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A NONDERIVATIVE VERSION OF THE GRADIENT SAMPLING
ALGORITHM FOR NONSMOOTH NONCONVEX OPTIMIZATION*

KRZYSZTOF C. KIWIEL!

Abstract. We give a nonderivative version of the gradient sampling algorithm of Burke, Lewis
and Overton for minimizing a locally Lipschitz function f on R™ that is continuously differentiable
on an open dense subset, Instead of gradients of f, we use estimates of gradients of the Steklov
averages of f (obtained by convolution with mollifiers) which require f-values only, We show that
the nonderivative version retains the convergence properties of the gradient sampling algorithm. In
particular, with probability 1 it either drives the f-values to —oo, or each of its cluster points is
Clarke stationary for f.
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1. Introduction. The gradient sampling (GS) algorithm of Burke, Lewis and
Overton [BLO02b, BLOOS]| is designed for minimizing a locally Lipschitz function
f:R™ — R which is continuously differentiable on an open dense subset D of R™.

At each iteration, the GS algorithm computes the gradient of f at the current
iterate and at m > n+1 randomly generated nearby points. This bundle of gradients is
used to find an approximate e-steepest descent direction as the solution of a quadratic
program, where € is the sampling radius which may be fixed for all iterations or may be
reduced dynarmically. An Armijo line search along this direction produces a candidate
for the next iterate, which is obtained by perturbing the candidate if necessary to stay
in the set D where f is differentiable; here an additional condition of (Kiw07] on this
perturbation may ensure stronger convergence results.

The GS algorithm is widely applicable and robust in practice [BHLO06, BLO02a,
BLO04, BLOO05, Lew05].

This paper presents a nonderivative version of the GS algorithm, called the non-
derivative sampling (NS) algorithim for short. Instead of gradients of f, it employs
Gupal’s [Gup77] estimates of gradients of the Steklov averages of f, which require
f-values only (see [ENWO5] and (2.3)—(2.6)). We show that the NS algorithm retains
the convergence properties of the GS algorithm; e.g., with probability 1 it either drives
the f-values to —o0, or each of its cluster points is Clarke [Cla83] stationary for f.

At each iteration, the NS algorithm requires 2mn f-evaluations to sample the
current bundle of size m, and several more in the line search. To save work, we give
an incremental version with just 2n+4 1 f-evaluations per iteration for augmenting the
bundle with the next gradient estimate and testing a single step size; this may give
descent before the bundle reaches its full size. In addition, the bundle may include
some past gradient estimates within the current sampling region to speed convergence.

The NS algorithm is suited to applications where one has a blackbox oracle for
computing f(z) at any given z € R™, but where finding V f{z) (for = € D) is impos-
sible or too expensive. Thus its applicability area is similar to that of derivative-free
direct search methods, especially mesh adaptive direct search (MADS) algorithms
whose cluster points are Clarke stationary for f when f is locally Lipschitz and its
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initial level set is bounded; see, e.g., [ABLD08, AuD06, CDV08, CuV07]. Each MADS
iteration typically requires n + 1 or 2n f-evaluations (when no search step is consid-
ered), whereas the incremental NS iteration needs 2n + 1; these costs are similar,
but the iteration numbers until approximate convergence may differ. Numerical com-
parisons of MADS and incremental NS are deferred to a future paper. For now, NS
may be of independent theoretical interest, since it uses novel properties of Gupal’s
estimators, which are unavailable for standard finite differences or simplex gradients
[CDV08, CuV07] in the nonsmooth case.

Up till now, Gupal’s estimator has only been used in stochastic approximation
algorithms (see [ENW95, MaP84] and the references therein). It is an open question
whether similar estimators could provide nonderivative versions of bundle methods
(see the references in (BLOO05, Kiw96}).

The paper is organized as follows. The NS algorithm is presented in section 2, and
its convergence analysis in section 3. Various modifications are discussed in section 4.

2. The NS algorithm. We assume that the objective function f: R™ — R is
locally Lipschitzian and continuously differentiable on an open dense subset D of R™.
The Clarke subdifferential [Cla83) of f at any point z is given by

8f(z) = co{ lim; Vf(y) i yf » 2,97 € D},
where co denotes the convex hull, and the Clarke e-subdifferential {Gol77] by
(2.1) 8. f(z) := co8f (B(z,¢)),

where B(z,€) := {y : [y — 2| < ¢} is the ball centered at = with radius ¢ > 0 and |-
is the 2-norm. The e-subdifferential 8, f(z) is approximated by the set of [BLOO05]

