

Computational Optimization and Applications manuscript No.
(will be inserted by the editor)

Bundle Methods for Convex Minimization with Partially
Inexact Oracles

K.C. Kiwiel

Received: March 18, 2009; revised November i1, 2009 / Accepted: dale

Abstract Recently the proximal bundle method for minimizing a convex function
has been extended to an inexact oracle that delivers function and subgradient values
of unknown accuracy. We adapt this method to a partially inexact oracle that becomes
exact only when an objective target level for a descent step is met. In Lagrangian re-
laxation, such oracles may save work by evaluating the dual function approximately
on most iterations, without compromising the strong convergence properties of exact
bundle methods, We also show that the recent method of Gaudioso et al. for finite
min-max problems fits our partially inexact framework, we correct and strengthen its
convergence results and give useful modifications. Numerical illustrations on stan-
dard instances of the generalized assignment problem (GAP) are included.

Keywords Nondifferentiable optimization - Convex programming - Proximal bundle
methods - Approximate subgradients - Finite min-max

Mathematics Subject Classification (2000) 65K05 - 90C25 - 90C27

1 Introduction

We consider the convex constrained minimization problem
So=inf{f(u) :ueC}, (1.1

where C is a “simple” closed convex set (typically a polyhedron) in the Euclidean
space R” with inner product {-,-) and norm |- |, and /: R” — R is a convex function.

We are interested in bundle methods, which at each trial point in C call an oracle
to produce a linearization of f, given by a tuple in R x R". At the current iteration
k of such a method, the oracle has been called at trial points ut,...u* in C, and
has returned the corresponding tuples {(,{,gf)}jf:l in R x R". For an exact oracle,

K.C. Kiwiel
Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01—447 Warsaw, Poland, E-mail:

kiwiel@ibspan.waw.pl

2 K.C. Kiwiel

i = f(t/) and g/ € 37 () denote the exact objective value and a subgradient at
/. An inexact oracle may return f7 = f(u/) — eyand g/ €9, /() with errors
ai’]

E}—\LEE{ >0, where de f (u) 1= {g: f(:) 2 f(u) — £+ (g,- — u) } is the £-subdifferential
of f at u; in other words, it delivers the !inearization

L =g+l =) <O+l with S = =10 - (1)
The errors are unknown, but bounded by some (unknown) constants & ** and £**:
€ <ef™ and gf <M forall). (13)
For instance, in many applications / is a max-type function of the form
S{wy =suwp{F{u):z2€Z}, (1.4)
where each F; : R” — R is convex and Z is an arbitrary set. If, for u = uf, the oracle
finds a possibly inexact maximizer z/ € Z of (1.4), sets fi := F,;(u/) and takes g/ as
any subgradient of 7, at /, then (1.2) holds with &7 = f(u/) - F,;(+/), & = 0.
In [13] we extended the proximal bundle methods of [9] and 8, §XV.3] to the

inexact setting of (1.2); see (14-16,18] for further developments and [17, 18] for nu-
merical tests. In general terms, such methods maintain:

o aclosed convex model /i < f-+ &¥ with &k < e, for instance (see (1.2)1.3))

fy=max f; with JC{l,..,k} and & =maxe};
Tk jEjkf; R C{l,...,k} p = maxeg;

o astability center it = «* for some ¥ < k that has the value f* = ¥ and
o aproximity stepsize t;, > 0 that controls the distance from @ to the next trial point

W= argmin{fl(u)%»z—],k]u—ﬁklz:uEC}A (1.5)

After the oracle called at w**! produces f¥+!, a descent step to 2%+ 1= /! is taken if
the objective reduction is at least a given fraction x € (0,1) of the predicted decrease

= fE = (A, (1.6)

ie,if
S S - a.m
Otherwise, a null step 45! := {* occurs; then the new linearization /3., is used to
produce a better model Jix1 > frar for the next iteration. This summarizes exact
bundle. The inexact extension of [13] is based on the observation that having the
majorization
v > [WFH k2 (1.8)

suffices for convergence. Hence, if necessary, /; is increased and w**1 s recom-
puted to decrease f;(#**!) until (1.8) holds. As for convergence, [13] showed that
the asymptotic objective value f := limy f§ estimates the optimal value £, of (1.1):

Bundle Methods with Partially Inexact Oracles 3

17 € e —ef™, £, + €. Next, for £* = 0, [14] observed that in fact the asymp-
totic accuracy depends only on the errors that occur at descent steps. Specifically, let
£(k) — 1 index the last descent iteration prior to &, and denote by

oo - Uk
£ :=)Lnle,” (1.9)

the asymptotic oracle error at descent steps; then f3° € [fu — ef,f.] (see [14, §4.2]).

First, in this paper we extend the analysis of [14] to the case e;,““‘ > 0. We show
that /57 € [fu — €7,/ + 7] with & < linyex &f for some subset K C N. This im-
proves the recent result of [4, §5]; in our notation, it replaces £ by limyex & and
assumes additionally that f is coercive and C = R".

