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Bounds on trade-offs and stability 
in vector combinatorial problems 

Dmitry Podkopaev 

Abstract We consider the multiple criteria linear problem of 0-1 programming. 

We study the stability of efficient solutions satisfying upper bounds on trade-off 

coefficients. The approach to bounding trade-offs is based on linear transformation 

of the criterion space. We obtain a formula of the stability radius to perturbations 

of the criterion function coefficients, thus establishing dependence between partia! 

information about preferences and stability aspects. 

Keywords: multiple objective optimization, MCDM, combinatorial optimiza­

tion, bounds on trade-offs, stability radius 

1 Introduction 

The stability analysis is an important part of many fields of applied research. 

J . Hadamar [5] included the stability condition into the definition of a well-posed 

mathematical problem (along with the solution existence and uniqueness). The is­

sue of stability in a multiple objective optimization problem arises when the feasible 

solution set and/or criteria functions depend on depend on uncertain parameters. 

Such uncertainty may be caused by inaccuracy of initial data, inadequacy of the 

model specification, rounding off errors and other factors. So it seams important to 

study conditions under which small changes of input data lead to small changes of 

the result. The problems satisfying such conditions are called stable. Clearly, any 



practical problem of decision making can not be correctly formulated and solved 

without addressing the issue of stability. 

The stability analysis of a discrete optimization problem is usually aimed at 

calculating the stability radius, which is defined as the limit level of perturbations of 

problem parameters preserving a given property of the solution set. Stability radius 

is investigated for scalar problems of 0-1 programming, on systems of subsets and 

graphs, scheduling problems (see for example the surveys by Sotskov, Leontiev and 

Gordeev [10], by Sotskov, Tanaev and Werner [11] and the annotated bibliography 

by Greenberg [1]). In the case of multiple objectives, analogous results are obtained 

for very few types of problems (we refer to a short survey described in Emelichev et 

al. [2]). The objects of stability analysis were different types of efficient solutions. 

The stability of solutions obtained using some information about decision maker 

preferences has never been studied before. 

In this paper we study the stability of efficient solutions satisfying upper bounds 

on trade-off coefficients. Bounding trade-offs is an approach to handling partia! in­

formation about DM's preferences (see for example the book by Kaliszewski [6]). 

In particular, this approach is used in interactive methods of MCDM with relative 

preference expressing (see for example Kaliszewski and Zionts [7]). We use the tech­

nique of finding trade-off solutions based on linear transformation of the criterion 

space (see Podkopaev [8], [9]). We obtain a formula of stability radius of the trans­

formed problem to perturbations of the criterion function coefficients. This formula 

allows establishing a dependence between the information about preferences (upper 

bounds on trade-offs) and the problem stability. 
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2 The problem statement 

Consider a linear multiple objective combinatorial problem formulated as the 0-1 

programming problem with the fixed feasible solution set: 

Where 

Cx -t max, 
xEX 

X ~ {O, 1 }", n> l , is the set of feasible solutions, I X I> 1; 

C = [CiJ]k xn E Rk xn is the matrix of vector criterion coefficients; 

k is the number of criteria. 

(1) 

We use the approach to bounding trade-off coefficients proposed by Podkopaev 

[8]. Let Ct;J be the upper bound on the global trade-off coefficient of criterion i 

with respect to criterion j (see the definition in Kaliszewski [6]) . Define the matrix 

B = [,B;J]kxk by ,B;J = o!; , ,B;J = O if a;J is undefined (when the upper bound on the 

trade-off is infinite) and /3;; = 1. It was proved by Podkopaev [8) than under same 

conditions, the efficient (Pareto optima!) solutions of the transformed problem 

BCx -t max, 
xEX 

are efficient solutions of (1) satisfying the upper bounds on trade-off coefficients. 

(2) 

The interpretation of solutions of problem (2) in terms of bounds of trade-offs 

and its comparison to the "traditional" concept of global trade-off coefficients is 

given in [9]. 

We call the efficient solution of problem (2) the B-efficient solution of problem 

(1) . The set of B-efficient solutions is defined by 

PB(C) = {x EX: 7rB(x, C) = 0}, 

where 

7rB(x, C) = {x' EX : BCx' 2: BCx, BCx' =/ BCx}. 

The problem of finding set PB(C) is denoted by ZB(C). 
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Both matrices C and B contain parameters of problem ZB ( C). We place B in the 

subscript distinguishing the role of parameters /3ij· Matrix B presents the partia! 

information about decision maker preferences, while C contains the parameters of 

the mathematical model coming from the real data. We investigate the problem 

stability only to perturbations of the elements of matrix C. 

We will use the following representation of the i-th criterion function, i E Nk := 

{1,2, ... ,k}, of problem (2): 

BiCx, x EX. 

Here and henceforth a subscript at a matrix indicates the corresponding row of the 

matrix. 

3 The stability radius 

Let us introduce forma! definitions of stability which corresponds to the notation 

presented in [2]. 

The perturbation of problem parameters is understood as an arbitrary indepen­

dent change of coefficients of the criterion functions. A perturbation is modeled by 

adding perturbing matrix D E Rkxn to C. Thus the perturbed problem is defined 

by Z8 (C + D) and the perturbed set of B-efficient solutions by P8 (C + D). 

For any natura! q, we define the norms 

li z lloo= max{I Zi I: i E Ną}, 

li Z li 1 = I:: I Zi I 
iENp 

in the space Rą. Under the norm of a matrix we understand the norm of the vector 

composed from all its elements. 