(2.2) Ge(z) == clcoV f(B(z,€) N D),

since Ge(z) C 8. f(x), and B, f(x) C Gepz) for 0 < €1 < €a. We say that a point =
is stationary for f if 0 € 8 f(z); z is called e-stationary for f if 0 € O, f(x).
For « > 0, the Steklov averaged function f, (cf. [ENW5, Def. 3.1}) is defined by

(29) folo) = [ fle = u)atn)d,

where 1, : R® — R, is the Steklov mollifier defined by

_f 1™ ifye€{-a/2,a/2",
Yaly) = { 0 otherwise;

equivalently,

1 1 +a/2 Tn+a/2
/ fw)dys ... dyn.
z

falz) = ey

z)—a/2 /2

The partial derivatives of f, are given by (cf. [ENWY5, Prop. 3.11], [Gup77])

(2.4) Z‘ﬁ?“’) = [ wwaod

oo
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fori=1,...,n, where By :=[~1/2,1/2]" is the unit cube centered at 0 and

(2.5) ilz, &, ¢) =

1

E(f(-’ﬂl Fall, .y Tioy + 0Gioy, T + B Tigy + 0Cigs, . T+ aln)
—f(@m+ oy, Tisy + ot T — $00Tigr + Aty -, Tn + 0G))

Thus, for the unit cube Z := i, Bo in R™*", we may estimate V f,(z) by

=1
(2.6) 7z, a,z2) = Mz, @ ¢h), .z, e, C™) for z:=(¢L..., (M e 2.

This needs just 2n evaluations of f; f, is convenient only for convergence analysis.

We now state our NS algorithm. It employs a sequence of mollifier parameters
ai [ 0in (0,1]. For a closed convex set G, Proj(0(G) is its minimum-norm element.

ALGORITHM 2.1 (NS algorithm).

Step 0 (initialization). Select an initial point z! € R", optimality tolerances
Vopt, €opt 2 0, line search parameters 3, «, ¢ in (0, 1), reduction factors u, 6 in (0,1],
a sampling radius €; > 0, a stationarity target v; > 0 and a sample size m > n + 1.
Set k= 1.

Step 1 (approximate the Clarke e-subdifferential by sampling estimates of mollifier
gradients). Let {z*}[*; and {z*}T", be sampled independently and uniformly from

B(z*,e) and Z, respectively. Set
(2.7) G = co{y(z*, ar, 2*1), ..., v(z*™, ax, 24}

Step 2 (direction finding). Set g* := Proj(0|Gy).

Step 3 (stopping criterion). If |g"| < Vopy and € X €opy, terminate.

Step 4 (sampling radius update). If |g*| < v, set veyr = Oug, exyr = per,
ty := 0, z¢*1 := z* and go to Step 7. Otherwise, set vj41 1= Vi, €x41 := ¢4 and

(2.9) d* == —g*/[g"|.

Step 5 (limited Armijo line search). Find a step size tx as follows:
(i) Choose an initial step size ¢ = t£; > t. = min{t, xex/3}.
(i) If f(z* + td*) < f(2*) ~ Btig*|, return ¢, :=t.
(iii) If st < ¢k, return ¢ = 0.
(iv) Set t := xt and go to (ii).
Step 6 (updating). Set z**! = z* + ¢,d*.
Step 7. Increase k by 1 and go to Step 1.
Since |d*| = 1 by (2.8), Steps 5 and 6 ensure the usual Armijo condition

(2.9) ) < f(a*) - Brele®] = f(z¥) - Bl — 2ok,

which also holds when z*+! := z* at Step 4.

3. Convergence analysis. We start with several technical lemmas. The first
lemma on approximate least-norm elements extends [Kiw07, Lemma 3.1].

LEMMA 3.1. Let § # C C R™ be compact convez and 8 € (0,1). If 0 ¢ C, there
ezists § > 0 such that u € R™, dist(u|C) <6, [uf < dist(0]|C) + 0 and v € C imply
(v.1) > Bluf. |

Proof. If the assertion were false, we could pick two sequences {u'} C R", {v'} C
C satisfying dist(«*|C) < 1/4, |u¥] < dist(0|C) + 1/i and (v}, ') < Blu’|?. By



4 KRZYSZTOF C. KIWIEL

compactness, we may assume u' — i € C, v' — © € C; thus (5, @) < f]u}?. However,
@ = Proj(0| C) # 0 satisfies (v, %) > |a]2 for all v € C, a contradiction. 0

We now show that 4(-, &, 2) approximates Vf on D when « is small enough, for
any z € Z. To this end, for Lemmas 3.2 and 3.3 we could use other standard approxi-
mations (e.g., central differences with z = 0). However, for asymptotic stationarity in
Lemma 3.7, the random choice of z*! gives crucial connection between (z*!, oy, 2*!)
and sz,,:(:z“) via Lemma 3.4, whereas Lemmas 3.5 and 3.6 relate ¥ f, with 3.7.

