





SHAPE-TOPOLOGICAL DIFFERENTIABILITY OF
ENERGY FUNCTIONALS FOR UNILATERAL PROBLEMS
IN DOMAINS WITH CRACKS AND APPLICATIONS

GUNTER LEUGERING, JAN SOKOLOWSKI, AND ANTONI ZOCHOWSKI

ABSTRACT. A review of results on first order shape-topological differ-
entiability of energy functionals for a class of variational inequalities of
elliptic type is presented.

The velocity method in shape sensiitvity analysis for solutions of el-
liptic unilateral problems is established in the monograph [23]. The
shape and material derivatives of solutions to frictionless contact prob-
lems in solid mechanics are obtained. In this way the shape gredients of
the associated integral functionals are derived within the framework of
nonsmooth analysis, In the case of the energy type functionals classical
differentiability results can be obtained, because the shape differentiabil-
ity of solutions is not required to obtain the shape gradient of the shape
functional [23]. Therefore, for cracks the strong continuity of solutions
with respect to boundary variations is sufficient in order to obtain first
order shape differentiability of the associated energy functional. This
simple observation which is used in [23] for the shape differentiability of
multiple eigenvalues is further applied in [13, 14] to derive the first order
shape gradient of the energy functional with respect to perturbations of
the crack tip. A domain decomposition technique in shape-topology
sensitivity analysis for problems with unilateral constraints on the crack
faces (lips) is presented for the shape functionals.

We introduce the Griffith shape functional as the distributed shape
derivative of the elastic energy evaluated in a domain with a crack, with
respect to the crack length. We are interested in the dependence of this
functional on domain perturbations far from the crack. As a result, the
directional shape and topological derivatives of the nonsmooth Griffith
shape functional are obtained with respect to boundary variations of an
inclusion.

1. INTRODUCTION

First order shape scnsitivity analysis of the energy functional for an ellip-
tic boundary value problem with unilateral constraints defined in domains
with cracks is of broad interest and, therefore, it is named Griffith shape
functionel In order to introduce the Griffith shape functional we mnake use
of

o the crack model within an elastic body, represented by an elliptic
variational inequality with the unilateral constraints representing the
first order linear approximation of the nonpenetration condition;

Key words and phrases. Griflith criteriuiu for crack propagation, Signorini variational
inequality, Hadamard shape differentiability, shape gradient, shape Hessian, nonsmooth
analysis, conical differential of metric projection, Dirichlet Sobolev space.

1



o the energy shape functional defined for the solutions of the variational
inequality depending on the shape of the crack;
an abstract result on the directional differentiability of the optimal

L ]
value for constrained optimization problems over convex sets with
respect to a parameter £ — 0,
t = 7(t, v (t)) := inf j(¢,
3tV (8) = inf j(t.v)
which requires only the strong convergence of the minimizers v*(¢) —
v*(0) with respect to the parameter as well as the existence of the
partial derivative of the mapping R 3 ¢ — j(t,v) € R;
e a technical result on linear transformations of the displacement field

in the clasticity model obtamed in [23] which provides the con-
vex cone f{, invariant under the change of variables of the velocity
method; it mcans that in order to apply the abstract sensitivity result
for optimal values, we have in hand the linear transformation of the
unknown solution to the variational inequality such that we could an-
alyze the variational inequality transformed to the fixed geometrical
domain with the parameter independent convex cone K.
Therefore, the Griffith shape functional is the first order shape derivative
of the elastic cnergy with respect to the perturbation of the crack tip for
a given direction of the velocity vector field. In addition, the secord order
shape derivative of the energy functional, whenever it docs cxist, becomes
the first order shape derivative of the Griffith shape functional. But it is
not our primary concern, since we are more interested in the influence of
clastic inclusions far from the crack on the behaviour of the Griflith shape
functional. We believe that such an iufluence is possible and can be used for
the control of crack propagation in clastic media. Indecd, the depcndence
of the Griffith functional with respect to shape changes of an elastic or rigid
inclusion has been considered in {12, 11]. This research has been triggercd
by numerical studies on optimization an control of crack growth also for the
casc of cohesive crack theories in [21, 22, 18]. See also {7, 19].

Woe recall also that the second order shape differentiability of the energy
functional with respect to the perturbations of the crack tip is known for
the Signorini type variational inequalities which governs frictionless contact
problems [6]. This result can be extended to the crack probleins with non-
penetration contact conditions on the crack faces (lips), but this is a subject
of the forthcoming paper.

1.1. Interface problems in Lipschitz domains. In this paper a class of
modcls with defects i solids is introduced. The defect takes the form of
a cut in the geometrical domain. The cut is a part of a curve in two spa-
tial dimensions, and the unilateral boundary conditions for displacements
and the tractions are prescribed for the jumps from both sides of the cut.
The variational formulation of the mmodel include the unilateral conditions
for the displacements imposed in the convex conc constraints for admissible
displacements. The variational incquality for displaccincnts is obtained for
the minimization problem of the encrgy functional over a convex cone. In
the specific case of our setting, the solution operator is Lipschitz continuons
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with respect to the right-hand side of the variational inequality. This prop-
erty leads usually to the Lipschitz continuity of the solution with respect to
the regular boundary variations in the framework of the velocity method of
shape sensitivity analysis. On the other hand, the asymptotic analysis of
solutions to singular perturbations of the geometrical domain can be per-
formed for linear problems or a restricted class of nonlinear problems. Since
the technique of compound asymptotic expansions cannot be directly applied
to the variational inequalities under considerations, a domain decomposition
technique is used in order to obtain the first order asymptotic expansion of
the energy functional and to obtain the topological derivatives of the energy
functionals for the variational inequalities.

In this section the framework is introduced for the crack problem in the
bounded domain 2 in two spatial dimensions. It is assumed [8]-[17] that a
crack in §2 is a part L; of the Lipschitz interface ¥. By an interface we mean
a Lipschitz, closcd curve without intersections ¥ € 2 such that the jumps
[u] of values for traces of Sobolev functions u from both sides of the interface
are allowed.

In addition, in our model the interface, thus, also the crack are supposed
to be sufficiently smooth, say T is a Cb! closed curves without intersections.
This regularity assumption is added in order to use the standard properties
of traces of Sobolev functions on the interface.

However, the shape sensitivity analysis is performed in our framework by
the bi-Lipschitz changes of variables, we refer to [23] for all details necessary
for such a construction.

Let us consider the Lipschitz domain 2 with the boundary I' = 9¢1 decom-
posed into two Lipschitz subdomains ', 2” and the interface & C (, ie.,
Q= Q'UT UN". For the decomposition of functions in v € H}(S2), we use
the notation for restrictions to subdomains v € HZ(') and v" € H().
Thus, the traccs on & are well defined

vl =z ="z € HYA(Z).

Now, we define a broader space H}(f2) C HE(Qx) € L*(Q) of functions
which admit the jump

[v] :=v'|g - v"ix € HY4(T)

over the interface ¥. This leads also to the boundary value problems in
(2 with the prescribed jump over the interface, which is not our primary
interest. We arc interested in the cracks £; C £ modeled by closed subsets
of the interface, with {2 := {2\ &, thus, in solutions of the boundary value
problems in the convex set

K(§y) = {ve  H x) : V] > onk;, []=0 onI\L;}.

The primary interest of such a function space setting for the crack problems
with unilateral nonpenetration conditions on the crack faces (lips) is the so-
called polyhedricity of the set A (£);). In other words, polyhedral convex sets
admit the Hadamard differential of the metric projection [23, 6]. This prop-
erty is inherited from the polyhedricity of the positive cone in the fractional
Sobolev space H/(L), since the space H/%(T) is the so-called Dirichlet
spacc with respect to the natural order. Let us recall the known facts [6].
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Proposition 1.1. The scalar product (-, )g in the Dirichlet space H'Y/?(T)
satisfies the condition

(vt 07)p <0 Wwe HYA(D),

therefore, the metric projection in HY/2() onto the positive cone of HY/?(X)
is conically differentiable.

This implics

Corollary 1.2. The metric projection in H}(S1s) onto the closed, conver
cone K () is conically diffcrentiable.

The above results lead to the first order shape derivatives of the Griffith
shape functional for the cracks with the nonlincar nonpenctration conditions
prescribed on the crack lips (or faces in three spatial dimensions).

Remark 1.3. The Griffith shape functional of the crack ¥y := {(z1,0) €

R2, 0 < zy < [} ot the tip P := (1,0) is defined by the shape derivative
whick is denoted by

dI(Q5)

J(§y) = —a

of the energy functional

L= I{Qpy) = inf /(%1V1)]2 - fv>

veK ()

7]
where u; € K ({Y) 15 the minimizer for a given length | > 0 of the crack, and
F e L)) is a given clement.

