith- order transfer 
function minimises the L2 norm of the approximation error subject to the conservation 
of the energies (12). 

3. CONDITIONS FOR L 2 OPTIMALITY 

The LT optimal rational approximation satisfies a set of interpolation conditions that 
have been known to the control community for quite some time in the s- domain SISO 
case [40] and have more recently been extended to MIMO systems represented by transfer 
function matrices in [29]. By exploiting these interpolation conditions, some efficient 
reduction algorithms that avoid the direct computation of the gradient of the objective 
function (L2 norm of the error) have been developed (see, e.g., [21, 22], [35], [62], [66] in a 
state- space setting and [33] in an input- output setting). However, these procedures are 
intrinsically nonlinear, strongly depend on the initial conditions, do not even retain the 
steady- state value of the step response and, in some cases, might give rise to unstable 
models of stable systems [70]. These drawbacks justify the search for alternative simpler 
and more robust techniques, even if they lead to constrained optima or near- optima in 
the L2 sense [24], [49], [68]. Such a path is followed in this paper by suitably combining 
some classic control- theory tools. Specifically, the transform of the reduced- model kernel 
is chosen as in (7) with P;(s) obtained from the original denominator using the Routh 
recursion (G), thus ensuring the retention of a number of kernel energies, and then 
the numerator parameters are determined so as to minimise the L 2 norm of either the 
impulse- response error or, when the original steady- state value of the step response 
must be reproduced, the transient component of the step- response error (see Section 4). 

To this purpose, consider first the impulse response (the step response will be con­
sidered later) and denote the difference between the impulse responses 9n(t) and g;(t) 
of the systems characterised by the strictly proper transfer functions G11 ( s) ( original 
system) and G;(s) (reduced- order model), respectively, by 

d.;(t) = 9n(t) - g;(t) 

whose Laplace transform, according to (8), is 

D( ·) = G ( ·) _ G·( ·) = P;(s)Nn(s) - Pn(s)N;(s) 
, s n s , s Pn(s)P;(s) . 

The squared L 2 norm of (13) induced by the usual scalar product is 

lld;(t)ll 2 = [ ,c d;(t)dl(t)dt, 

(13) 

(14) 

(15) 

where the asterisk denotes complex conjugation. Assuming for simplicity that the i roots 
Pi,h, h = 1, 2, ... , -i, of P; ( s) (poles of G; ( s)) are distinct, and indicating with 

(16) 
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the ith dimensional vector space generated by the modes of the reduced- order system, 
index (15) is minimum if, and on ly if, for any function f;(t) E .Fi, the following orthog­
onality condition holds [39]: 

100 
di(t)J;'(t) dt = 0. (17) 

Denoting by Fi ( s) the Laplace transform off; ( t) and recalling that the Laplace transform 
of J;"(t) is .F/(s*), from (17) and Parseval's theorem we obtain 

100 1 1+Joo 
d;(t)J;'(t) dt = - Di(s)F;'(-s*) ds = 0. 

0 27fJ - JOO 
(18) 

Therefore, l.Jy Cauchy's integral formula, all the poles of D;(s)F/(-s·) must lie in the 
left half- plane like those of Di(s). Since the poles -plh of all functions F;*(-s*) are 
in the right half- plane, it follows that they must be ca~celled by the zeros of Di(s) = 
Gn(s) - Gi(s), that is, Gi(s) must interpolate Gn(s) at the negatives of its own poles 
Pi,h (which are real or in conjugate pairs). 