LEMMA 3.2. Let £ € D and § > 0. There ezist € > 0 and a > 0 such that
V(&) - 7(z,a,2)] <& for all z € B(%,&), a € (0,a] end z € Z.

Proof. Since V £ is continuous on the open set D, there exist € > 0 and & > 0 such
that [Vf(Z) ~ Vf(z)| < & :=d/y/n for all z € B(z,8) + aBo, C D. Let z € B(%,¥),
a € (0,a], z == (4’1,...,(") € Z. Foreachl < i < n, by ( _52 and the mean
value theorem, there is z° € B(Z,€) + aBo with %(z,«, () (z*) and hence
12L (%) — w(z, 0, ¢) < 5 in effect, [VF(Z) - v(z,0,2)| < § by (2.6)A a

1t is useful to note that B(z,¢) in (2.2) may be replaced by its interior B(z, ¢),
since the set Vf(B(z, €) N D) = cl Vf(B(z,€) N D) is bounded by our assumption on
f, whereas cocl S = clco S for any bounded set S C R™.

The next lemma states basic properties of the set of points close to a given point Z
that can be used to provide a §-approximation to the least-norm element of G(%); it
extends [BLOUO5, Lemma 3.2] and [Kiw07, Lemma 3.2} by replacing gradients V f (y')
with their estimates (1%, e, z!) for points ' € D and 2 € Z. For ¢,6,& > 0 and
%,z € R™, using the measure of proximity to e-stationarity

(3.1) pe(E) := dist(0| Ge(T)),

let

(3.2) D (z) := [[(Bz,e)n Dy c [[ &"
1 1

and

(3)  Via(t,0,0) =
{w' . ,¥™) € Dl (z) : dist(0] co{y(y', o, 2)}Ly) < pel(E) + 6,
disL({'y(y',a,zl)};'él |Ge()) <6, forall {z‘}l";1 CZ,a€(0,a] }

LEMMA 3.3. Let € > 0 and € R™.

(i) For any & > 0, there are @ > 0, 7 > 0 and a nonempty open set V satisfying
V C Ve a(Z,z,6) for all = € B(Z,7).

(li) Assuming 0 ¢ G.(Z), pick § > 0 as in Lemma 3.1 for C := G(Z), and then
a 7 and V as in statement (i). Suppose at iteration k of Algonthm 2.1, Step 5 is
reached with =* € B(Z, min{r,¢/3}), ex = ¢, on < & and (z*,...,2*™) € V. Then
tr > min{t, xe/3}.

Proof. (i) Let u € coVf(B(&,¢) N D) be such that [u] < pe(Z) + 8. Then
Caratheodory s theorem [Roc70] implies the existence of (z',...,Z™) € D™(Z) and
X e R with 5% A = 1 such that uw = S0, AV f(&). By Lemma 3.2, there
are € € (0, e) and & € (0,1] such that the set Vo= [T, B(z,9) lies in D (),
[Zl LA, o, 2] < pe(E) + 6 and dist({7(¢}, @, 2)) ) 1{ «(£)) < & for all points
W v eV, {ZIE, C Z, a € (0,8) HenceforallxeB(z 7) with 7 := g, the
fact that B(Z,e¢ — €) C B(x,¢) ylelds V C V.a(%,x,6) by the definitions (3.2)-(3.3).
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(ii) Since (z*', ..., z¥™) € V C V. 4(%, %, J) in statement (i), we get dist(0]Gy) <
pe(Z) + 6 and dist{Gy |C) < 6 from (3.3) and (2.7). Thus, by the construction of g*
at Step 2, |¢*| < pe(Z) + § and dist(¢* | C) < . Hence by (3.1) and the choice of § in

Lemma 3.1,
(3.4) (v,d%) > Blg** for all v € G(3).

Let t € (0,¢/3]. By Lebourg’s mean value theorem (cf. [Cla83, Theorem 2.3.7]),
f(z* + td*) — f(z*) = t(v,d*) for some v € f(x) with = € [z* + td* z*]. Then,
using d¥ := —g*/|g*, t|d*| < /3 and |z* — | < ¢/3 imply = € B(%, 2¢/3) and hence
v € G(%), and so (v,d*) < —Blg*| by (3.4). Therefore, f(z* + td*) < f(z*) — Gt|g*|
for all ¢ € (0,¢/3], and the conclusion follows from the rules of Step 5. [}

The following result implies that v(z, @, z) provides a p-approximation to V fq(z)
when z happens to lie in a cube of side s := min{p/2Ln,1/2\/n} contained in Z,
where L is a Lipschitz constant for f on z + By, and a € (0,1}; this occurs with
probability at least s"" when z is sampled from a uniform distribution on Z.