We are going to cxtend such results to elastic bodies {3 with cracks %
and unilateral conditions on the crack lips (faces) Ell Then, we consider
the dilferentiability properties of the Griffith functional

o cvaluation of the first order shape derivative with respect to the per-
turbations of the crack;

e asymptotic analysis of the Griffith functional with respect to singular
perturbations of the gecometrical domnain far from the crack;

2. MODELING OF CRACKS IN ELASTIC BODIES

2.1. Nonpenetration conditions on the crack faces. It is well known
that classical crack theory in elasticity is characterized by linear boundary
conditions which leads to lincar boundary valuc problems. This approach
has a clear shortcoming from a mechanical standpoint, since opposite crack
faces can penetrate each other. We consider nonlinear boundary conditions
on crack faces, the so-called nonpcenctration conditions, written in terns of
incqualitics. From the standpoint of applications, these boundary conditions
are preferable since they provide a mutual nonpenctration between crack
faces. As a result, a freec boundary problem is obtained which means that a
concrete boundary condition at a given point can be found provided that we
have a solution of the problem.

The main attention in this paper is paid to dependence of solutions of the
problemn on domain perturbations, and in particular, on the crack shape.
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Let {2 C R? be a bounded domain with smooth boundary T', and T, C §2
be a smooth curve without self-intersections, (0. = {2\ T,.

It is assumed that [, can be extended in such a way that this extension
crosses I' at two points, and {2, is divided into two subdomains D, and Dy
with Lipschitz boundaries Dy, 8D3, meas(I' M dD;) > 0, i = 1,2. Denote
by v = (v1,v2) a unit normal vector to .. We assume that I'. does not
contain its tip points, i.e. I'c =T\ OT.

The equilibrium problem for a linear elastic body occupying (1. is as fol-
lows. In the domain {2, we have to find a displacement field u = (w1, uq) and
stress tensor components o = {oy;}, 1,7 = 1.2, such that

~dive = f in €, (1)
o=Ae(u) in Qg (2)
u=0 on T, (3)
[uly 20, [0,]=0, o, -[ulv=0 on T
0, €0, o,=0 on I (5)

Here [v] = v — v~ is a jump of v on I, and signs + correspond to positive
and negative crack faces with respect to v, f = (f1, fo) € L?({2) is a given
function,

O, =0V, or=0v—o0, v, or=(ol,02),
2] T

ov = (01v,02;V5),

the strain tensor components are denoted by e;;{u),
1 .
£i(u) = Slugs +uss), elw) = {eylu)}, Gj=12

Elasticity tensor A = {aijui}, 1,7, &,1 = 1,2, is given and satisfies the usual
properties of symmetry and positive definiteness

2
aijuli; 2 colélS, Y &y, & =&,  co = const,

Qijkl = Qklij = Gikly Qijkt € L7(SY).

Relations (1) are equilibrium equations, and (2) is Hooke's law, u; ; = a:“; ,
(z1,z2) € Q. All functions with two below indices are symmetric in those
indices, i.e. 0j; = 0;; ctc. Summation convention is assumned over repeated
indices throughout the paper.

The first condition in (4) is called the nonpenetration condition. It pro-
vides a mutual nonpenetration between the crack faces I't. The second
condition of (5) provides zero friction on I'.. For simplicity we assume a
clamping condition (3) at the external boundary T'.

Note that a priori we do not know points on I'. where strict inequalities
in (4), (5) are fulfilled. Due to this, the problem (1)-(5) is a free boundary
value problem. If we have o, = 0 then, together with o, = 0, the classical
boundary condition ov = 0 follows which is used inlinear crack theory. On
the other hand, due to (4), the condition o, < 0 implies [u]v = 0, i.e. we
have a contact between the crack faces at a given point. The strict inequality
[ulv > 0 at a given point means that we have no contact between the crack
faces.




Hence, the first difficulty in studying the problem (1)-(5) is concerned
with boundary conditions (4)-(5). The second one is rclated to the general
crack problem difliculty - a presence of nonswmooth boundaries. We refer
the reader to |0] for related results on boundary value problems defined in
domains with cracks.

2.2. Existence of solutions. First of all we note that problem (1)-(5) ad-
mits scveral cquivalent formulations. In particular, it corresponds to the
minimization of the energy functional. To check this, introduce the Sobolev
space
HE(S) = {v = (v1,v9) |v; € HY{), vu=00nT, i =1,2}
and the closed convex sct of admissible displacements
K={veHE ) | plv20 ac on I} (©)

In this case, duc to the Welerstrass theorem, the problem

) 1
min E/Uij(v)eij(v) */fil’z'
Qe e

has (a unique) solution v satisfying the variational incquality

u €K, (7)
/O’ij(u)é‘,‘j (‘U — u) > /fi(ui — ui), Yv € 1(, (8)
[ Qc

where oy;(u) = o5 are defined from (2).
Problem formulations (1)-(5) and (7)-(8) arc equivalent. We shall use in
Scction 47 the abstract form (144) of the variational inequality (7)~(8).

Remark 2.1. It follows from the coercivity on the energy space HA(2:) of
the symmetric bilinear form

HMS) x HHOQ) D (u,v) = alu,v) = /Uij(u)fij(v) eR
Qe
that the solution u to (7)-(8) is Lipschitz continuous in the eneryy space with
respect to the right-hand side f in the dual space (HL ()} .

Any smooth solution of (1)-(3) satisfies (7)-(8) and, conversely, [rom (7)-
(8) it follows (1)-(5).

Below we provide two more cquivalent formulations for the problem (1)-
(5), the so-called mixed and smooth domain formulations. To this cnd, we
first discuss in what sense boundary conditions (4)-(5) are fulfilled. Denote
by ¥ a closed curve without self-intersections of the class C1'!, which is an
cxtension of ', such that £ < 2, and the domain €} is divided into two
subdomains 2; and (9. In this casc £ is the boundary of the domain 2,
and the boundary of g is ZUT.

Introduce the space H3 (£) with the norm

W2, = ol + / / o “(y drdy (9)

i)




and denote by H-3 (£) a space dual of Hi (). Also, consider the space
1 v
1) = {v e iy | 5 220}
with the norm
190 200 = ol + [ 7197,
Te

where p(z) = dist(z;00;) and {jv[|;/; is the norm in the space HY2(T,). Tt
is known that functions from Héé2(f‘c) can be extended to ¥ by zero values,

and moreover this extention belongs to HY/2(X). More precisely, let v be
defined at T';, and T be the extension of v by zero, i.e.

%(z) = { o TR,

Then
v € HY*(Te) if and only if ¥ € HYA(E).
With the above notations, it is possible to describe in what sense boundary
conditions (4)-(5) are fulfilled. Namely, the condition o, < 0 in (5) means
that
(00 #1200 <O, ¥ 6 € Hyf"(Te), ¢>0ac onl,,

where (-, )1/2,00 15 a duality pairing between HO_OI/Z(I‘C) and H&éZ(I‘C). The
condition ¢, = 0 in (5) means that
(G0 1200 =0, ¥ ¢ = ($1,02) € Hof *(To).
The last condition of (4) holds in the following sense
(v, [u]v)1/2,00 = O
2.3. Mixed formulation of the problem. Now we are interested to give
a mixed formulation of the problem (1)-(5). Imtroduce the space for stresses
H(div) = {0 = {0y} | 0 € L), dive € L2(Q,)}
with the norin
”g“%I(div) = “Uiliz(nc) + ”diVU”iZ(nc)
and the set of admissible stresses
H(div;Te) = {0 € H(dv) | [ov]=0on T 0, <0 o, =0o0nTF}.

We should note at this step that for o € H(div) the traces (ov)* are correctly
defined on % as elements of H~1/2(X). The first condition in the definition
of H(div;T'¢) is fulfilled in the following sense

(o)t =(ov)" on T

for any curvc & with the prescribed properties. Relations o < 0, 0 = 0 on
I‘f also make sense. The values ¢, 0, are defined as elements of the space

Heg*(Te).




The mixed formulation of the problem (1)-(5) is as follows. We have to find

a displacement field v = (u1, uo) and stress tensor components o = {05},
1,7 = 1,2, such that

uw € LYQ,), o€ H(div;T,), (10)

—dive=f in Q, (11)

/Crf(?— a)+ / u(dive — dive) 2 0 V7 € H{div; I',). (12)

Qe e
The tensor €' is obtained by inverting the Hooke’s law (2), i.e.

Co = e(u).

It is posstble to establish the existence of a solution to the problem (10)-(12)
and check that (10)-(12) is formally equivalent to (1)-(5) (sce [17]). Existeuce
of solutions to (10)-(12) can be proved independeutly of (1)-(5). On the other
hand, the solution exists duc to the cquivalence, and we already have the
solution to the problem (1)-(5).

24. Smooth domain formulation. Along with the mixed formulation
(10)-(12), the so-called smooth domain formulation of the problem (1)-(5)
can be provided. In this case the solution ol the problem is defined in the
smooth domain {I. To do this, we should notice that the solution of the
problem (1)-(5) satisfies (7)-(8), thus, the condition

[ovj=0 on I,
holds, and, therefore, it can be proved that in the distributional sense

—dive = f in (.
Hence, the equilibrium cquations (1) hold in the smooth domain (2.