Second, this paper shows how to ensure a null asymptotic error for a partially
inexact oracle. We call the oracle partially inexact if, given the point «**! and a
target objective level Ay, it delivers a tuple (f¥+!,g"+!) such that (1.2) holds with
&) =0 for j = k+ 1, and additionally

S =S and g =0 i <A, (1.10)
Then, in view of the descent criterion (1.7), setting A4 to the “natural” target level
A= oo (1.11D)

for k > 1 ensures that each descent step is exact. The initial oracle call at u', corre-
sponding to k = @, can be handled in two ways. First, we may require exact evaluation
by setting Ag = ==. Second, to save the oracle work, we may accept any error by setting
Ag = —oo; in this case, if the initial inaccuracy is detected later via the majorization
(1.8) failing for some k, we may reset vy to —os, 50 that A; = o and an exact descent
step occurs. We will show that the asymptotic error is zero for both initial choices.

As the simplest useful example consider the finite min-max framework of (1.4)
with a finite set Z. Suppose at iteration & the oracle examines the elements z of Z (in
any order). lfF,(ukH) > A occurs for some z, the oracle sets z4+! = z, otherwise it
takes 25! € Argmax ez £(1rt1), setting fE+! and g**! as before; then (1.10) holds.

We add that in Lagrangian relaxation of integer programming problems (see, ¢.g.,
(2,19] and references therein), the finite min-max framework covers typical oracles
which employ branch and bound, possibly preceded by heuristics. Thus, whenever
an exact oracle is available, a partially inexact oracle can be obtained by inserting
the stopping criterion &, (u**+!) > Ay for each incumbent z, and to save work, cheaper
heuristics can be run first before switching to branch and bound.

Inexact null steps have already been used in [7, §4.2] and [14, §4.2], but these
references need exact initialization (g = =) to get g =0 in the partially inexact
case. Relative to exact bundle, our main message is that inexact null steps do not
impair convergence when the oracle is locally bounded (see (3.2) and Remark 4.2(1)).
In effect, the existing bundle implementations can be extended to the partially inexact
case simply by adding a few lines in their codes that determine the level A, sent to the
oracle (see §4). Similar modifications can be employed whenever “standard” exact
bundle is used as a procedure within a more complex algorithm. For example, in this

K.C. Kiwiel

way one can extend the method of centers of [21] and the dynamic bundle of [1] (by
invoking our Lemma 3.3 in their analysis of null steps).

Our third major contribution concerns the recent paper of [5], which introduced
a different bundle method (GGM for short) for the finite min-max framework above.
The main difference is that the GGM method replaces the descent criterion (1.7) by

ISR + (.12)
for a carefully chosen gap ¥, > 0; accordingly, the oracle level A, in (1.10) is set to
Moo= f@*) + e (1.13)

We extend the GGM method to our partially inexact oracle framework, and strengthen
its convergence results; in fact, the analysis of [5] has two major flaws (see Rem. 6.8).
We also give a modification of the GGM method that does not reset the bundle to a
singleton whenever the gap ¥ is decreased (such bundle reductions can hurt practical
performance). Further, relating the GGM method to our “standard” proximal bundle
method (PBM for short), we show that after at Jeast one descent step, the GGM level
/l.‘; of (1.13) equals the PBM level A} of (1.11) with x replaced by the coefficient
K 1= 1 — Y /v € [XGGM, 1), where Xgom € (0,1) is determined by the initia} GGM
parameters. Thus, the GGM method may be viewed as a PBM variant with a vari-
able coefficient x;, where the lower bound xy > xggm suffices for analyzing descent
steps. This also explains a serious weakness of the GGM method discovered in our
experiments, when for x; close to 1, each descent step is followed by many null steps
with tiny improvements of successive models. Our simple cure is to set A4 to

l; = max{/l.‘;,/lf}) (1.14)

which gives another PBM variant with the descent coefficient K, := min{x, x},
where x € (0,1) prevents ;. from getting “too close” to 1 (see Lem. 7.1). With this
modification, the performance of the GGM method in our experiments became com-
parable with that of our “standard” PBM (see §8).

Finally, we illustrate practical differences between the PBM and GGM variants
in Lagrangian relaxation of the generalized assignment problem (GAP); for basic
references on the GAP, see, e.g., [20,22-24]. We add that all the numerical results of
[6] for the GGM method on the GAP were affected by some code bugs '.

The paper is organized as follows. In §2 we present a streamlined version of our
general inexact PBM, which simplifies some constructs of [13, 14). Section 3 gives
a self-contained convergence analysis of our inexact PBM (although we could omit
some results based on {13,14], most of them are needed anyway for our partially
inexact PBM and GGM). In §4 we discuss using a partially inexact oracle within
our PBM. Our extension of the GGM method is presented in §5, its convergence
is analyzed in §6, and a modified version is given in §7. We conclude in §8 with
numerical illustrations on the standard GAP instances used in [6].