LEMMA 3.4. Let a € (0,1], p> 0 and z € X, where X C R™ is bounded, and let
L be a Lipschitz constant for f on X + aBq.

(i) For each 1 <i < n, there evists { € Boo such that |%f1—‘:(1:) —vi{z, o, Q)| < p
Jor all ¢ in the set Boo N B((,p/2L). Moreover, this set contains a cube of side
s = min{p/2L/n, 1/2}.

(ii) |V falz)=v(z,a,2)| < p for all 2 in a cube of side s := min{p/2Ln, 1/2/n}
contained in Z.

Proof (i) Let ¢(C) := mi(z, @, () ~ 3= (x). By (24)~(2.5), f_ ¢(¢)d¢ = 0 and
2L is a Lipschitz constant for ¢ on By,. Hence there is { € Bo, with ¢({) = 0. Indeed,
if (¢} > 0 for some ¢’ € By, then ¢(¢”) < O for some (" € Bu, (otherwise the
continuity of ¢ on Bs would give flum #(¢)d¢ > 0, a contradiction), so ¢(¢) = 0 for
some { € [¢’,¢"); similarly for ¢(¢") < 0. Since [¢(¢) —B({)] < 2L{¢—{| for ali ¢ € Boo,
the first assertion follows. For the second assertion, using B((, p/2L) D { + 25By,
take the cube ¢ + sBo, with C; := &; — sign({;)s/2 fori=1,...,n.

(ii) This follows from (2.6) and statement (i) with p replaced by p//n. o]

For asymptotic stationarity, we need the following result of [MaP84, Prop. 2.2}.

LEMMA 3.5. Let z € R", a > 0. Then Vfo(z) € codf(z+2aBw) C 8 maf(T).

Proof. The derivative of f, at z in any direction d € R", |d] = 1, is given by

(Vuled =tim - [ (v =fenldy=m 2 [ ww g,

where, by Lebourg’s mean value theorem, v(y, t) € 8f(z +y + atd) for some a € [0,1].
Hence, v(y,t) € codf(z + 20By,) for all ¥ € aBe and t € [0, /2], so that Vf,(z) €
codf(z + 2aBos). Since z + 2aB., C B(xz,/na), (2.1) yields the conclusion. o

Actually, we mostly need only the following simple consequence of Lemma 3.5.

LEMMA 3.6. Let 2 € R™, ¢ >0, p > 0. There ezist € > ¢ and & € (0,1] such
that dist(V f.(B(Z,€)) | 8.f(F)) < p for all o € (0,&].

Proof. Since 8.f(Z) is closed, there is ¢ > ¢ with ¢ f(Z) C 8.f(%) + B(0, p).
Pick € > € and & € (0,1] such that €+ /n& < ¢. By Lemma 3.5, Vf,(B(z,§) C
codf(B(z, &+ /na)) C de f(Z) for all & € (0,&], and the conclusion follows. u]

In the GS algorithm, one has g* € d,, f(z*), so when g* vanishes around a cluster
point Z, then 0 € & f(Z) for ¢4 | € because 8. f(-) is closed. Here we only have g* € G
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in (2.7), but we may relate v(z*, ay, 28} with Vf,, (z*) via Lemma 3.4, and then
V fop (zF') with 8. f(Z) via Lemma 3.6 to get the following.

LEMMA 3.7. Suppose ax | 0, ex | € > 0, =¥ i T and g* % 0 for a subsequence
K c{1,2,...}. Then 0 ¢ 8.f(z) with probability 1.

Proof. Let C := 8,f(Z). Suppose 0 ¢ C, ie., 5 :=dist(0{C) > 0. Let p := 5/4.
By Lemma 3.6, since {z*}]2, C B(z*, €x), there are € > ¢, & € (0, 1] and % such that
for all kin K := {k € K : k > k}, we have ax < &, |g* < p, {2, C X := B(%,€)
and dist({V fa, (z*)}12, | C) < p. Hence, if we had for some k € K,

(3.5) IV for (z"l) — y(z*, ay, zk’)[ <p forl=1,...,m,

then with g* € G in (2.7) we would get dist(¢* | C) < 2p and dist(0|C) < |g*|+20 <
3p, ie., 3 < 3p/4, a contradiction. Therefore, (3.5) must fail for all k € K. This
event has probability 0, since for each £ € K and [ = 1,...,m, z* is sampled
independently and uniformly from Z, which by Lemma 3.4 contains a cube Z*' of
side s := min{p/2Ln,1/2/n} (with L a Lipschitz constant for f/ on X + &B.,) such
that |V fa, (z5) — (2%, ak, 2)] < p for all z € Z*. The conclusion follows. 0

Our convergence results parallel those in [Kiw07] for the GS algorithm. We start
with the case where ¢, and v; are allowed to decrease.