Introduce the space for stresses defined in 2,
H(div) = {o = {04} | 0, dive € L2()}
and the sct of admissible stresses
H(div;Te) = {o e H(div) |0, =0, o, <0on T}
The norm n the space H(div) is defined as follows
“U"?H(div) = oz + ”diVU”%Z(Q)-

We sce that for ¢ € H(div), the boundary condition o, = 0, g, € 0 on
T, are correctly defined in the sense H&)Iﬂ(FC)A Thus, we can provide the
smooth domain formulation for the problem (1)-(5). It is necessary to find

a displacement field v = (uy, u2) and stress tensor components o = {oy;},
1,J = 1,2, such that

w € L), o€ H(div;T.), (13)

—dive =f i Q. (14)

/Ca(a‘ —-o)+ /u(div? —dive) 2 0 Vo € H(div;T,). (15)
Q Q
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It is possible to prove existence of a solution to the problem (13)-(15) (see
{16]). Moreover, any smooth solution of (1)-(5) satisfies (13)-(15) and, con-
versely, from (13)-(15) it follows (1)-(5). Advantage of the formulation (13)-
(15) is that it is given in the smooth domain. This formulation reminds
contact problems with thin obstacle when restrictions are imposed on sets
of small dimensions.

Numerical aspects for the problems like {1)-(5) can be found, for example,

in [2].
2.5. Fictitious domain method. In this section we provide a connection
between the problem (1)-(5) and the Signorini contact problem. It turns out
that the Signorini problem is a limit problem for a family of problems like
(1)-(5). First we give a formulation of the Signorini problem. Let 3y ¢ R?
be a bounded domain with smooth boundary I'y, I’y = ' UTq, [N = @,
measly > 0.

For simplicity, we assume that T is a smooth curve (without its tip
points). Denote by v = (v1,v;) a unit normal inward vector to I'c. We
have to find a displacement field v = (u1, u2) and stress tensor components
o = {0y}, 1,7 = 1,2, such that

~dive = f in (. (16)

o=Ae(u) in Q (17)

u=0 on Ty (18)

w0, 0,<0 0, =0, uw-0,=0 on T, (19)

Here f = (fy, f2) € L2, (R?) is a given function, 4 = {ai;u}, 1,7k, = 1,2
is a given elasticity tensor, ajjm € L;’;’C(]Rz), with the usual properties of
symnetry and positive definiteness.

1t is well known (see [4, 5]) that the problem (16)-(19) has a variational
formulation providing a solution existence. Namely, denote

H%u(ﬂl) ={v=(v,v3) € HY () | v =00n Ty, i=1,2}
and introduce the set of admissible displacements
Ko = {v=(v,v3) € H} (1) |vv 2 0ae onT.}

In this case the problem (16)-(19) is equivalent to minimization of the func-

tional .
2 / JU ElJ / f Vi
1031
over the set K. and can be written in the form of variational inequality
u € Ke, (20)
/Uu( )51_1 /ft G 1L, Yv e I( (21)

971
Here 0i;(u) = 045 arc defined from thc Hooke's law (17). Variational in-
equality (20)-(21) is equivalent to (16)-(19) and, conversely, i.e., any smooth
solution of (16)-{19) satisfies (20)-{21) and from (20)-{21) it follows (16)-
(19). Along with variational formulation (20)-(21), the problemn (16)-(19)
admits a mixed formulation which is omitted here.
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The aim of this section is to prove that the problem (16)-(19) is a limit
problem for a family of problems like (1)-(5). In what follows wc provide
cxplanation of this statement.

First of all we extend the domain §2; by adding a domain 25 with smooth
boundary T'y. An cxtended domain is denoted by (2., and it has a crack (cut)
T'.. Boundary of §); is TUTE. Denote $g = 1 NT, & = B\ T, thus &
does not contain its tip points.

We introduce a family of clasticity tensors with a positive parameter A,

CL)‘ . g5kt in £
ikt = /\_luiju in {9
Denote A* = {a},;}, and in the extended domain (X, consider a family

of the crack problems. Find a displacement field «* = (u},u3), and stress
tensor componcents o = {ai)‘j}, i, = 1,2, such that

—dive* =f in 0, (22)

ot = Ate(w?) Wm0, (23)

w'=0 on T, (24)

[y 20, [62]=0, 0 [ulp=0 on T, (25)
0p <0, 02 =0 on Ik (26)

As before, {v] = v* — v~ is the jump of v through I, where + fit posi-
tive and negative crack faces I'T. All the remaing notations correspond to
those of Section 1. We see that for any fixed A > 0 the problem (22)-(26)
describes an equilibrium state of linear elastic body with the crack I, where
nonpenetration conditions are prescribed. Hence, the problem (22)-(26) is
cxactly the problem like (1)-(5), and we are interested in passage to the
limit as A — 0. In particular, the problem (22)-(26) admits a variational
formulation. Boundary conditions (25)-(26) are fulfilled in the forin as it is
cxplained in Section 1. Tt can be shown that the following convergence takes
placc as A = 0

w5 u® strongly in HE(Q,), (27)

u

. : 1
7 — 0 strongly in  H(£)3), (28)
where u® = 1 on )}, i.e. a restriction of the limit function from (27) to 2;
coincides with the unique solution of the Signorini problem (16)-(19). From
(27)-(28) it is scen that the limit function u® is zcro in §22. On the other
hand, there is no limit passage for o* in {23 as A — 0. Thus, the domain (2o
can be understood as undeformable body, and the stresses are not defined in
(23. This means that the Signorini problem is, in fact, a crack problem with
nonpenetration condition between crack faces, where the crack T is located
betwecen the clastic body §2) and nondeformable (rigid} body (2,. Tt is worth
noting that, in fact, we can write the problem (22)-(26) in the equivalent
forn in the smooth domain 2, UT. by using the smooth domain formulation
of Section 2.4.
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3. GRIFFITH FUNCTIONALS EVALUATION BY THE SHAPE SENSITIVITY
ANALYSIS OF ENERGY FUNCTIONALS

The velocity method [23, 6] is used in shape sensitivity analysis of the
enegy functionals with respect to perturbations of a crack tip in two spatial
dimensions. In [6] the Hadamnard structure (23] theorem for the first and the
sccond order shape derivatives of differentiable shape functionals in domains
with cracks is given with full proof. We use the distributed form of the shape
gradient for the energy functional with respect to the crack tip perturbations
in order to define the Griffith shape functional which is further considered
in Section 47. In applications, the Griflith functional can be used, it seeins,
to control the crack propagation in elastic body with elastic and/or rigid
inclusions.

In the crack theory, the Griffith criterion can be used for the prediction
of crack propagation. This criterion says that a crack propagates provided
that the derivative of the energy functional with respect to the crack length
rcaches a critical value. In this scction we discuss the Griffith criterion and
the associated Griffith functional for the model (1)-(5).

The general point of view is that we should consider a perturbed prob-
lem with respect to (1)-(5). In particular, a crack length may be perturbed.
Perturbation will be characterized by a small parameter ¢, and t = 0 corre-
sponds to the unperturbed problem, i.e. to the problem (1)-(5). To describe
properly a perturbation of the problem, we should define a perturbation of
the domain §2,. This can be done in the framework of the sensitivity analysis
by the so-called velocity method (see [23]). We briefly recall this method in
a way uscful for our purposes.

Let us consider a given velocity field V defined in R? and describe a pertur-
bation of 2. by solving a Cauchy problem for a system of ODE. Namely, let
V € WH(R?)? be a given field, V = (Vi, V3). Consider a Cauchy problem
for finding a function ® = (&1, P2), with x the spatial variable,

d®

S (L) =V(@(tx) for t#£0, (0,2)=x. (29)

There exists a unique solution @ to (29) such that
3 = (1, 32)(t, @) € CH0, to); WE(RH?),  |to] > 0. (30)

Simultaneously, we can find a solution ¥ = (¥, ¥3) to the following Cauchy
problem

PL
Sy =-vEEY) for t#£0, WO =y G
with the some regularity
¥ = (0y, U2)(t,y) € CH0. o) Wige® (R%)?), ol > 0. (32)

It can be proved that for any [ixed ¢, the inverse function of ®(%,-) is the
function ¥(¢, ), thus

y =& ¥(ty), ==T(F3(t2)), z,yeR™
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Duc to this, we have a one-to-one mapping between the domain 2, and a
perturbed domain (3%, namely

y =3t x): Qo — 0L,

=Tt y): 0L = 0.