Taking (14) into account, the aforementioned optimality condition can be expressed 
in the compact form of a polynomial identity as: 

Pi(s)Nn(s) - Pn(s)Ni(s) = Mn-1 (s) IJ (s + Pi,h), (19) 
h = l 

where M,,_ 1 (s) is a (real) polynomial of degree equal, at most , ton - l. By equating 
the coefficients of the equal powers of s on both sides of (19) a system of n + i equa­
tions linear in the same number of unknown coefficients of Ni ( s) and ll;f,,_ 1 ( s) can be 
formed. Polynomial Nln - i(s) can then be used, if necessary, to compute the value of 
the index (15) by resorting again to Cauchy's integral formula and Parseval's theorem. 
Alternatively, by settings = - Pi,h, h = 1, 2, ... , i, in (19), the following smaller set of i 
equations linear in the i unknown coefficients of Ni(s) is formed: 

N( ) P( ) Nn(-Pi,h) h 12 . 
i -Pi,h = ·i -P·i,h p (- . ) ' = , , ... 'i . 

n Pi,h 
(20) 

In both cases, it is necessary to preliminarily determine the roots Pi.h of polynomial 
Pi(s), which can easily be done using readily avai lable algorithms. · 

4. REDUCTION PROCEDURE 

On the basis of the previous considerations, the following reduction algorithm can be 
used to find t he L2- optimal approximation of given order i subject to the conservation 
of i kernel energies. 

Algorithm A - Impulse - response- based algorithm 

1. Generate, according to (6), a sequence of polynomials of descending degree from 
the original denominator polynomial P,,(s) down to the polynomial Pi(s) of the 
desired reduced degree i < n. 
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2. Find the roots Pi .h, h = 1, 2, ... , i, of the polynomial equation P;(s) = 0. 

3. Determine the i coefficients of the ('i - 1 )- th degree numerator polynomial N; ( s) 
of the transfer function G;(s) = N;(s)/P;(s) approximating Gn(s) = Nn(s)/Pn(s) 
by solving the system (20) of i linear equations. 

Remark 2. The impulse- response approximation error, whose constrained L2- nor~ 
is minimised by Algorithm A, tends asymptotically to zero because the reduced-order 
model is guaranteed asymptotically stable like the original system, which is a necessary 
condition for the existence of a minimum. Its uniqueness is also guaranteed as long as 
the i interpolation points are distinct, so that the number of independent equations in 
(20) equals the number of unknown coefficients to be determined. 

Remark 3. Algorithm A cannot. directly be extended t.o persistent inputs and corre­
sponding outputs, not even step responses, because the related approximation error 
wouldn't tend to zero without additional constraints. Instead, the algorithm can be 
extended to filtered transfer functions, provided that the filter is stable. Note, by the 
way, that popular reduction algorithms, such as balanced truncation and Hankel- norm 
approximation, apply to stable systems only. 

The above procedure is not computationally demanding. In particular: (i) the con­
struction of the entire Routh table for a polynomial of degree n requires O(n2 /2) el­
ementary operations [6] (but the aforementioned algorit hm can be arrested at t he ·ith 
row), (ii ) the computat ional complexity of the Gauss elimination procedure to solve a 
system of i linear equation is O({l) [53], while (iii) the solution of polynomial equations 
up to degree 20 does not pose any particular problem in terms of both numerical ro­
bustness and efficiency [46] (note that, usually, i « n)). It is also worth mentioning 
that fraction -free Routh tests that increase considerably the numerical accuracy of the 
classical Routh algorithm have been proposed recently [5]. 

As already said, the reduced- order model obtained according to the aforementioned 
procedure keeps i kernel energies and minimises index (15) subj ect to the Hurwitz de­
nominator Pi(s). However, since index (15) refers to the impulse response, the asymp­
totic response to any other input u(t) is not equal, in general, to that of the original 
system. A suggestion as to how the method can be adapted to the case in which the 
steady- state response to step inputs must be preserved, at the expense of the number of 
parameters left. for optimisation, is outlined next. The procedure could be extended to 
reproduce the asymptotic response to more complicated inputs. However, for simplicity 
such an extension is not pursued here. 