! M. Gaudioso, private communication, October 15, 2008.

Bundle Methods with Partially Inexact Oracles 5

2 The inexact preximal bundle method

Before stating our method, we summarize below basic properties of subproblem
(1.5), in a way simpler than in [13, 14].

2.1 Aggregate linearizations and predicted decrease

We regard (1.1) as an unconstrained problem f, = inf f with the essential objective

Je=/S+ic, @.1)

where ic is the indicator function of the set C (ic(u) = 0 if # € C, o otherwise).

Following the structure in (2.1), we rewrite the trial point finding subprobiem (1.5) as

! = argmin { 0u() 1= i) +ic() + o] =i} @2)

Recall from §1 that fi < £+ &f is closed convex, & < £7%, & > 0 and 2* € C above;

further, the stability center #* = u‘®) obtained at the last descent iteration k) —1
prior to & has the value f,f = ,,‘(*) so that the oracle property (1.2) yields

SE= k- 23

We now use a standard optimality condition for subproblem (2.2) to derive aggre-
gate linearizations (i.e., affine minorants) of the subproblem functions at »¥*!, and an
optimality estimate; see (2.11)-(2.12), where f is the convex conjugate of /.

Lemma 2.1 (1) There exist subgradients g* and v* such that
Feaidh), VFedic(Wt) and g vi= @@ -/ (.4)

(2) These subgradients determine the following three aggregate linearizations of the
Junctions fi and [, ic, jZS = fi+icand fo = f+ic, re.vpeclive/y:

Fel) = A6 + (@ - < R() < S0+ @.3)
() = el) + (v, -t < nc(-). @26)
ROy = A0+ < JEC) < fe() +85 @7

(3) For the aggregate subgradient and the aggregate linearization error given by
= v @ M)y and g= - RGN, (2.8)

and the optxmallty measure

Vi := max{|p*], & + (o5, 35V}, (2.9)
we have
ﬁC f‘(uu-l +<Pk A+r (2.10)
fi—e+ (Pt i) = RO < fel)+ES with (2.11a)
k= 2PN +) < &, (2.11b)

S felw) + b+ (1 +1u)) forallu. (2.12)

6 K.C. Kiwiel

Proof (1) Use the optimality condition 0 € d¢,(u**!) for subproblem (2.2).

(2) The inequalities in (2.5)—(2.6) stem from (2.4) as subgradient inequalities, and
from our assumption that /i < f + £%; note that ic(u*+') = 0 in (2.6). Adding (2.5)
and (2.6) gives (2.7).

(3) The first equalities in (2.5)~(2.8) yield (2.10). Since f_é is affine, we have
SfE—ge+ (ph 0 = < fo+ 8 by (2.7) and (2.8), and fE < fo + € iff

&> sup [F() — Jol)] = FE(0) +sup (¥,) — fe () = FE(0) + /2");

this gives (2.11). Finally, since |a||b]+¢ < max{|a|,c}(1 + ||} for any scalars a, b, ¢,
and thus in (2.11), for @ = |p¥| and & = |u], by the Cauchy-Schwarz inequality,

— (0" u) + g+ (00 < |PM il + e+ (0,) < max{|p* e+ (04,89 1+ Jul),
we obtain (2.12) from the definition of ¥y in (2.9). [

To ensure that the optimality measure ¥, vanishes asymptotically, it is crucial to
bound ¥ by the predicted decrease vy, since bundling and descent steps drive vy to 0.

Lemma 2.2 (1) In the notation of (2.8), the predicted decrease v of (1.6} satisfies
vi = 1" + & (2.13)

(2) The optimality measure Vi, of (2.9) satisfies Vi, < max{|p¥], & }{1 + [#¥]).
(3) We have the equivalences

Vi > =& & B2 —8 o w2 ulphY2 @ v > W - ik 2.

Moreover, v > &. Finally, for E;(k) in (2.3), we have —g; < Ej(k) + Eg’,““ and
vi > max{tl p**/2, |ex|} i ez —&, (2.14)
Ve < max{(2ve/t) 2} (U +18) w2 -, (2.15)
Ve< R0+ /) P H1) f w<-a (Q16)

Proof (1) By (2.10) and (2.8), fE(#*) = fi(s¥*!) + 1lp*]?. Rewrite (1.6), using (2.8).
(2) Using the Cauchy-Schwarz inequality in (2.9), we have
Ve < max{|p*, &+ |p (1} < max{|p"|, e} + |p*la"] < max{ip], e} (1 + 1)
(3) The equivalences follow from (2.13}; in particular, v > &. Next, by (2.11)
with - = & and £ < g™, and by (2.3) with /c(2*) = (&%) (@* € ©), we have

—ee < fold) - S ek < e
Finally, to obtain the bounds (2.14)-(2.16), use the equivalences together with the
facts that vy > &, —& < ef!(k) + &** and the bound on ¥y from assertion (2). For
instance, vy < —& yields 0 < t,p*%/2 < —g; and | p*| < (—2&¢ /1) for (2.16). O

2k oK) | max
+E <e e,

Bundie Methods with Partially {nexact Oracles 7

2.2 The method

We now have the necessary ingredients to state our method in detail.