Morcover, by (30), (32), we have the following asymptotic expansions (/
denotes the indentity operator)

Bt z) =z +tV(z) +ri(t), (33)
(e, y) =y —tV{y) +rat), (34)
B—g);(:t—):l+t% +ry(t), (35)
8—‘;751)=I_t68—z+r4(t), (36)

Ai""i(t)||wlll;c°°(n'z)2 =o(t), i=12,
llrs ()l g

g0 (R2)2x2 = oft), 1=3.4
Hence, in the domain 2% it is possible to consider the following boundary
value problem (perturbed with respect to (1)-(5)). Find a displacement field

ut = (u},u4), and stress tensor components ¢t = {Ufj}, 7,7 = 1,2, such that

—dive* = f in (37)

ol =Ae(u) in Q (38)

=0 on I (39)

itz 0, b =0, ob Pt =0 on T (40)
ol <0, oly=0 on TH. (41)

Here,
y=®tz): T =T oIt

and we assume in this section that f = (f), f2) € CY(R?) and that a; =
const, i, 4, k0 = 1,2. All the rest notations in (37)-(41) remind those of
(1)-(5), ir particular, v* = (v, %) is a unit normal vector to I'.

We can provide a variational formulation of the problewn (37)-(41). Indeed,
introduce the Sobolev space .

HL(QY = {o=(vi,v3) |wi e HHOL), vy =0on T =12}
and the sct of admissible displacements
Kl={ve HL(OL | fv]s! 20 ae on T}
Consider the functional
{5 ) =%/Ufj(v)5ij(v) - /fivi
i Ql
and the minimization problem

min IT1(02; v). (42)

velt
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Here, agj(v) are defined from Hooke's law similar to (38). Solution of the
problem (42) exists and it satisfies the variational inequality

ut e K, (43)
/afj(u‘)e.;j(v —uf) > /fi(v,' —ul) WveKt (44)
L Qt

Having found a solution of the problem (43)-(44) we can define the energy
functional
1
(O uh) = E/Ufj(ut)fij(ut) - /fi'“:-
at at

Note that for t = 0, we have 20 = (2. and u® = v, where v is the solution of
the unperturbed problem (7), (8). The question arises whether the functional
t — H(Q4ut) is differentiable at ¢ = 0. Thus, we consider the existence of
The question whether

t,o,ty _ .
EH(QZ;ULHt:D = %im w

dt —0 t
The answer is positive in many practical situations. We consider two cases,
where the derivative

d
I= E;H(ﬂi;u‘)lho (45)

can be evaluated.

3.1. Griffith functionals for rectilinear cracks. Assume for simplicity
that the normal vector v to I'c keeps its value under the mapping z — @(¢, z),
ie. v = v. In this case,

I= % /{divV . E,;j(’u.) b QE,;J'(V—;‘U)} U{]‘(‘u) - /div(Vfi)u,-, (46)
Qe Qe

where

1 .
Ey(Usv) = §(Ui,kUk,j +vkUki), U={Uy}, 1j=12

Note that the assumption concerning the normal vector v holds for rectilinear
cracks ['c and vector fields V' tangential to T'c. In this situation, (46) provides
a formula for the derivative of the energy functional with rcspect to the crack
length what is practically needed for using the Griffith criterion.

o It will be the case when V = 1 in a vicinity of the right crack tip
and the support denoted by suppV belongs to a small neighborhood
of this tip.

» Formnula (46) for the shape derivative of the energy functional with
respect to the crack length is called the distributed shape gradient.
More precisely, by the shape gradient we understand the mapping

V> % /{divV eii(u) = 2E5(Viu)} oyg(u) —- /div(Vf,-)ui. 47)
Qe Qe




14

» In Scction 7 the cxpression of the distributed gradient (47) is shown
to be differentiable with respect to the perturbations of the linear
boundary conditions for the displacement feld. In this way the shape
derivative of the Griffith functional with respect to the boundary
variations of an inclusion far from the crack is determined.

3.2. Griffith functionals for curvilinear cracks. The formula for the de-
rivative (45) cau be derived for curvilinear cracks if the simplified assumption
on the normal vector v is not fulfilled by using an appropriate transforma-
tion of unknown [unctions t.e., of the displacement field [23]. We provide
here the formula (45) for the crack I'. which is defined by a graph of smooth

function.
Let ¥ € H3(0,11) be a given function, {; > 0, and

= {(21,22) | zoa = ¢(2;), O0<ay <}
Consider a crack I';, I'; C £, as a graph of the function ¢,
F[:{(.’El,.’lfz) | zq =‘¢7(1‘1), 0<zy <}, o<y

Here, | is a parameter that characterizes the length of the projection of the
crack I'; onto z; axis. Consider a smooth cut-off function € with a support
in a vicinity of the crack tip (. 1(l)), morcover, we assume that § = 1 in a
small neighborhood of (1,1(l)). We can consider a perturbation of the crack
I'; along ¥ via a small parameter ¢t. Denote §2; = {2\ T,. Perturbed crack T

has a tip (I +¢,¥({ +t)), and wc consider a perturbed domain 2} = (2 \T,L
It is possible to establish a one-to-one correspondence between {2, and {3 by
formulas

yy =1 +t(x), o : ot
Vo = 20+ Bz +10()) - ylay), (0T €00 Wnva) € (48]

Transformation (48) is equivalent to the following (cf. (33))
y=a+tV(z) +r(t, )
with the velocity field
V(z) = (0(2), %' (21)0(2)). (49)
In the domain {2}, we can consider a perturbed problem formulation. Namely,

it is necessary to find a displacement field u* = (u}, ub) and the stress tensor
components gt = {ij}, i,J = 1.2, such that

—divet = f in 0} (
ol = As(ut) in 0 (
ut=0 on T, (52
Lt >0, old=0, ot [u'let =0 on T (
UL, <0, 0'1L,1 =0 on Ffi. (
Here, v* = (4, v4) is a unit normal vector to I'¥. For a solution u* of (50)-(
it is possible to define the energy functional
i) = 5 [ ahues) - [ fal
o

af
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and to find the derivative
dII(Qut)

Th ==

=0
with the formula
e = 5 /{divV-sij(u)—2E,'j(V;u)}aij(u)
u (55)
- favtvsgu [os@esw) - [ o
Q 9] Q

where the vector field V is defined in (49) and w = (0,89”u;) is a given
function. Note that the formula (55) contains the function 8, but in fact
there is no dependence of the right-hand side of (55) on . In particular,
if ¥ = 0, the formula (55) reduces to (46) with {2, = (. In this case we
have a rectilinear crack and v* = v. Formula (55) defincs a derivative of the
energy functional with respect to the length of the projection of the crack I';
onto the z; axis. Hence, the derivative of the energy functional with respect
to the length of the curvilinear crack is as follows

II'(s) = W' +1)72,

where
!
o= [ VIR
0

is the length of the crack I';.

To conclude this section we briefly discuss the existence of so-called in-
variant integrals in crack theory. It is turned out that the formula (46) for
the derivative of the energy functional can be rewritten as an integral over
closed curve surrounding the crack tip.

Consider the most simple case of a rectilinear crack . = (0,1) x {0}
assuming that T, C €. Let 6 be a smooth cut-off function equal to 1 near
the point (1, 0), and suppf belong to a small neighborhood of the point (1, 0).
Then we can take the vector ficld

V =(4,0)
in (29), (31) which, according to (33), corresponds to the following change
of independent variables
y1 =1 + t0(z) +r11(t),
Yz = T2
In this case the formula (46) (or the formula (55) in a particular case ¥ = 0)
provides a derivative of the energy functional with respect to the crack length.

This formula can be rewritten [15] as an integral over curve L surrounding
the crack tip (1,0),

I= / {%vla,—j(u)sij(u) fa,;j(u)ui,wj} (56)
L
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provided that f is equal to zero in a neighborhood of the point (1,0). We
should underline two important points. First, the formula (56) is indepen-
dent of L, and second, the right-hand side of (56) is equal to the derivative
of the cnergy functional with respect to the crack length.

In fact, invariant integrals like (56) can be obtained in more complex
situations. For example, we can assume that the crack T, is situated on
the interface between two media which means that the elasticity tensor 4 =
{aiju} is as follows

S aéjk, for 22> 0
ikl = ajy for @ <0

Here, afyy, = const, afyy, = const, 1,5, k.0 = 1,2, and {a},}, {a2} satysty
the usual properties of symmetry and positive definiteness. In this case,
formula (46) for the derivative of the energy functional holds truc provided
that V' is tangential to I'.. This formula provides an existence of invariant
integral of the form (56). We should remark at this point that while the
integral (56) is calculated, the valucs oy(u)ui1v; can be taken at I'F or at
7. It gives the same value of the integral (56) duc to the equality
[G‘ij('u.)ui,[l/j} =0on .
On the other hand, we can analyze the case when a rigidity of the clastic
body part (. N {x2 < 0} goes fo infinity. Indeed, consider the following
clasticity tensor for a positive parameter A > 0,
s { afy  for 23>0

Hijkt = AtaZy, for a2 <0
Then for any fixed A > 0, the solution of the cquilibrium problem like (1)-(5)
exists, and a passage to the limit as A — 0 can be fulfilled. As we already
noted in Section 3, in the limit the following contact Signorini problem is ob-
tained. Find a displacement field ©w = (uy, ug) and stress tensor components
o = {04}, 4.7 =1,2, such that

~dive = f in N {z2> 0}, (57)

oc=Ae(u) in Q.N{z2 >0}, (58)

u=0 on 8(Q.N{z2>0})\ T, (59)

w20, 0,€0, 0, =0,0, uwv=0 on T, (60)

For the problem (57)-(60) it is possible to differentiate the energy functional
in the direction of the vector field V' = (4, 0), where the properties of 6 are
described above. The formula for the derivative has the following form (cf.