For any number € > O presenting a certain level of the uncertainty, we define the 

set of perturbing matrices 

D(€) ={DE R kxn: li D lloo< €}. 
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Let (1) be a model used for solving a practical problem. Suppose that in fact the 

problem parameters are uncertain and are different from the parameters of (1). It 

makes sense to find the supremum level of uncertainty such that for any perturbation 

below this level, the set of B-efficient solutions of the perturbed problem includes in 

the set of B-efficient solutions of the initial problem. This supremum level is called 

the stability radius of problem (1). If the level of uncertainty in problem parameters 

is not greater than the stability radius, then solving problem (2) we are guaranteed 

that no B-efficient solution of the real-life problem will be missed. 

Definition 1 Problem ZB( C) is called stable (to perturbations of matrix C }, if there 

exists a number c: > O such that 

v'D E V(c:) (PB(C + D) s::;; PB(C)). 

Definition 2 The number 

PB(C) = {s
0
uprlB(C), if rlB(C) =/ 0, 

otherwise, 

where rlB(C) = {c: >O : v'D E V(c:) (PB(C + D) s::;; PB(C))}, is called the stability 

radius of problem ZB(C). 

In other words, the stability radius is the supremum level of perturbations which 

do not cause appearance of new B-efficient solutions. It is evident that the problem 

is stable if and only if its stability radius is positive. 

Obviously, the stability radius is infinite if PB(C) = X. 

Denote PB(C) =X\ PB(C) . 

By definition, put 

B;C(x' - x) 
'PB ( C) = II)in max min 

xEl'a(C) x'E1ra(x,C) iENk li B; lliłl X 1 - X Ili· 

Observe that 'PB(C) ::::: O since B;C(x' - x) ::::: O for any x EX and x' E 7rB(x, C). 

Theorem 1 . Let PB ( C) =f X. Then PB ( C) = 'PB ( C). 
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Proof. The inequality PB(C) ::C:: 'PB(C) is trivia! if 'PB(C) = O. Let us prove this 

inequality in the case 'PB(C) > O. Suppose DE D(cpB(C)). Then for any x E PB(C) 

there exists x' E 7r(x, C) such that for any i E Nk the following inequality holds: 

B;C(x' - x) 
li D; lloo< li B; Ili/I x' - X 111 · 

Then li D; 11 00 11 B; 111 li x' - x Ili< B;C(x' - x). Using this inequality we obtain: 

B;(C+D)(x' -x) = B;Cx' + I; (3;iDi(x' -x) ~ B;Cx' - I; (3;i /I D 11 00 11 x'-x /11> 
iENk i.ENk 

O. 

It follows that if li D lloo< cpa(C), then 7ra(x, C + D) f 0 for any x E PB(C), i. 

e. PB(C + D) <; Pa(C). This yields pa(C) ~ 'PB(C). 

It remains to prove the inequality PB(C) :-=:; cp8 (C). This will be done, if we prove 

that for any c > cpa(C) there exists DE D(c) such that Pa(C + D) g PB(C). 

Let € > Ó > 'f'B(C). Consider a perturbing matrix D = [d;j]kxn E D(c) defined 

as follows: 

d·. _ {ó, if Xj = 1, i E Nk, 
tJ - -ó, if Xj = o, i E Nk. 

Observe that since ó > cp8 (C), there exists x E .P8 (C) such that for any x' E 7r8 (x, C) 

at least one index i E Nk satisfies the inequality 

ó B;C(x' -x) 
> li B; 111 li x' - x 111 · 

Prom here we obtain 

B;(C + D)(x' - x) = B;C(x' - x) - ó /I x' - x 111/1 B; Ili< O, 

i. e. no one x' E 7r8 (x, C) belongs to 7ra(x, C + D). It is easy to see, that no one x' E 

X\ 7ra(x, C) belongs to 7r8 (x, C + D) too, since the perturbation can only increase 

the difference between the values of criteria in favor of x. Thus 7ra(x, C + D) = 0 

which means that x E P(C + D) and P8 (C + D) g P8 (C + D).• 
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4 Conclusion 

Theorem 1 provides a formula of stability radius for the linear multiple objective 

0-1 programming problem of finding trade-off solutions. This formula allows one 

to analyze the stability radius depending on the information about decision maker 

preferences expressed a.s bounds on trade-off coefficients. Another application of 

this formula is regularizing problem (1). The regularization means transforming a 

possible unstable problem in such a way that the solution set does not change while 

the problem becomes stable. This approach is ba.sed on the fol!owing two evident 

propositions. 

Denote by E the identity matrix of size k and by 8 the set of matrices B = [.8;;) E 

Rkxk such that B:::: O and b;; = 1 for any i E Nk . 

Proposition 1 Let all the elements of B be positive. If P8 (C) 

PB(C) > O. 

PE(C), then 

Proposition 2 For any problem (1) there exists a number 1; > O such that PB ( C) = 

PE(C) for any BE e, whenever ,8;; < €, i,j E Nk, i fe j . 

It follows that having an unstable problem (1), one can find a matrix B such 

that the set of B-efficient solutions coincides with the set of efficient solutions and 

problem (2) is stable. Thus (2) for the given B serves a.s a regularized problem (1) . 

The described approach to regularization generalizes the technique ba.sed on vec­

tor criterion transformation developed by Emelichev and Yanushkevich [4) (see also 

[3)) . 
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