Assume again that t he reduced- order model denominator P;(s) is obtained from the 
Routh algorithm (6), thus preserving stability and a number of kernel energies, and 
denote by 

G;(s) = N,(s) 
P;(s) 

(21) 

the transfer function of the strictly- proper reduced- order model whose numerator N; ( s) 
must be determined in such a way that the steady- state response to a step input is 
preserved. 
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The step- response transform of the stable original system can be decomposed [13) as 

(22) 

where Tn(s)/Pn(s) is ihe Laplac~ transform of ihe transient response and I{ is the 
steady- state value. In order for Gi(s) to exhibit the same steady state, the transform 
of its step response should be decomposable as 

(23) 

where the transient component Ti ( s) / Pi ( s) is strictly proper and the steady- state com­
ponent K/s matches the one of (22). From (23) it follows that 

N;(s) = T;(s) s + I{ P;(s). (24) 

Since the degree of this polynomial identity is i, by equating the coefficients of the same 
powers of s on both sides of (24), a system of i + 1 equations is obtained. Therefore, to 
admit a unique solution, the number of unknowns must also be i + 1. Now, if T;(s) is 
completely determined by minimising the L2 norm of the difference between the transient 
terms in the step response, i.e: 

di(t) = Ytr,n(t) - Ytr,;(t) , (25) 

where Ytr,n(t) = LT-1[Tn(s)/Pn(s)] and Ytr,;(t) = LT- 1[T;(s)/P;(s)], then the number 
of unknowns in (24) is only i (number of coefficients of .N;(s)) and no solution exists. 

To overcome this problem, a further unknown should be introduced. One way to do 
this , is to replace T;(s)/P;(s) by the sum of the best approximation (in the L2 sense) 
of immediately lower order i - 1, i.e., T;- 1 (s)/P;_ 1 (s), and an "auxiliary" stable first­
order term x/(s - q) with unknown ga.in x and pre- specified pole q. Not to influence 
appreciably the system dynamics, this pole could be located far to the left of the roots 
of P;_ 1 (s), but other choices are of course possible (and even advisable). Taking (21) 
into account, the Laplace transform of the step response of the reduced-order model 
then becomes: 

. 1 N;(s) 1 
YJ,i(s) = Gi(s) - = p ( )( ) -

S i - 1 S S - q S 

leading directly to the polynomial identity: 

T;- 1(s) x k --+--+­
P;- 1(s) s - q s 

Ni(s) = Ti - 1(s) (s - q) s + :r P;- 1(s) s -I- kPi- 1(s) (s - q). 

(26) 

(27) 

In this way the number of unknowns (the i coefficients of Ni(s) plus x) matches the 
number of i + 1 equations obtained by equating the coefficients of the equal powers of s 
on both sides of (27). In particular, using the notation: 

T; - 1(s) = bi-1 ,; - 2si - 2 + b; - 1,i - 3si- 3 + ... + bi- 1,0 , (28) 
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P; - 1(s) = a; - 1,;-1si- I + a ;- 1,; - 2si - 2 + .. . + a;-1,0, 

the unknown parameter x is obtained from the coefficients of si only as: 

.T = - b-i- Li - 2 - k. 
a; - 1,i - 1 

9 

(29) 

(30) 

Once x has been determined , the computation of the coefficients of Ni(s) is straightfor­
ward since all terms at the right- hand side of (27) become known. In conclusion, the 
algorithm for finding an ·ith- order reduced model t hat keeps the steady- state value of 
the original step response can be presented as fo llows. 

Algorithm B - Step- response- based algorithm 

1. Decompose the original step response transform as in (22). 

2. Find the transient component T;_ 1 (s)/P; - 1(s) that minimises the L2 norm of 
d; - 1 (t;) = Ytr,n(t) - Ytr ,i- 1(/;) with P;- 1 (s) obtained from the original denominator 
Pn(s) via Routh 's algorithm (6). 

3. Choose q. 

4. Compute x according to (30). 

5. Determine the coefficients of polynomial Ni(s) from (27). 

6. Form the ith- order approximating transfer function as 

• Ni(s) 
G;(s) = p ( )( )" ·i- 1 S S - q 

• 
The only demanding step of Algorithm B is clearly t he second. It entails the same 

operations as Algorithm A (referred, however , to the transient component of the step 
response instead of the impulse response), namely, the construction of a (part of a) 
Routh table, the solut ion of a polynomial equation of degree i - 1, and the solution of 
t he system of i - 1 linear equations similar to (20): 