Algorithm 2.3 (inexact proximal bundle method)

Step 0 (Initialization). Selectu' € C, a descent parameter x E (0,1}, astepsize bound
fmin > 0 and a stepsize 1, > tm,,, Call the oracle at u! to obtain Sflandg!of
(1.2), and set fi := fi. Seta' r=u!, f} =7}, it :=0,0(1) = 1 and k2= 1.

Step 1 (Trial point finding). Find the solution #**} of subproblem (2.2). Set vy by
(1.6), p* 1= (5 — k") /1y, & 1= vy — 1| pF|? and ¥4 by (2.9).

Step 2 (Stopping criterion). If V. = 0, stop.

Step 3 (Stepsize correction). If vi < —&, set 4 := 104, i¥ := k and return to Step 1.

Step 4 (Oracle call). Call the oracle at #*+! to obtain /5! and gF+! of (1.2).

Step 5 (Descent test). If the descent test (1.7) holds, set 44+ 1= 1A+, f“" = [,
=0 and Z(k+ 1) =k + 1 (descent step); otherwise, set u"“ = ik,
/* = /5 = iF and €0k + 1) 1= £(K) (null step).

Step 6 (Slepstze updating). H’l(k+1) k+1(i.e., after a descent step), select £, >
tmin; Otherwise, either set 7441 := tg, 0r cho0se lky 1 € (fmin, 1) if it =o.

Step 7 (Model selection). Choose a closed convex model fi,; : R” — R such that

max{fo, fer1} < i < f+EF @17
Step 8 (Loop). Increase k by 1 and go to Step 1.
A few comments on the method are in order.

Remark 2.4 (1) When f; and C are polyhedral, Step 1 may use the QP method of
[10], which can efficiently solve sequences of related subproblems (2.2).

(2) The stopping criterion of Step 2 is justified by the optimality estimate (2.12):
Vi = 0 yields f§ ~ €k < inf f¢ = /; thus, by (2.3), the point 4* is £-optimal for € =
E;(k) + E;, ie., f(#*) < f. + €. Step 2 may stop if ¥ < 1y for a tolerance 1y > 0.
Section 3 below will show that this stopping criterion will be met, unless /¥ — ~eo.
More practicable stopping criteria are discussed in [13, §4.2].

(3) When "™ = 0, then after an exact descent step (E}m =0), we have vg > g >
0 by Lemma 2.2(3), and Step 3 is redundant, When inexactness is discovered via the
test v, < —&, the stepsize ¢ is increased to produce a “safe” v, for the descent test
or confirm that the stability center i#* is already g-optimal.

(4) At Step 4, we have u*+! € C and v; > 0 (by (2.15), since V) > 0 after Step 2);
hence Step 5 produces 71¥*! € C and f¥*+! < /%,

(5) Whenever t, is increased at Step 3, the stepsize indicator i¥ # 0 prevents Step
6 from decreasing ¢, after null steps until the next descent step occurs (cf. Step 5).
Otherwise, decreasing {4 at Step 6 aims at collecting more local information about
the objective / at null steps. Step 6 may use the procedure of [9, §2] for updating the
proximity weight py 1= 1/, with obvious modifications.

(6) Step 7 may choose the simplest model fiy) := max{ﬁ(,ﬁ(ﬂ} Our general
requirement (2.17) accomodates more efficient choices based on aggregation or se-
lection (see, e.g, [9], (14, §4.4]), and the nonpolyhedral SDP models of [7, 14].

K.C. Kiwiel

3 Convergence

Our analysis splits into several cases.

3.1 The case of an infinite cycle due to oracle errors

For our purposes, it suffices to give a very simple result on cycles between Steps 1

and 3; see [13, Lem. 2.3] for more sophisticated results. In this case, the algorithm

drives f; — e and ¥}, — 0 for a fixed index k. Hence, for somewhat cleaner notation,

in this context Step 3 may be replaced by the following.

Step 3¢ (Stepslze correction). If vy < —Ey, St iy i= 104, 5F1 o=k, 251 = 2,
o fE (k4 1) 1= £(K), fia1 := [k, increase k by 1 and go to Step 1.

Lemma 3.1 If an infinite cycle between Steps 1 and 3 occurs, starting at iteration

X, then Vi — 0, /*<f,+e andf(u‘)<ﬁ+£}(* +s"

Proof Fork > k, we have @* = a7, JE= /,i; £(k) = £(k) and &= x’? Then, at Step 3o,
(2.16) with ¢4 1 o0 gives ¥, — 0. Hence (2.12) wnh ek <Efyields f¥ - &t <inffc=1,,
and the conclusion follows from (2.3). a

In view of Lemma 3.1, from now on we assume (unless stated otherwise) that the
algorithm neither terminates nor cycles infinitely between Steps 1 and 3.