THEOREM 3.8. Let {z*} be o sequence generated by Algorithm 2.1 with v; >
Vopt = €opt = 0 and p1,8 < 1. With probability 1 either f(zk) | 0o, or 1y L 0, ¢, 1 0
and every cluster point of {z*} is stationary for f.

Proof. (i) If f(z*) ] ~co, there is nothing to prove, so assume infy f(z*) > —co.
Then summing St|g¥| < f(z*) — f(z**1) in (2.9) gives

(3.6) 3" telg*] < oo,
k=1
fee]
(3.7) 3 I+ - 2HlgH] < co.
k=1

(ii) Suppose there is k1, ¥ > 0 and € > 0 such that 1 = D and ¢ = € for all
k > k. Using |¢%| > 7 in (3.6)-(3.7) yields ty — 0, T, [z**! — z¥] < oo, and
hence the existence of a point Z such that o — % Let ¢ := & First, suppose
0 ¢ G(Z). For §, & 7 and V chosen as in Lemma 3.3(ii), we can pick k2 > k1 such
that z* € B(Z, min{7,€/3}), ar < & and tx < min{t, xe/3} yield (z*¥1,...,2%™) ¢ V
for all k > ky. This event has probability 0, since for each k > kg, (z*1,...,2%™) is
sampled independently and uniformly from cl D™(z*), which contains the open set
V # @. Second, suppose 0 € G¢(£). For § := 7/2 and &, 7, V chosen as in Lemma
3.3(i), we can pick k3 > k; such that «* € B(%,7), cu € &, 7 < |g%| = dist(0| Gy)
in (2.7) and p(Z) = 0 imply (z*!,...,2*™) ¢ V for all & > k3. This event has
probability 0 as well.

(iif) Consider the event where vy | 0, €z | 0 and {z*} has a cluster point Z. If
z* 4 %, we claim that lim, max{|z* ~ Z|,]|¢*|} = 0. Otherwise, there exist 7 > 0,
k and an infinite set K = {k : & > k,|z* — Z| < 7} such that |gF] > 7 for all
k€ K, so (37) gives Yiop lz*F! = 2% < co. Since z* 4 Z, there is © > 0 such
that for each k € K with |z* — Z| < /2 there exists k' > & satisfying |2¥' — z¥[ > &
and |z' — Z| < 7 for all k < i < k'. Therefore, by the triangle inequality, we have
bo< |zt -k < Zf;l |£**+1 — z*| with the right side being less than & for large
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ke K from 3 o |zk+! — z*| < o0, a contradiction. If z* — %, then v | 0 at Step
4 also gives lim, max{}z* — Z|, |g¥{} = 0. Using this relation to pick a suitable K for
Lemma 3.7 yields the conclusion.

THEOREM 3.9. Let {z*)} be a sequence generated by Algorithm 2.1 with v, >
Vopt = €opt = 0 and p,§ < 1. Suppose the level set {z : f{z) < f(z!)} is bounded.
Then with probability 1, vy, | 0, ex | O, every cluster point of {z*} is stationary for
f and g* 7 0 for ¥ = {k: i1 <}

Proof. Since {z*} lies in the bounded set {z : f(z) < f(z)}, infx f(z*) > ~
and the conclusion follows from Theorem 3.8. Al

Our convergence results for fixed sampling radius follow.

THEOREM 3.10. Let {z*)} be a sequence generated by Algorithm 2.1 with 1y =
Vapt = 0, €1 = €opy = € > 0 and p = 1. With probability 1 either the algorithm
terminates at some deration k with gf = 0, or f(z*) | —co, or there is a subsequence
K c {1,2,.. .} such that ¢* 7 0 and every cluster point T of {z*}rex satisfies
0€d.f(z).

Proof. We may assume that no termination occurs and infy f(z*) > —co.

By part (i) of the proof of Theorem 3.8, for b := lim,, {¢*{/2, the event 7 > 0 has
probability 0. In the remaining case of ¥ = 0, lim, |¢*| = 0 and the conclusion follows
from Lemma 3.7. o

THEOREM 3.11. Let {x*} be a sequence generated by Algorithm 2.1 with vy =
Vopt = 0, €1 = €opy =€ > 0 and p = 1. Suppose the set {z: f(z) < f(z')} is bounded
Wzth probability 1 either the algorithm terminates at some iteration k with ¢g* = 0,
or g¥ — 0 and every cluster point & of {z*} satisfies 0 € 8. f(Z).