(46))
/= %/{divv oy (1) — 2B (V, w) o () — /div(Vfi)ul-. (61)
QU Q

Assume that f = 0 In a neighborhood of the point (1,0). In this case,
formula (61) can be rewritten in the form of invariant integral

I= / {%Vlaij(“)gij(“) - ”"j(“)ui‘lyj} ’ o

Ly
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where L) is a smooth curve "covering" the point (1,0). Like for invariant
integrals in the crack problems, formula (62) is independent of a choice of
L.

4. DOMAIN DECOMPOSITION TECHNIQUE FOR SINGULARLY PERTURBED
ELLIPTIC BOUNDARY VALUE PROBLEMS

Our primary concern is the domain decomposition technique [24, 25, 20]
in application to the shape sensitivity analysis of the Griffith shape func-
tional. However, the precise results on the shape sensitivity analysis of the
Griffith shape functional are given in a forthcoming paper. In this paper
we collect all the results recently obtained for shape-topological sensitivity
analysis of the broad class of variational inequalities for elastic bodies with
cracks. The asymptotic analysis in singularly perturbed geometrical domain
is performed by domain decomposition technique. The boundary variations
are used far from the defect, and the influence of the domain perturbations is
imposed on the variational inequality by means of the Steklov-Poincaré op-
erator defined within the domain decomposition technique. In this way the
conical differentiability of solutions to the variational inequality with respect
to the regular perturbations of the boundary conditions can be employed for
shape-topological sensitivity analysis of the specific functional defined in the
subdomain which contains the crack. This is the casc of the Griffith shape
functional evaluated for a crack with nonlinear boundary conditions pre-
scribed on the crack lips.

The reference domain (2 \ T, of the elastic body under considerations is
divided into two subdomains §2, with a crack I', inside and §2; with an elastic
inclusion w inside. The domains are coupled within the nonlinear elasticity
boundary value problem with the nonlocal houndary conditions defined on
the interface I',p := ;N2 by an appropriate Steklov-Poincaré operator. In
this section, however, we introduce the domain decomposition technique for
the evaluation of the topological derivatives [24, 25, 20].

Let us consider the linear elliptic boundary value problems, and describe
the domain decomposition technique for asymptotic analysis of the energy
functional in singularly perturbed geometrical domains. The method is pre-
sented for simplicity for circular holes and for the Laplacian with Neumann
conditions on the hole, and the Dirichlet condition on the outer boundary. In
such a case the function f(¢) = £? is used in asymptotic analysis. The shapc
functional is defined by the associated energy functional to the boundary
value problem.

The domain decomposition technique and the Steklov-Poincaré nonlocal
boundary operators are used in the topological sensitivity analysis of non-
linear variational problems. We start with a scalar linear boundary value
problem in order to present the outline of the method. Therefore, given
domains 2 and Q% (Z) = N\ B.(Z) C R?, where B.(%) is a ball of radius
e — 0 and center at a point Z € () far from the boundary I' = 952, with
B, € §2. By u,. we denote a unique classical solution of the Poisson equation
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in singularly perturbed domain:
Find u, such that

—-Aue = b in Q.
u, = 0 on 0N, (63)
Oqte = 0 on 0B,

where b € C%*(Q), with o € (0. 1), is a given element which vanishes in
the vicinity of the point ¥ € . The solution u. of the boundary value
problem (63) is variational, since ue € V, C H!(f2.) minimizes the quadratic

functional N

Zip) = [ 1ot~ [ 1o (64)
over the linear subspace Ve ¢ H(§2,), where Ve is defined us

Ver={p € H'Q) 1 . =0} . (65)

The shape functional

J() = j(“z}”s)%%} “vusllz'[-z bus:_%A bue (66)

defined by the equality
T(Q;ue) = Te(u,) (67)

is the energy functional evaluated for the solution of the boundary value
problem (63) posed in the singularly perturbed domain 2.
Proposition 4.1. The energy admits the ezpansion with respect to the small
parameter € — 0 of the following form:

T(0) = Ta(u) - 7| Vu(@)|* + o(e?) , (68)
where ||[Vu(Z)||? is the bulk energy density at the point T € 2 and u is a
solution to (63) for e = 0.
Remark 4.2. The bulk energy density functional H(2) 3 p = [|[Ve(F)||> €
R, in general, is not continuous at a point T € (1. Therefore, the bulk energy
density is replaced by a continuous bilinear form H(2) 3 ¢ = (B(p). @)1, €
R. For the Laplacian in two spatial dimensions and the solution of unper-
turbed problem u which is harmonic in a neighborhood of T, the appropri-
ate continuous bilinear form with respect to H(() norm, such that there is
cquality for u,

IVu@)1? = (B(u), u)ry

is given by (72) or (74). This replacement of [[Ve(Z)||? by (Blp), v)r, in
the energy functional for problem (63) has been introduced in [24, 25] for the
purposes of topological derivatives evaluation in the framework of domain
decomposition method.
Note 4.1. If we combine (64) with (68), we arrive at the conclusion that
the modificd energy functionul

1
1) 2955 [1961° - [ o=t (Be). o)en € R

is an approzimation of (64) which furnishes the topological derivative (68)
but with the minimization over unperturbed space H()). This observation
s in fact used in the domain deecomposition method for unilateral problems.
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4.1. Domain decomposition technique. Now, we are going to decom-
pose the linear elliptic problem (63) into two parts, delined in two disjoint
domains 2z and C(R,e) := B\ B: C , R > ¢ > 0. Two nonoverlapping
subdomains g, C(R, £) of {2, are sclected 2, = QrUTRUC(R, €), where we
assumie that R > g, € € (0, £g] and I g stands for the exterior boundary 885
of C(R,€). Since the gradient of Sobolev functions is not continuous for test
functions in H1(f2), but it is the case for harmonic functions, we replace the
pointwise values of the gradient of test functions by a representation formula
valid only for the pointwise values of the gradient of a harmonic function.

Proposition 4.3. If the function u is harmonic in a ball B € R2, of radius
R > 0 and center at T € §2, then the gradient of u evaluated at T s given by

Vu(s) = r—}l@/r (@ - Dulz) . (69)

Proof. The proof of this result we lcave as an excrcise. O
In view of (69), since b = 0 in Bp for sufficiently small R > &g, cxpansion
(68) can be rewritten in the cquivalent form

(00 = 7(0) - —ﬂ% {(Aﬂuxl>2 n (A ua;2> 2} +oled),  (70)

where 2 — Z = (23, 22). As obscrved in |24, 25|, it is intcresting to note that
(70) can be rewritten as follows

T(%) = T () — e2(B(u), wyr,, + o(e?) . (71)

with the nonlocal, positive and selfadjoint boundary operator B uniquely
determined by its bilincar form

(B wry = ;r% {(/FR m,>2 + (/In uzg) 2} _ (72)

From the above representation, since the linc integrals on I' arc well de-
fined for functions in LY(I"g), it follows that the operator B can be extended
¢.g., to a bounded opcrator on L%(I'g), namely

Be LL*Tr) L*TR)) . (73)

with the samc symmetric bilincar form

Behora =g [ [ om [ om+ [ oo [ om0

which is continuous for all ¢, ¢ € L?(I'g). We obscrve that the bilinear form
L*(Tgr) x LATR) 3 (p,¢) +» (B(p), é)rs ER (75)

is continuous with respect to the weak convergence since it has the simple
structure

(Blo). #)rp = L1(0)L1(¢) + La(p)L2(¢) @.¢ € LYTr)  (76)

with two linear forms ¢ +> Li(p) and ¢ ~+ La(¢), given by the line integrals
on g
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4.2. Steklov-Poincaré pseudodifferential boundary operators.

Note 4.2. We determine the family Steklov-Poincaré boundary operators on
the outer boundary I'r of the domain C(R, ), if there is a hole B inside of
C(R,e).

We select R > 0 such that the circle (or the ball for d = 3) Bp contains
the hole B, and introduce the truncated domain Q. For the boundary value
problem defined in €2, we introduce its approximation in {0g. The singular
perturbation (2, of the geometrical domain 2 is replaced by a regular per-
turbation of the Steklov-Poincaré boundary operator living on the interface,
which coincides with the interior boundary I'p of Q2g.