3.2 The case of finitely many descent steps

We now consider the case where only finitely many descent steps occur. After the

last descent step, only null steps occur and the sequence {#;} becomes eventually

monotone, since once Step 3 increases #;, Step 6 cannot decrease #;; thus the limit

1. ;= limy 1, exists. We first deal with the case of 7., = oo.

Lemma 3.2 Suppose there zxists_; such that only null steps occur for all k > X, and

to :=Hmypty = co. Let K= {k>k:tiyy > tx}. Then Vg O at Step 3.

Proof At iteration k € K, before Step 3 increases #; for the last time, we have the

bound (2.16) with constant eﬁ(k) ;(k) hence, £y — oo gives V; g 0. D
For the remaining case of f., < o=, we now give a fairly abstract result which shows

that the approximation errors

Vo=t = Rt (3.1

vanish asymptotically, independently of the particular form (1.7) of our descent crite-
rion. Further, instead of assuming that ej < E}““" in (1.3) as in [13], we suppose that
the oracle is locally bounded on C in the sense that

the sequence {g*} is bounded whenever the sequence {u"} C Cis bounded. (3.2)

Note that the former condition implies the latter, since for& = e}“”‘ +£7°%, the map-
ping J¢/ is locally bounded (see, e.g., [8, §X1.4.1]).

Bundle Methods with Partially Inexact Oracles

Lemma 3.3 Suppose there exists k such that for all k > k, we have &* = i* and
tmin < tr1 < tx. Further, assume that the oracle is locally bounded in the sense of
(3.2). Then the approximation errors of (3.1) satisfy fimy % < 0. Moreover, if the
descent criterion (1.7) fails for all k > k, then V;, — 0.

Proof First, using partial linearizations 45,‘ of the objectives ¢, of consecutive sub-
problems (2.2), we show that their optimal values ¢ (#**') are nondecreasing and

bounded above.
Fix k > k, By (2.10), (2.2) and (2.8), we have FEGMY) = fi(uFt) and

at =argmin{¢_/,(~) = /-JC((-)+7—[-t } 3.3)

from V@(u**') = 0. Since @ is quadratic and @ (u**!) = ¢(eA*+1), by Taylor’s

expansion _

B = (i)] b (34)

Next, since fF(#*) < JS(@%)+ e by (2.7) with #* € C, relations (3.4) and (3.3) yield
¢k("L+l) + !uk+l - -Ic|2 — ‘pk(ﬁk) < f()+Emux (3.5)

Now, the minorizations f; < Ji; of (2. 17) and 7% < i of (2.6) give &= fi +it <
Jex1 + ic; since we also have #%+! = 4% and et < 4 by assumption, the objectives
of (3.3) and the next subproblem (2.2) satisfy ¢x < ¢4.1. Hence by (3.4),

Gl 1) 4 Sl 2~ b = Ge(HR) < gy (14H). (3.6)

Thus the nondecreasing sequence {¢£(* 1)}, o, being bounded above by (3.5) with
= 2 for k > k must have a limit, say ¢ < /() + g™, Moreover, since the
stepsnzes satisfy 4 < #z fork > k, we deduce from the bounds (3.5)-(3.6) that

O (F Y T g., W S0, (3.7)

and the sequence {«**!} is bounded. Then the sequence {g*} is bounded as well,
since by our assumption the oracle is locally bounded in the sense of (3.2).

We now show that the approximation error of (3.1) vanishes. Using the form
(1.2) of fi41, the minorization f34 < fiiq of (2.17), the Cauchy-Schwarz inequality,
and the optimal values of subproblems (2.2) with & = #* for k > k, we estimate

,Pk = /:H—l _/';((”A'-H}=ﬁ_+l(uk+2)_ﬁ(uk+l)+< +l’uk+l —

< Jert (F2) = STy 4 gt — 4
= G (1FFD) = QT o A+ [T — b, (3.8)

k+2>

where Ay = (1t} -u"] 22U - |uk+2 —u"[*/21k41. We have Ag — 0, since tpin <

fist < & for k > & by our assumption, ju*+' — 2%[2 is bounded, 1¥+2 —4*! 5 0 by
(3.7), and thus

S Y Y S G SR}

10 K.C. Kiwie!

Hence, using (3.7) and the boundedness of {g*+!} in (3.8) yields [im; % < 0.
Next, if the descent test (1.7) fails for k > k, then f¥+! > /¥ — xcvy gives

Vo= [= S+ [~ G D] > —xverme= (1w 20, (3.9

where x < 1 by Step 0; we conclude that 3% — 0 and v — 0. Finally, since vy — 0,
Ik > tmin and #* = @ for k > k by our assumption, we have ¥; — 0 by (2.15). u]

We may now finish the case of infinitely many consecutive null steps.