Tn(-Pi- I,h) 
T;- 1(-Pi- 1,h) = P; - 1(-P;- 1,h) p ( )' h = l , 2, ... , ·i-l, (31) 

n -P-i- 1,h 

which correspond to a set of i - 1 interpolation condit ions at the negatives of the roots 
Pi- 1,h, h = 1,2, ... , i - l, of P;- 1(s). Therefore t he computational complexity of Al­
gorithm B is not much greater t han t hat of Algorithm A, at least if the auxiliary pole 
q is arbitrarily placed to the left of the other poles of Y1,-;(s), as previously suggested. 
Alternatively, q may be chosen so as to min imise JJGn(s) - G;(s) JJ . T his result can 
be obtained by using a classic grid- search method that implies: (i) repeating Steps 3 
through 6 for a number of different auxiliary poles q, (ii) computing the related values 
of the aforementioned norm, and (iii) picking up the pole q that ensures the least value 
of this norm. Clearly, this alternat ive choice increases the computational complexity of 
t he procedure but might be worthwhile. 
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5. EXAMPLES 

Two examples taken from the literature on model reduction are worked out in this sec­
tion. The results obtained from the application of Algorithms A and B are compared 
with those obtained using the popular balanced truncation method as well as the meth­
ods employed by the authors who considered t he same examples most recently. As 
usual , the comparison is based on the visual inspection of the responses to the impulse 
and step inputs, on the Bode plots and on the value of the £ 2 norm of the respective 
impulse-response errors. 

5.1. Example 1 

Consider first the following 9th- order original transfer function put forth in [44] : 

G(s) = 

s4 + 35s3 + 291s2 + 1093s + 1700 

s9 + 9s8 + 66s 7 + 294s6 + 1029s5 + 2541s4 + 4684s3 + 5856s2 + 4620s + 1700 ' 
(32) 

whose poles are -1, -1 ± J, -1 ± J2, -1 ± y3 , -1 ± y4. The same original system has 
been used in [ll] to find a third- order approximating model by means of a "biased 
stability- equation" technique. 

Algorithm A in Section 4 has been applied to find a third- order transfer function 
based on the impulse response error only. According to Step 1 of the procedure, its 
denominator has been formed from the denominator of (32) using Routh 's recursion 
leading to P3 (s) = s3 -\- l.G412s2 + 3.3077s + l.8G01, whose roots (Step 2) turn out 
to be -0.7024, -0.4694 ± yl.5582. Finally, according to Step 3 the coefficients of the 
numerator of the third- order transfer function have been found by solving the system 
of three interpolation equations corresponding to (20). The resulting model is 

G- ( 5 ) = 0.1399s2 - 0.8022s + 1.8554 
3 s3 + 1.6412s2 + 3.3077s + 1.8601 

(33) 

The squared £ 2 norm of the related impulse- response error turns out to be 0.0184, 
whereas the squared error norm for the model obtained in [ll] is 0.1348 and that for the 
third- order model obtained from balanced truncation is 0.0158. 

ln order to reproduce the steady- state value of the original step response, resort has 
been made to Algorithm B. According to Step 1, the original step response has first 
been decomposed as in (22). Next, using Algorithm A, a second- order approximation of 
the transient component of this response has been determined (Step 2). According to 
Step 3, the far- off pole q of the auxiliary term in (26) has been chosen by means of the 
iterative search outlined at the end of Section 4, leading to q = -5.2 (note, however, that 
this choice is not crit ical). The related residue .T has been found (Step 4) according to 
(30). The numerator of the third- order transfer function has been computed, according 
to Step 5, by particularising the polynomial identity (27). Finally, the transfer function 
of the approximating model has been determined according to Step 6; it turns out to be 