Definition 4.4. The Steklou-Poincaré boundary operator

Ac: HY*(Tg) » H™*(Tg) (77)
is defined for the Puisson eguation in the domneain C(R,€). For o fived pa-
rameter € > 0 and a given clement v € H/2(T'g), the corresponding element
in the range of the operator A is given by the Neumann trace of a unique
solution to the boundary value problem

Find w, such that

-Aw, = 0 in C(Re), (78)

We v on g,
Onwe = 0 on 8B..

I

Then we set
Ae(v) = 0awe on Tg, (79)

where n is the unit exterior normal vector on AC(R, €).

Remark 4.5. Let us note that, in absence of the source term b, the energy
shape functional in C(R, &) evaluated for the harmonic function w,. coincides
with the boundary energy of the Steklov-Poincaré operator on I'g cvaluated
for the Dirichlet trace of the solution w,, namely

[ 19w = (A, vy (80)
c )

€
Therefore, the asymptotics of the energy shape functional in C(R,e) fore —
0, gives rise to the reguler expansion of the Steklov-Poincaré operator:

Ac=A-2B+R, . (81)
where the remainder denoted by R in the above expansion is of order o(e?)
in the operator norm L(HY2(Tg); H-Y2(CR)).

By Remark 4.5 we obtain the strong convergence of solutions in the trun-
cated domain. In fact, let us state the following important result:
Proposition 4.6. The sequence of solutions u, converges as € = 0 in the
following sense. For any R > 0,

ult 5wl strongly in  H'(Qg) , (82)
where (g := A\ BR, € € (0,£0], and R > &y > 0, where Bg is a ball of
radius R and center at T € Q.
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Praof. Let uft be the restriction to (Ug of the solution u. to (63), namely
ull € HN Q) : / Vult -y + / Al = / by YneHMQgp).  (83)
Qn Cn Qn
In the same way, for € = 0 we have

W e Hi R : [ Ve v+ / Ay = / b Vne HEQR).  (84)
Qn Tr Qr

where ©f is the restriction to Qg of the solution to (63) for ¢ = 0. In
addition, H}:(S2g) is a subset of H'({2g), which is defined as

HYQp) o= {p € H'(Qn) : 91, = 0} (85)

By taking n = uf — w# and after subtracting the second equation from the
first one we get

/ IV (uf - w2+ / (A () - A @ - By =0. (86)
On g
By taking into account the expansion (81) we obscrve that
[ vGE-uBP = [ @Bu® - Rl - w87
Qn Pr
From the Cauchy-Schwarz inequality we obtain
/n ”V(UéT - UR)HZ < 252"3(1111)"11—1/2(1‘,1)||U§ - UR”HW(FR)
r

+ ”RE(UR)”H‘UZ(FR)“u?_uR”HUZ(FR) . (88)

Taking into account the trace theorem and the compactness of the remainder
R., we have

/n IV (u® - uB)? < 2C1 {108 — wBll o - (89)
R

Finally, from the coercivity of the bilincar form on the left hand side of the
above inequality, namely,

et ~ gy < [ IV~ B, (90)
Nn
we obtain
Il = uBll gy < Ce?, (91)
which leads to the result, with C = C)/c. ]

Now, we make use of the Steklov-Poincaré operator defined above for the
annulus C'(R,¢) in order to rewrite the energy shape functional in (), as a
sum of integrals over (2 and of the boundary bilinear form on T'g,

7@ =5 [ AVul - [ buk e e, (02)

which is possible since the souree term b vanishes in the small ball By around
the point T € (2.
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In conclusion, another method of evaluation of the topological derivative
for the energy shape functional is now available. We have the energy shape
functional in the form

1 1
g0~ it {3 [ 1velr- [ sorjadoen ) o
SR ALY [ ot} 09
where HE(Q2g) is defined trough (85). Taking into account expansion (81),
from (93) it follows by an elementary argument that

= in 1 2_ E
— e2(B(u), ur, +0(e?), (94)

where (94) coincides with (71). The range of applications of the presented
method is not limited to linear problems only. In fact, this is the only avail-
able method without any strict complementarity type assumptions on the
unknown solution of the variational inequality, for evaluation of topological
derivatives of the energy shape functional for unilateral problems.

5. DOMAIN DECOMPOSITION TECHNIQUE FOR TOPOLOGICAL
DERIVATIVES EVALUATION

The method of comnpound asymptotic expansions is usually used for the
purposes of asymptotic analysis of elliptic boundary value problems in sin-
gularly perturbed geometrical domains. The application of this method
requires the linearization of the boundary value problem under considera-
tions which becomes quite involved in the case of variational inequalities [1].
Therefore, the domain decomposition technique was proposed and used in
[24, 25}, as well as used in [20] for the purposes of topological derivation for
variational inequalities which describe the static frictionless contact between
an elastic body and a rigid foundation as well as for cracks with the unilateral
nonpenetration condition.

We recall that the Sobolev space H!(f2) is the Dirichlet space for the
natural order, we refer the reader e.g. to (6] for further dctails in the case
of contact problems in linear elasticity. By the Dirichlet-Sobolev space we
mean the ordered Sobolev spaces e.g., HX(2) or H/2(92) with the following
property for the natural order. If the function z +— u(z) is in the Sobolev
space, then the function z — u*(z) := max{u(z), 0} belongs to the Sobolev
space.

5.1. Problem formulation. Let us consider the new boundary value prob-
lem, with nonlinear boundary conditions on I'. C 2. For the domain with
a hole B.(Z), where Z € 2, the boundary value problem takes the following

form:
Find u, such that

—Au, = b in Q,
u = 0 on I,
Ope = 0 on 8B, (95)
Ue 2 0
Onptte < 0 on Iy,
Ue Onlle = 0
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where the source term b € C%*(QQ) vanishes in the neighborhood of the point
Z € (2. A weak solution u, of problem (95) minimizes the cnergy functional
(64) over a cone in the Sobolev space, and the shape encrgy functional takes

the form
1
(o f Volf? /b } 96
700 = o ut A5 [ wwel - [ e (96

where the liner space V; is defined by (65).

Now, let us consider the domain decomposition method for (95), assuming
that I'. ¢ Qp. In particular, this means that the linear space HIE((ZR) defined
through (85) is replaced in (93) by the convez and closed subset

K= {p € HXOR) : ¢y, > 0}, (o7)
and the functional including the Steklov-Poincaré operator is as follows
268y = o {3 [ 10t~ [ borzAoheina) . (9
vek | 2 Jo, g 2
In order to establish the equality
ZR(ul = T, (99)

it is sufficient to show that the minimizer uf in (98) coiucides with the
restriction to Qg of the minimizer u. of the corrcspondmg quadratic func-
tional defined in the whole singularly perturbed domain Q, which is left as
an exercisc. In this way we obtain

T@) = / Vel / bue

1
= g [ N7l = [ et Sl e
= IsR( 5)
= inf {%A ||V</>HZ—/D bnp-l—%(As((P)»‘P)l‘n} . (100)

@EK
thus, the topological derivative of 7(§2) can be evaluated by using the cx-
pansion of ZE(uf). The assumption requircd for the derivation of ZR(uf)
with respect to the parameter £ at ¢ = 0% is only the strong convergence as
£ - 0 for fixed R > 0, namely uff — «% strongly in H1(Qp), i.c., there is
no need for differentiability properties of the minimizer v € HY(Qg) with
respect to € (sce the proof of Proposition 4.6).

5.2. Hadamard differentiability of minimizer for parametric pro-
gramming in function spaces. The existence of the conical differential
for the mapping
[0,80) 3 e s v € HY(Qp) (101)
18 established.
We introduce:
e The quadratic functional

G(6) = 5%(6.0) ~ 1%(p) + HHAW@), Dhrn — Bl P, (102)
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where
op)= [ IVl md f)= [ e 0
On Nr
e The coincidence set
Zi={zel.:u?=0}. (104)
o The linear form (nonegative measure)
{pe: ) = a"(uR, ) = 17(p) + (AR, @)ry - (105)

s The convex cone
S ={p e H{(QR) : ¢ >0 qe. on Z, (ue,@)=0}.  (106)

We recall that the symbol g.e. reads "quasi everywhere" and it means,
everywhere, with possible exception on a set of null capacity.

Theorem 5.1. For fired R > 0 we have
fleg = w gaiap) < Cre® (107)

Furthermore, there is an expansion with respect to e — 0F,

uwll =P+ 2B +08(e?) i H'(Qg). (108)
The element vt € HY(S2p) s uniquely determined by a solution to the fol-
lowing quadratic minimization problem

R Ry B R
g™ = peiny G w) - (109)

Remark 5.2, The result established in Theorem 5.1 can be obtained as well
for a class of contact problems by an application of general results given in
|6, 23].
5.3. Topalogical Derivatives. In this section the outline of the domain
decowmposition method for variational inequalities is given. The topological
derivative can be evaluated for the energy shape functional. The scalar ellip-
tic equation as well as the linear elasticity system in two spatial dimensions
with the unilateral conditions far from the hole are considered. The case of
three spatial dimensions can be described in the same manner. The unilat~
eral conditions are imposed for the weak solutions of elliptic boundary value
problems by a cone constraint for the minimization of the quadratic encrgy
functional. We recall that the cone of admissible displacements in contact
problems of lincar clasticity is defined by the nonpenetration condition. The
unilateral condition is only an approximation of the real condition and it is
prescribed for normal displacements in the contact zone. Thus the normal
displacements in the contact zone belong to a positive cone in the space of
traces.