Proof. Arguing by contradiction, it suffices to consider the case where there are
aset J C {1,2,...} and & > 0 such that lim,¢|¢*] > 25. Since {z*} lies in the
bounded set {z : f(z) < f(z!)}, infx f(z*) > ~co and we may assume with no loss
of generality that there is a point Z such that z* 7 . Since (3.6) gives tx 7 0,
arguing as in part (ii) of the proof of Theorem 3.8 we deduce the existence of k4 and
an open set ¥V # 0 such that (z* ,zhm) ¢ V ¢ D (z*) forall k > ky, k € J. This
event has probability 0, since for each k, (=* ,z¥™) is sampled independently and

uniformly from cl D:"(z"'). ]
Remark 3.12. If Step 3 is omitted, then Theorems 3.10 and 3.11 hold with the
statements about termination om\tted (by thelr proofs) In particular, if g*" = 0 for

some k', we may have 0 & 3, f(z*'), but if z* = z*' for all k > k', then 0 € &, f(z*)
with probablhty 1.
4. Modifications. In this section we propose several themes, supported by the-
ory, that might prove useful in improving the practical performance of the method.
4.1. Stopping criteria. Recalling Remark 3.12, consider the following result.
LEMMA 4.1. Let €} := e, + /noy. If (3.5) holds for some p > 0, then

(41) dist(0] 8y £(*)) < I9*]+ p.

Thus, for any p > 0, (3.5) and (4.1) hold with probability at least 5™ where s =
min{p/2Ln, 1/2\/n} with L a Lipschitz constant for f on B(zF, &) + Beo.

Proof. Since {z*'}2, C B(z*, &), Lemma 3.5 gives G}, := co{V fo, (')}, C
O f(x*). Thus dist(0 {0, f(z*)) < dist(0|Gy), where dist(0|Gy) < dist(0] Gr) + p
by (2.7) if (3.5) holds; then (4.1) follows with |g*| = dist(0| Gi). The final assertion
about probabilities stems from Lemma 3.4 as in the proof of Lemma 3.7, a
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Remark 3.12 and Lemma 4.1 suggest that in practice, for vopt,€opt > 0, the
stopping criterion of Step 3 should be augmented with the condition that, for a given
integer kjasi, ¥ has not changed during the last Aj.s; iterations.

Alternatively, for a given integer omax = 1 (playing the role of kias), we may
consider a resampling variant where Step 0 sets the sampling counter gy := 1, Step 7
sets o1 = 1, and Step 3 is replaced by the following.

Step 3' (stopping criterion). If |g¥| > vopt 0T €k > €ope, g0 to Step 4. If o = Omax,
terminate. Otherwise, set ok := o + 1 and return to Step 1.

Upon termination in Step 3', by Lemma 4.1, for any p > 0, we have

(4.2) dist(0] Bey £(z¥)) < Vot + p

with probability p > 1 - (1~ s"’”‘z)”"'", where s is given in Lemma 4.1. In particular,
p > plor agiven p € (0,1) if oymax > log(1 — 7)/ log(l — s”“‘z).

4.2. Initial step sizes. Since Algorithm 2.1 employs search directions d* :=
—g*/|g*| of unit norm, the choice of an initial step size ¢, at Step 5(i) may be crucial
in practice. For instance, if t{‘ni = 1, then the number of f-evaluations per line search
grows to infinity when ¢, = [z**+! — z*| - 0 (e.g., {z*} converges). To provide more
freedom for implementations, at Step 5(i) we may replace tﬁ]in by

(4.3) tk o o= min{¢, ker/3, 9% }.

Then, e.g., t,; = |g*| corresponds to using a unit initial step size for the nonnormalized
search direction —g* as in [Kiw07, §4.1], whereas t£, = ¢, corresponds to searching
within the sampled trust region B(z*, ¢x) as in [Kiw07, §4.2].

For (4.3), we need only replace t; > min{t, xe/3} by tx > min{t, xe/3,[g"[} in
Lemma 3.3(ii), and 5 < min{¢, xe/3} by tx < min{t, xe/3, 7} in part {ii) of the proof
of Theorem 3.8 (where |g*| > ). In effect, the preceding convergence results hold for
this modification.

4.3, Using the current gradient estimate. Since the GS algorithm augments
its bundle with the current gradient V f(z*), we now consider a similar extension. At
Step 1, let z*° be sampled independently and uniformly from Z, set z** := z* and

(4.4) Gy = 00{7(1"0, ag, 20), v (z*, g, 251), ... ,'y(:r'"", g, zk"‘)}.