Lemma 3.4 Suppose there exists k such that only null steps occur for all k > k, and
the oracle is locally bounded in the sense of (3.2). Let K := {k 1401 > 1t} if 1y — o,
K := N otherwise. Then V; g* 0.

Proof Steps 3, 5 and 6 ensure that the sequence {¢; } is monotone for large £. We have
Vi g 0 from either Lemma 3.2 if .. == =, or Lemma 3.3 if £ < o=, a

3.3 The case of infinitely many descent steps

Although our result for infinitely many descent steps does not involve the oracle
errors explicitly, note that we might have f3° = —eo if the objective errors Ef were
unbounded, giving “false” descent to —ce, even when f, > —ea, ’

Lemma 3.5 Suppose the set D of descent iterations is infinite and [:=limy ff >
—oo, Then limye g Vi = 0. Moreover, if {#*} is bounded, then Vy 70

Proof We have 0 < kv, < f¥~ fi*) if k € 9, f£+' = f¥ otherwise (see Step 5).
Thus Tyeq Kvi Sfﬁl —Ji <= gives v ¥ 0 and hence e, 152 3* 0 by (2.14) and
|P*] 3* 0, using 4 > tmin (cf. Step 6). For k € @, #**! — i = —1, p* by (2.8), so that

R (4R = g {tph = 20,)
Sum up and use the facts that it " = #* ifk ¢ D, Tpew i > Lie g lmin = = t0 get
m K2 _9 ok a) > 0
Im{alp* =20} 2
(since otherwise |*|? — —eo, which is impossible). Combining this with 7,1p¥)? 5+ 0
gives limge 5 (p*, %) < 0. Since also &, |p¥| 3" 0, we have limye 9 V3 = 0 by (2.9).
If {#*} is bounded, using &, [p*] 3* 0in Lemma 2.2(2) gives ¥y 5 0. u]
3.4 Synthesis

Our principal result on the asymptotic objective value /3" := lim f¥ follows.

Theorem 3.6 Suppose Algorithm 2.3 neither terminates nor loops infinitely between
Steps | and 3 (so that k — <o), the oracle is locally bounded in the sense of (3.2) with
sup, Ez,‘ < oo, and its asymplotic error e}“ of (1.9) is finite if infinitely many descent
steps occur. Let € = limyex E; e/ (2.11)), where K := N if [:= limy ff = —o;
otherwise, let K be such that Vi i 0 (such K exists by Lemmas 3.4 and 3.5). Then:

Bundle Methods with Partially Inexact Oracles

) fi< Ii_nuf(z?k) < Timy f(%) =f7+Ef where [, is the optimal value of (1.1).
(2) We have fELf7 < fu+ &, and additionally Vi g 0 if f. > —

Proof (1) For all k, we have 4% € C and /. 1= infef < f(#}) = £ + & by @3).
Pass to the limit, with ff converging to /3", and €7 < e in (1.9) by our assumption.
(2) By (1), if /37 = —eo, then f, = —oo. Hence, suppose that f, > —ee. Then
f7 2 fo = €7 > —e=by (1), so Lemmas 3.4 and 3.5 guarantee the existence of K such
that ¥ i 0. Pass to the limit in (2.12) to obtain /3* <inffc+ € = f; + ¢ [m)

Remark 3.7 The bound /7" < /i + e of Theorem 3.6 employs &g 1= limyex €5,
where by (2. llb), e‘f < & for any & such that Ji < /+ & In particular, if f; :=
max,Eka! and e = maxjes, &, then & = limc & and & := mkgKé satisfy
& < _e_g <& ln thlS case, our (weakcr) bound e A+ e corresponds to the
resuIt of [4, §5] which assumes additionally that / is coercive and C=R",

4 Using a partially inexact oracle

We now discuss using a partially inexact oracle (with eé' = 0) that satisfies the addi-
tional requirement of (1.10); our aim is to get €7 =g, =0in Theorem 3.6.

Our modification of Algorithm 2.3 employs the counter n p of exact descent steps,
which is incremented at Step 5 at each descent step. As for initialization of np and
the level A before the first oracle call at Step 0, we have two options:

e exact initialization: set Ay := s and np = 1, or
e inexact initialization: set Ag := —e= and np 1= 0.
Note that e} =0 if Ay = == in (1.10). At Step O choose a mode! optimality tolerance
T > 0 (€.8., Ty = °=). Steps 2 and 3 are replaced by
Step 2° (Stopping criterion). If Vi = 0 and np > 0, stop. Otherwise, if ¥} < 1, and
np =0, set y; 1= —eo, Ay 1= oo and go to Step 4.
Step 3° (Inaccuracy detection). If v < ~g, set v := —oo. Set A4 to A¥ of (1.11).
These steps are motivated as follows. It will be seen below that f,f = f(a*) if
np > 0. Hence, if Step 2" stops, @ is optimal by (2.12). However, if np = 0, we may
have fé‘ < /. Thus infinitely many nulli steps that drive ¥, to 0 (cf. Lemma 3.3) could
occeur, but once ¥y < 1,, occurs (here 7, > 0 is crucial), this potential loop is broken,
A = oo forces the oracle at Step 4 to deliver the exact value /51 = f(u+1) by (1.10),
whereas v; = —eo forces Step 5 to make a correcting step to #*+1 1= W**+1, which
increments np as stated above. Similarly for Step 3’: If initial oracle inaccuracy is
detected (é:fl > 0; cf. Remark 2.4(3)), the oracle is called with A = == and a correcting
step occurs, which increments s1p. Further, having 4, = Af ensures that all descent
steps occuring at Step 5 are exact with e}*' =0 (cf. (1.7), (1.10) and (1.11)).
Thus, regarding exact initialization as a correcting step for k = 0, we have two
cases:
(1) a correcting step occurs for some X, say k.; then e;“') =0forall k >k
(2) inexact initialization followed by null steps only; then np = 0 forever.

12 K.C. Kiwiel

In both cases, the convergence results of §3 apply with £7 = £ = 0. Indeed, case
(1) is obvious, whereas case (2) cannot occur under the assumptions of Lemma 3.3
(otherwise ¥; — 0 eventually gives ¥} < 1,, at Step 2" and a correcting step occurs).

In fact, our algorithm inherits the usual strong convergence properties of exact
bundle methods. Instead of requiring that infy# > fyun > 0 as before, we consider
more general stepsize conditions below.

Theorem 4.1 Suppose that the oracle is partially inexact, and Algorithm 2.3 employs
Steps 2' and 3°, Let U, = Argminc f denote the (possibly empty) solution set of
problem (1.1). Then we have the following statements.
(1) If there is k such that only null steps occur for all k > k, the oracle is locally
bounded in the sense of (3.2), and 1y |t > 0, then ¥ e U, and Vi— 0.
(2) Assuming that infinitely many descent steps occur, suppose that Tycy ty = o for
K= {k: f(i+") < f(@*)}. Then f(2*) | f.. Moreover, we have the following.
@) Let i := f(#*) — (%) for k € K. If U, # 0 and TpeptiVe < = (e.g.,
SUPek tk < =), then {6¥} converges to a solution i € U., and Vi 2 0 if
infpexte > 0.
(b) If Uy =0, then |ii*| — .

Proof Statement (1) follows from Lemma 3.3 and Theorem 3.6, with ef=¢g=0
as shown above. For (2), the proof of [11, Thm. 4.4) yields all claims except the final
one on ¥ in (a). For this claim, since #¥ — #* implies boundedness of {i#¥}, use the
proof of Lemma 3.5 with 2 = K and 7, replaced by infyex e > 0. ul

Remark 4.2 (1) The local boundedness condition (3.2) holds in the min-max setting
of (1.4) if dF;(-) is locally bounded on C, uniformly w.r.t. z € Z; e.g., when Z is finite.

(2) In tune with Remark 2.4(3), Step 3’ could replace the test v, < —g by the
stronger test £ < 0; however, the former test is more robust w.r.t. roundoff errors.

(3) By Theorem 4.1, if U, # 0 20d 0 < trin < & < tmax < oo for all &, then 2% —
% € U,. Hence for exact initialization, the efficiency estimates of [12] hold by their
proofs. For inexact initialization, we may replace the test ¥V < 1,,, of Step 2° by wy 1=
14|P¥|%/2 + & < .. This replacement is valid because 0 < wy < v when vy > —g
by Lemma 2.2(3), whereas v, — 0 in the proof of Lemma 3.3, so if np stayed null,
we would eventually get wy < T, a contradiction. Then the analysis of [12] provides
an upper bound on k., the iteration number of a correcting step with wy, < T, or
vk, < —Ex,, after which the “usual” estimates apply with k replaced by & — k..

5 The GGM method

We now state our extension of the GGM method of Gaudioso et al. {5] to the case of
a partially inexact oracle (its relations with the original version will be discussed in
§6.6). Relative to the PBM variant of §4, it replaces the PBM descent test (1.7) and
level (1.11) by the GGM descent test (1.12) and level (1.13).

Algorithm 5.1 (GGM method)

Bundle Methods with Partially Inexact Oracles 3

Step 0 (/nitialization). Select u' € C, optimality tolerances T, >0and 7 > 0, an
initial stepsize t; > 0 and an initial gap ¥y > 0 such that

> n/n, (5.1)

and a stepsize decrease parameter & > 1. Set Ag 1= —o», call the oracle at !
to obtain f and g of (1.2), and set fi := fi. Set i’ :=u!, 1= 11, e(1) = 1,
np:=0,and k:=1.