In this part we restrict ourselves to the circular holes. Let us recall the
notation for the domain decomposition technique. Given a domain ), =
0\ B. C R?, with a small hole B, C Bp of radius ¢ — 0 and center at
Z € (2, we denote by (g = 0\ Bg the domain without the hole B, and by
C(R,e) = Bgr \ B: the ring with the small hole B, inside. It means that
the domain §2, is decomposed into two subdomains, the truncated one {1g
and the ring C'(R,€). The main idea which is employed here is to perform
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the asymptotic analysis for a linear problem and then apply the result to
the nonlinear problem in a smaller domain called truncated domain. This is
possible for unilateral conditions prescribed on I’y C {25, where the set T, is
far from the hole B, and therefore far from the ball Bp.

Under this geometrical assumption it is possible to restrict the asymptotic
analysis to the ring C(R, ¢). Then the obtained result on the asymptotic be-
havior of the associated solution to the boundary value problem defined in
the ring is applied to the variational incquality considered in the truncated
domain 25. In this way the singular domain perturbation in the ring influ-
ences, by a regular perturbation, the boundary conditions on the interface
for variational inequality. The regular perturbation is governed by a non-
local, pseudodifferential, selfadjoint boundary operator of Steklov-Poincaré
type. The nonlocal Steklov-Poincaré operator is introduced on the inter-
face between two subdomains, it is the exterior boundary I'p of the ring,
which is exactly the interior boundary of the truncated domain Q. The
subproblem to be solved in the truncated domain is a variational inequal-
ity associated to the constrained minimization problem over a closed convex
cone K C H(R):

Find a unique minimizer u, € X of the quadratic encrgy functional

T8() = 5270, 6) — 1)+ 5 (Ael2), ) (110)

where A, stands for the Steklov-Poincaré operator for the ring C(R,¢)
and (-, -)r, is the duality pairing defined for the fractional Sobolev spaces
HY2(I'g) x HY2(I') on the interface I' g, associated with the correspond-
ing Steklov-Poincaré operator A. : HY?(Tg) — H~Y%(I'g). We nced an
assumption on its asymptotic behavior, which is:

Condition 5.3. The Steklov-Poincaré operator for the ring C(R,e) admits
the ezpansion for £ > 0, £ small enough,

Ae=A-2f(e)B+ R, (111)
with an appropriate function f(e) — 0, when ¢ — 0, depending on the
boundary conditions on the hole, where the remainder R, is of order o(f(€))
in the operator norm L(H2(T'g); H=Y/2(T'g)).

Remark 5.4. In the scalar case the operator B is defined by the bilinear form
(74). From (81) it follows that f(g) = &% for the Newmann boundary condi-
tions on the hole Be. For our specific applications, cxpansion (111) results
Jrom the asymptotics of the shape energy functional in the ring C'(R,¢), as it
15 for the scalar problem. If the form of operator B in (111) is known, in order
to apply the general scheme the only assumption to check is the compactness
condition for the remainder in the operator norm L(HY2(T'g); H~Y2(Tg)).

Therefore, the original variational inequality defined in the domain €2 is
replaced by the variational inequality defined in the truncated domain Qpg.
In this way, for the purposes of asymptotic analysis the original quadratic
functional defined in the domain of integration (2., namely J(£2; ), is re-
placed by the functional Z%(y) defined in the truncated domain without any
hole. Two problems are equivalent under the following assumption on the
minimizers u, and uf of J(§%;¢) and T2(p), respectively.
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Condition 5.5. For e > 0, with € small enough, the minimizer uf n the
truncated domain coincides with the restriction to the truncated domain {1g
of the minimizer 1, in the singularly perturbed domain (2.

If Conditions 5.3 and 5.5 arc fulfilled, then the topological asymptotic
expansion of the energy functional

1
TQeue) =5 [ 1Vuel® = [ bue (112)
2/n 0

can be determined from the expansion of the energy functional in the trun-
cated domain, namely

TR = 20"l ) - PR + S (AWE r, (113)

where uf* is the restriction to the truncated domain (2 of the solution u, to
the variational inequality in the perturbed domain 2. Under our assump-
tions, the solution u, coincides with the solution obtained by the domain
decomposition method.

The evaluation of the topological asymptotics expansion for the energy
functional (112) is based on the equality (99), so we have J(Sd5ue) =
ZR(ult), combined with the following characterization of the energy func-
tional

7868 = inf {3670 0) <170 4 A ) - (10

The quadratic term @ — (A (), 0)ry, of the functional Z7(p) is, in
view of assumption (111} or of Condition 5.3, the regular perturbation of
the bilinear form in the quadratic functional ZF(p). Therefore, we obtain
the result on the differentiability of the optimal value in (113) with respect
to the parameter ¢.

Proposition 5.6. Assume that:
» The Condition 5.3 given by (111) holds in the operator norm.
e The strong converyence takes place uf — ull in the norm of the space
HY(QpR), which also defines the energy norm for the functional (114).
Then, the energy in the truncated damain % has the following topological
asymptotic ezpansion
TR = T%u®) - f(e) BEP). v )y +0(f(e)) (115)
where u* is the restriction to the truncated domain S0 of the solution u to
the original variational inequality in the unperturbed domain ). Therefore,
the topological derivative of the energy shape functional is obiained from the
asymptotic expansion

T us) = T(Qu) ~ fe){Bu), w)ry + o(f(e)) . (116)
Proof. There are inequalities
IRD) - T8 _ IF@d) - TR _ ZFf) - IR@R)

FiG) ST e W

<
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which imply the existence of the limit

s 20 = 278
£(e)=0 f(€)

lim IR b)) - T7(u®)
£(£)=0 fle)
i inf Ze 1) = TR

. 'uR I )
Fe)0 7@ = (B(u"),u")ry (118)

From (115), in view of (99), it follows (116). )

We can conclude the analysis for the Signorini problem, and confirm that
the topological derivative of the encrgy shape functional is given by the same
formula as it is in the lincar case.

Theorem 5.7. The energy functional for the Signorini problem admits the
eIpansion

T (s 1.) = T(Qu) — 7| Vaul? + o(e?) , (119)

where the topological derivative T(Z) = —||Vw(Z)}f? is the negative bulk en-
ergy density at the point T € ). Since the solution of the Signorini problem
is harmonic in a vicinity of T, the expansion is well defined. Therefore,
the topological derivative of the energy shape functional is given by the same
ezpression as it is in the case of linear problem.

6. CONICAL DIFFERENTIABILITY OF METRIC PROJECTIONS IN DIRICHLET
SPACES ONTO POSITIVE CONES AND APPLICATIONS TO TIIE SHAPE
SENSITIVITY ANALYSIS OF VARIATIONAL INEQUALITIES

The conical differentiability of metric projection onto the positive cone in
the Dirichlet space is considered in [23, 6] with applications to the scnsitiv-
ity analysis of variational incqualities. There are numerous applications of
such results for the shape sensitivity analysis of the Signorini problem and
frictionless contact problems in elasticity [23], crack models with unilateral
nonpenetration condition |6, We recall that the shape differentiability of the
encrgy functional for cracks with unilateral nonpenetration condition which
is established in [14], does require only the appropriate strong shape conti-
nuity of solutions to variational inequalitics and can be obtained under mild
regularity assumptions on the governing variational inequality {6]. In Section
6.3 the topological derivative of the cnergy functional is given for the clastic
body with a rigid inclusion, weakencd by a crack on the boundary of the
inclusion. Tt is assumed that on the crack the unilateral nonpenetration con-~
dition is prescribed which makes the analysis more mvolved [20| compared
to the linear casc.

For the convenience of the reader we recall herc the abstract result [23]
which 15 a gencralization of the implicit function theoremn for variational
inequalities. We usc the result on the Hadamard differentiability of the
metric projection on polyhedral convex sets in Hilbert spaces duc to Mignot
and Haraux, we refer the reader to [6] for a simple proof of such a result.
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6.1. Generalization of implicit function theorem for variational in-
equalities. Hadamard differentiability of solutions to variational
inequalities. Let K C V be a convex and closed subset of a Hilbert space
V, and let (-, ) denote the duality pairing between V' and V, where V' de-
notes the dual of V. We shall consider the following family of variational
inequalities depending on a parameter t € [0, fp), tp > 0,

ug €K ¢ ague, @ — ug) 2 {be, 0 — ug) Yoek. (120)
Moreover, let u; = Py(b:) be a solution to (120). For t = 0 we denote
uek :alu,p-u)2be-u) Vpek, (121)

with u = P(b) solution to (121).