To extend our preceding results, we replace Lemma 3.3(ii) by the following.

LEMMA 4.2. Let € > 0 and T € R™. Assuming 0 ¢ G.(T), pick § > 0 as in
Lemma 3.1 for C := G.(Z), and then &, 7 and V as in Lemma 3.3(1). Let & € (0,1]
be such that dist(V fo(B(Z,€/2)) | B2 f (%)) < 6/2 for all a € (0,4] (cf. Lemma 3.6),
and let L be the Lipschitz constant of f on B(Z,7)+ Be. Suppose at iteration k of
Algorithm 2.1, Step 5 is reached with z € B(Z, min{7,¢/3}), ex = ¢, ax < min{&, &}
and (zF',...,z*") € V. Using Lemma 3.4 with p := §/2, let Z*° be a cube of side
s := min{p/2Ln,1/2\/n} contained in Z such that [Vf[,k(zk) — y{z*, ax, 2)| < p for
all z in this cube, and suppose z*0 € Z*°. Then t; > min{t, ke/3}.

Proof. Since a < &, =* € B(%,€/2), 55/2‘)‘(5) < C and 2*® € Z*°, we have

dist(7(z*°, a, 2°) | C) < dist(V fa, (%) | C) + |7(2*°, ak, 25°) = V fo, (2¥)] < 6.

Let Gk := co{7(z*, ax, 2*)} 2. Since (z*1,...,2¥™) € V C V, a(3,%,4) in Lemma
3.3(i), we get dist(0]|Gx) < pe(Z) + 6 and dist(Gx|C) < 6 from (3.3). Thus, by
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(4.4) and the construction of ¢* at Step 2, dist(Gx|C) < 4, g% < pe(Z) + & and
dist(¢* | C) < 8. The conclusion follows as in the proof of Lemma 3.3(i). 3]

The proof of Lemma 3.7 goes through (with { = 1 replaced by [ = 0 and (2.7) by
(4.4)). In part (ii) of the proof of Theorem 3.8 for 0 ¢ G.(Z), replacing Lemma 3.3(ii)
by Lemma 4.2, we can pick ko such that ((z*!,... 25™), 2*0) ¢ V x Z* for all k > %3,
again concluding that this event has probability 0 by the uniform and independent
sampling of (z*!,...,z*™) in 1 D™ (z*) and 2z*® in Z, since cl D™ (z*) contains the
open set ¥ # 0 and Z contains the cube Z*0 of side s := min{d/¢Ln,1/2/n}. The
proof of Theorem 3.11 is modified accordingly. In effect, the preceding convergence
results hold for this modification.

4.4. Larger samples for Monte Carlo estimates. At Step 1, the estimates
¥(z*, ax, z*!) stem from single samples z* € Z. In the Monte Carlo spirit, we may
consider estimates that are averages over several samples. Thus, for o > 1 denoting
the z-sample size, let Z := H;.;l Z be the sample set, and let

. 1l i gl o
(4.5) Yz, o, z) = p Zj=l y(z,a,2%) for z:={(z',...,2°) € Z.
Then at Step 1, {z*/}2, and Z are replaced by {z*'}7, and Z, respectively.

The preceding convergence results extend easily to this modification. Indeed,
it suffices to notice that if |g — y(z,&,27)| < p for 5 = 1,...,0, then (4.5) gives
lg—y(z, e, z)| < p, where g = Vf(%) and p = § for Lemma 3.2, and g = V f,(z) with
a = ay and z = =¥ in the proof of Lemma 3.7.

By similar arguments, we could use a variable sample size oy, with sup, o < co.

4.5. Sampling in cubes instead of balls. Replacing the ball B(z,¢) in (2.1)~
(2.2) by the cube Beo(z,€) := {y : [y — 2]oo < €} = z + 2eBo centered at x of side 2¢,
where | - | is the co-norm, we may replace B(z¥, ¢}) by B (¥, €x) at Step 1.

The preceding results extend easily with B (-, ) replacing B(:,-) in Lemma 3.2,
(3.2), Lemma 3.3 and its proof (also using 4| < 1 there), /2 omitted in Lemma
3.5 and the proof of Lemma 3.6, and ¢}, := €, + ¢4 in Lemma 4.1.