c;. (s) = 0.0724s2 - 3.1780s + 5.8933 
3 s3 + 6.5248s2 + 8.0224s + 5.8933 

(34) 
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Fig. 1: Impulse responses of: (i) the original model (32) (bold solid line), (ii) the third­
order approximation (33) obtained using Algorithm A (bold dashed line), (iii) the third­
order approximation (34) obtained using Algorithm B (thin solid line) , (iv) the third­
order model derived in [11] (dotted line), and (v) the third- order model obtained via 
balanced truncation ( dash dotted line). 
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Fig. 2: Step responses of: (i) the original model (32) (bold solid line), (ii) the third- order 
approximation (33) obtained using Algorilhm A (bold dashed line), (iii) the third- order 
approximation (34) obtained using Algorithm B (thin solid line), (iv) the third- order 
model derived in [11] (dotted line), and (v) t he t hi rd- order model obtained via. balanced 
truncation ( dashdotted line). 
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Fig. 3: Bode plots of: (i) the original model (32) (bold solid line), (ii) the third- order 
approximation (33) obtained using Algorithm A (bold dashed line), (iii) the third- order 
approximation (34) obtained using Algorithm B (thin solid line), (iv) t he third- order 
model derived in [11] (dotted line), and (v) the third- order model obtained via balanced 
truncation ( dashdotted line). 
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Fig. 4: Impulse responses of: (i) the original model (35) (bold solid line), (ii) the 
second- order approximation (36) obtained using Algorithm A (bold dashed line) , (iii) 
the second- order approximation (37) obtained using Algorithm B (thin solid line), (iv) 
the second- order model derived in [41] (dotted line), and (v) the second- order model 
obtained via balanced truncation (dashdotted line). 

whose poles are -5.2, -0.6624 ± J0.8334. In this case the squared L2 error norm turns 
out to be 0.0662. Figs. 1, 2 and 3 compare, respectively, the impulse responses, the step 
responses and the Bode plots of (33) and (34) with those obtained using the method 
suggested in [11] and the balanced truncation method. 

5.2. Example 2 

Consider the 10th- order system described by the transfer function: 

G( ) = 540.70748 X 1017 

s 10 , (35) 

IJ(s+bi) 
i = 1 

where b1 = 2.04, b2 = 18.3, b3 = 50.13, b4 = 95.15, b5 = 148.85, b6 = 205.16, b7 
= 257.21, bs = 298.03, b9 = 320.97, bw = 404.16. The same system has been considered 
in [48], [41]. Assume, as in [41], that a second- order approximating model is needed. 

Algorithm A, based on the impulse response without consideration of the steady- state 
response to step inputs, leads to 

-0.6687s + 23.2918 
G2 ( s) = s2 + 13.0793s + 23.6262 

(36) 
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whose poles are - 10.9147, - 2.1646. The squared L2 norm of the related impulse­
response error t urns out to be 0.0082, whereas the squared error norm for the model 
obtained in [41] and for t he one obtained via balanced truncation is 0.0074. 

Algorithm B, which reproduces the steady- state value of the step response, for q = 
-19.1 ((found using the iterative search outlined at the end of Section 4)) leads to 

{; 5 _ - 0.3521s + 34.5019 
2 ( ) - s2 + 20.9064s + 34.5019 

(37) 

whose poles are -19.1 , -1.8064. In t his case the squared L 2 error norm turns out to be 
0.0398. Figs. 4, 5 and G compare, respectively, the impulse responses, the step responses 
and t he Bode plots of (36) and (37) with those obtained using the method suggested in 
[41] and the balanced truncation method. 

6. CONCLUSIONS 

By exploiting some remarkable properties of classic control- theory tools, a model reduc­
tion method has been proposed that: (i) preserves stability, (ii) ensmes the conservation 
of a number of second- order indices, na.mely the energies of t he kernel (7) cha.ra.cterising 
the transient component of a.II forced responses, a.nd (i ii ) minimises the L2 norm of t he 
approximation error for the reduced- order model's denominator generated via. R.outh's 
algorithm. Also, by resorting to the decomposition of the forced response into a. tran­
sient and a. stea.dy- sta.te component [13], the method ca.n easily be adapted to ma.tch 
the original asymptotic response to step inputs. 

The procedure, which can be implemented using standard and readily available pro­
grams, is computationally very simple and may lead to a.pproxima.tions tha.t a.re not 
worse than t hose afforded by alternative more cumbersome techniques tha.t preserve 
second- order information indices, as shown by two examples ta.ken from t he literature 
on model reduction. 
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