Theorem 6.1. Let us assume that:

o The bilinear form a:(-,) : V xV — R is coercive and continuous
untformly with respect tot € [0,tp). Let Qp € L(V; V') be the linear
operator defined as follows ai(, p) = (Qu(d).p) Vo, € V; it is
supposed that there ezists @ € L(V;V') such that

Qi =0+tQ +o(t) in LWVV). (122)
o Fort > 0, t small enough, the following equality holds
be=b+th +o(t) in V. (123)

where by, b, b’ € V.
o The set K C V is convex and closed, and for the solutions to the

variational inequality

Ib=Pbh)eXL: a(llbp—1Ib) > (byp—1Ib) VYp ek (124)
the following differential stability result holds
YheV': T(b+sh)=1Ib+slI'h+o(s) in V (125)

for s > 0, s small enough, where the mapping II' : V' = V is contin-
uous and positively homogeneous and o(s) is uniform, with respect to
h € V', on compact subsets of V'.
Then, the solutions to the variational inequality (120) are right-differentiable
with respect tot at t =0, i.e. fort > 0, t small enough,
u=u+tu +ot) in V, (126)

where
u =10 - Q). (127)

Let us note, that for b; = 0 and u; = P;(0) we obtain v’ = I1'(—Q'u).

6.2. Applications to unilateral contact problems. We recall a result

on the topological derivatives of the energy functional for elastic bodies with

rigid inclusions with cracks on the interfaces. We refer to [20] for the proof.
Let us introduce the description of the convex cone Sk (u),

Si(u) = {40 € HE(21): [e] -n > Oon Ty; /n ICRE /n w}
(128)
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where To = {z € T : (u— pp) - n = 0}, where pp := u,. We have the
following result:

Theorem 6.2. Let there be given the right hand side by = b + th of the
variational inequality which governs the unilateral contact problem under in-
vestigations, then the unique solution u, € K, is Lipschitz continuous

ffw ~ ull oy mey < Ct (129)
and conically differentiable in HY(Q0y;R?), that is, fort > 0, t small enough,
ug=1wu+tv+o(t), (130)

where the conical differential solves the variational inequality
v e Sk (u): / o) -Vip—-v)’ = / h-(n—-v) VneSxu). (131)
O\ Qr
The remainder converges to zero
1
?HO(t)llyl(nT;mz) o 0 (132)
uniformly with respect to the direction h on the compact sets of the dual space

(HY(S2y)). Thus, v is the Hadamard directional derivative of the solution
to the variational inequality with respect to the right hand side.

6.3. Example. Topological derivative of energy functional for the
crack on boundaries of rigid inclusions. We present an example of
shape-topological sensitivity analysis for a crack located on the boundary
of a rigid inclusion. The rigid inclusion can be considered as the limit case
of elastic inclusions. In this particular casc the general theory applies and
we arc able to present the topological derivative of the energy functional
following [20].

Let us now consider a singularly perturbed domain 2.(Z) = Q \ B.(%),
where Be(Z) is a ball of radius ¢ > 0, ¢ = 0, and center at T € Q\ @.
We assume that the hole B, do not touch the rigid inclusion w, namely
B.eN\w@.

We are intercsted in the topological asymptotic expansion of the cnergy
shape functional of the formn

1
Tespr=5 [ o) v~ [ vy, (133)
£\ T

with ¢ = u, solution to the following nonlinear system:

Find u, such that
—divo (ue) b n 0 \@,
olu) = CvVu,

e = 0 on T,

cluejn = 0 on 9B,
(ue —po)'n = 0 (134)

o (u) = 0 +

o™ue) £ 0 on TT,
o™ (ue)(ue ~ po) o = 0
- olugn-p = /b»p vV peRWw).
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Since the problem is nonlinear, let us introduce two disjoint domains {2
and C(R,¢), with Qg = @\ B(Z) and C(R,e) = Bg \ B; € 1\ w, where
Bg(%) is a ball of radius R > ¢ and center at 7 € 2\ @. For the sake of
simplicity, we assume that b = 0 in Bg(T), that is, the source term 4 vanishes
in the neighborhood of the point £ € {1\ @. Thus, we have the following
linear elasticity system defined in the ring C(R, ¢):

Find we such that

—divo(we) = 0 in C(R.¢e),
o(we) = CVuwi, (135)
We = VU on FR B
olug)n = 0 on 0B,

where T'g is used to denote the exterior boundary 9Bpg of the ring C(R, £).
We are interested in the Steklov-Poincaré operator on [, that is
Ac:v e HY3 T R?) — o(we)n € H V(T ;R . (136)

Then we have o(uf)n = A (uF) on I'y, where uf is solution of the varia-
tional inequality in §2g, that is

wlek, / o(uB) V(n-uF / Al (n - ufy
// bo(n—uf) V¥neK.. (137)
Qr\Br
Finally, in the ring C(R,€) we have

/ a(wg)-w:=/ Acliwe) - we , (138)
C(Re) Ty

wherc w, is the solution of the elasticity system in the ring (135). Therefore
the solutions uf and w, are defined as restriction of u, to the truncated
domain {25 and to the ring C(R, €), respectively.

In particular, in the neighborhood of Z € § \ W, the energy in the ring
C(R, €) admits the following topological asymptotic expansion

/ U(U)E)'Vw:Z/ o (w)-Vw'—27ePo (w(F)) Vw (@) +o(e?) . (139)
C(Re) Br

where w is solution to (135) for ¢ = 0 and PP is the polarization tensor.
It means that w is the restriction to the disk By of the solution u to the
nonlinear system defined in the unperturbed domain Q. Therefore, we have
that the Steklov-Poincaré operator detined Ly (136) adinits the expansion
for £ > 0, with € sinall enough,

Ae = A~ 228+ o(e?) (140)
where the operator 5 is determined by its bilinear form
(B(w), w)rg = 7Po(w(Z)) - Vw(Z) . (141)

From the above results, we have that the energy shape functional asso-
ciated to the cracks on boundaries of rigid inclusions embedded in elastic
bodies has the following topological asymptotic expansion

T () = T() — e Po (u(ZF)) - V' (7) + o(e?) , (142)
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with the topological derivative T(Z) given by
T(Z) = ~Po(u(T)) - Vu'(T) , (143)

where u is solution of the variational inequality in the unperturbed domain
€2y and PP is the Polya-Szegb polarization tensor.

Remark 6.3. From cquality (138) we observe that the biltnear form (141)

represents the topological derivative of the Steklov-Poincaré operator (136).

In addition, since solutionu € K, of the variational inequality is a H*(Qy; R?)
function, then it is convenient to compute the topological derivative from

quantities evaluated on the boundary I'p in similar way as for the scalar

case.

7. SIAPE SENSITIVITY ANALYSIS OF THE GRIFFITH FUNCTIONAL

In a fortheoming paper the first order shape-topological seusitivity analysis
of encrgy [unctionals is used to establish the shape diflerentiability of the so-
called Griffith shape functional. We are going to describe briefly a result of
this sort.

Example 7.1. Let Q = Q.U UQ; be an elastic body with the rectilinear
crack [y C 8 C S, thus 0 := [, U Q. We consider the shape functional
defined by (46) which is called the Griffith functional

J(0) = % / {divV - e35() — 2E55(Vi )} o (w) — / div(V fi)us,
Q. Qe

where the displacement field u is given by the unique solution of the varia-
tional inequality

vueX alu,v—u) 2 (fiv—u) YueR, (144)

and the velocity vector field V is compactly supported in Q.. We need the
decomposition of Q into . and ; for the purposes of the domain decompo-
sition technigue to our problem. Let w C §2; be an elastic inclusion.

Proposition 7.2. Assume that the eneryy shape functional £(§Y;) is shape
differentiable in the direction of the velocity field W compactly supported
in a neighbourhood of the inelusion w C §Q;, then the Griffith functional is
directionully differentiable in the direction of the velocity field W.

The result is proved by the domain decomposition technique with a lin-
car problem in {); which is used to determnine the cxpansion of the cunergy
functional with respect to the boundary variations of an inclusion and the
nonlincar problem in cracked subdomain {2, which is used to obtain the
conical differentiability of the solution with respect to the variations of the
Steklov-Poincaré operator:

o the differentiability of the energy functional in the subdomain 2; im-
plies the differentiability of the associated Steklov-Poincaré operator
defined on the Lipschitz curve given by the interface 2; N2, with
respect to the scalar parameter ¢ — 0 which governs the boundary
variations of the inclusion w;
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o the expansion of the Steklov-Poincaré nonlocal boundary pseudodif-
ferential operator obtained in the subdomain §2; is used in the bound-
ary conditions for the variational inequality defined in the cracked
subdomain 2. and lcads to the conical differential of the solution to
the unilateral problem in the subdomain;

e the one term expansion of the solution to the unilateral problem
is used in the Griffith functional in order to obtain the directional
derivative with respect to the boundary variations of the inclusion.
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