Step I (Trial point finding). Find the solution wk+1 of subproblem (2.2). Set vy by
(1.6), p* = (@t — 1) J1y, £ 1= vi— 4fp*]? and Ay 1= Af for Af of (1.13).

Step 2 (First optimality test). If [p*| > 1,, go to Step 4.

Step 3 (Second optimality test and stepsize updating). If £, < ¢ and np > 0, stop.
Otherwise, if np = 0, set A := o= and go to Step 4. Elsc set 1, := 4/ 0, ¥ :=
%/ o and go back to Step 1.

Step 4 (Oracle call). Call the oracle at «**! to get f¥+! and g1 of (1.2) and (1.10).

Step 5 (Descent test). If the following descent test holds

<y, (5.2)

set 1 = b)) _/;"H = f&*Y npi=np+1and £(k+ 1) := k+1 (descent
step); otherwise, set ¥ ! 1= i, A/;‘“ 1= fE and £k + 1) := £(k) (null step).
Step 6 (Stepsize updating). 1f €(k+1) = k+1 (i.e., after a descent step), select f44| €
[k, 01} and set Yy i= teq1 71 /15 otherwise, set iy 1= & and Yey 1 1= W
Step 7 (Model selection). Choose ﬁH :R" — R closed convex and such that

max{fy, fir1} S fert S/ and Sy < Jhr (5.3)
Step 8 (Loop). Increase k by 1 and go to Step 1.
Several comments on the method are in order.

Remark 5.2 (1) Step 0 employs inexact initialization. Step 1 chooses A for the oracle
condition (1.10) and the descent test (5.2) of Step 5 so that each descent step is exact.
(2) The aim of Algorithm 5.1 is to meet the approximate optimality condition

PSSt &<t and ff=/(". (54)

Note that (2.11) and the third part of (5.4) yield p* € 9, fc(i#), and then the first two
parts give the optimality estimate f(u) > f(#*) ~ Te — T,|u —] forall u € C.

(3) When the first part of (5.4) fails at Step 2, Step 3 is skipped. If Step 3 does
not stop, np = 0 means the third part of (5.4) could fail, so &; = == forces the oracle
to deliver /**! = f(:**') and Step 5 makes a correcting step to #t**1 := u**!; since
np increases, this may happen at most once. If only the middle part of (5.4) fails, the
stepsize ¢, is decreased to reduce £, eventually (as will be seen in §6.1 below). Since
£, and 7, are decreased by the same factor, the initial condition (5.1) is maintained:

2> n/h=%/h (5.5

(4) At Step 6, t; and ¥ can increase only after a descent step, and (5.5) is main-
tained.

K.C. Kiwiel

(5) At Step 7, the first part of (5.3) repeats the standard model requirement (2.17);
the additional second part is needed to bound g, via # (see §6.1 below). In fact, the
second part of (5.3) may be omitted if Step 3 is modified as follows: Before returning
to Step 1, if /4y £ /i choose another closed convex model jk such that fgy < fi < f.

6 Convergence of the GGM method

Again, we need to consider several cases.

6.1 Bounding the aggregate linearization error
Consider the descent predicted by the augmented model ¢, in subproblem (2.2):
wi = ff = oY) = 1M/ 2 + (6.1)

where the second equality stems from (1.6), the first relation in (2.8) and (2.13).

Further, let
Gy = max{jg"D|: 1 < j <k} (6.2)

Lemma 6.1 At any iteration k of Algorithm 5.1, we have the following.
(1) & <tlg"®@p2.

(2) 1 = min{ty,27:/(0G)?} for Gy given by (6.2).

(3) An infinite cycle between Steps | and 3 cannot occur.

Proof (1) Let k= o(k). By Steps Oand 5, 4% = uk and/,}* = f,’,: First, suppose & = k.
Then, using the bound f; > /i (due to Step 0 or the first part of (5.3)) in subproblem
(2.2) and the form (1.2) of f} gives

9el) > min { i)+ 1~ } = £ - g2

Thus wg < f/g"|?/2 by (6.1). Next, suppose k > k. Then ;4. <t; for j=k,...,.k—1
by Step 3, and hence ¢;(2/*1) < ;1.1 (w/+?) by (3.6) and w) < w; by (6.1). Two
cases may arise. First, if #; = 1, the preceding relations give wy < tk|g"|2/2‘ Second,
if Step 3 decreases ¢; for some j, then fj > f; (cf. Remark 5.2(5)); hence, replacing &
by J in the previous argument, and repeating it if more stepsize decreases occur, we
again get wy < #4]g¥|%/2. Since & < wy in (6.1), the conclusion follows.

(2) By (1), before Step 3 divides 1, by 0 > 1, we have T < & < #]g/® /2.

(3) An infinite cycle would drive ¢ to 0, contradicting (2). 0

6.2 Relating the gap and predicted descent levels

It turns out that the GGM descent steps may be regarded as descent steps of the PBM
variant of §4 for a special choice of x in the PBM descent test (1.7).