4.6, Incremental sampling. At Step 1, the whole bundle of gradient estimates
Gy, of size m > n 4 1 is generated in one stage. Instead, we may build the bundle

(4.6) Gy = co{'y(:cu,ak,z“)}z‘]

incrementally by increasing its size my until either descent occurs or my = m. This
may save the oracle work when my < m suffices for descent or reducing |g*|.
To this end, setting mg := 0 at Step 0, replace Step 1 by the following.
Step 1 {approximate the Clarke e-subdifferential by sampling estimates of mollifier
.

gradients). Pick the current sample size my € [mp_1 + 1,m]. Let {"}2%
and {z“}}l“mk‘ﬁ_l be sampled independently and uniformly from B{z*,¢;) and Z,

respectively. Compute {7(zkl,ak,z“’)},'f;‘;nk_l+l and set Gy by (4.6).

At Step 4, if |g¥] < vy, set my = 0 to start new sampling. At Step 6, if t; =0
and my, < m, set my_y 1= my, and go back to Step 1; otherwise, set my := 0.

Thus Steps 4 and 6 restart sampling by setting my := 0 if there is progress in
stationarity {|g¥| < vk), descent (tx > 0) or the sample is full (my = m).

The preceding convergence results extend easily to this modification. Indeed, in
view of (4.6), we may replace m by my in the proof of Lemma 3.7. In part (ii) of the
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proof of Theorem 3.8, we have ¢ = 0 for k > kg in general (cf. tf‘“m at Step 5), and
hence m; = m by the modified Step 6 above.
Remark 4.3.

(i) If Step 5 chooses an initial tf, = tk, | it gives either tx = t&, ort; = 0;
thus, the additional worst-case cost of the incremental version is relatively small: at
most m — 1 f-evaluations relative to 2mn for computing the full G, with my = m.

(i) For mg = mg.;+1and tf; =t%,  Steps 1 and 5 need 2r+1 f-evaluations.

4.7. Bundling past information. The incremental version of Sect. 4.6 can be
equipped with additional bundle memory, using the following notation.

The current sampled bundle G, := co{y(z*, ax, # 2*)}2* is managed as in Sect.
4.6. Some gradient estimates obtained earlier are stored in the past bundle

4.7 Gii= co{y(zﬂ,aj,z:‘l)}(j‘”e,‘t with [, C{l,...,k=1} x{1,...,m},

where Ii is chosen so that for a fixed past bundle size h > 1,

(4.8) el <moand {2}, C B(z",099),
~k
. = i — 0 k .
(4.9) Gmax = max ;=0 as k- oco

To check |27 — 2% < 0.99¢; in (4. 8) without storing 7!, |z# - z*| may be replaced
by its overestimate |27 — 7| + Z‘_J —z¥1|. As for (4.9), since ax | 0, we may
require that &%, < xeay for a constant ko > 1. Finally, the total bundle is

(4.10) G i= co{Gr UGy}

Formally, this version employs the modifications of Sect. 4.6 for managing my.
Additionally, Step 0 chooses . > 0 and sets I; := @), whereas Step 1 sets G as in
(4.8), chooses Gy via (4.7)~(4.9) and sets Gx by (4.10). Of course, there is still room
for implementation choices. For instance, when Step 6 returns to Step 1, we may keep
the same Gj. At Step 7, we may obtain G4; from Gy by dropping points with “too
large” values of |z — z*+1| or a;.

To extend our preceding results, we replace Lemma 3.3(ii) by the following.

LEMMA 4.4. Let € > 0 and T € R™. Assuming 0 ¢ Ge(Z), pick § > 0 as in
Lemma 3.1 for C 1= G.(Z), and then &, 7 and V as in Lemma 3.3(i). For p:=6/2,
let & € (0,1] be such that dist(V fo(B(Z,0.999€¢)) | Bo.coscf (%)) < p for all @ € (0,4]
(cf. Lernma 3.6), and let L be the Lipschitz constant of f on B(Z, €)+Bo. Suppose at
iteration k of Algorithm 2.1, Step 5 is reached with =* € B(Z, mm{T, 6/1000}), €k =€,
max{ox,&5,,} € min{@, &}, my = m and (a*,...,2*) € V. Using Lemma 3.4,
for each (j,1) € I, let Z7 be a cube of side s := mm{p/ZLn 1/2+/n} contained in Z
such that |V fo, (z7') — y(z?, 05, 2)| < p for all z in this cube, and suppose 27' € Z7',
Then tx > min{t, ke/3}.

Proof. For each (5,1) € Iy, since o; < & by (4.9), z7' € B(,0.999¢) by (4.8) with
lzk — Z| < €/1000, Bo.090.f (%) C C and 27' € Z7!, we have

dist(y(z", @;,27") | C) < dist(V fa, (=7} | O) + Iy(27, a5, 27%) = Vo, () < 6.

For G := co{y(z*, ax, )}, since (z*1,... ""‘) €V C V.a(,%,6) in Lemma
3.3(1), we get dist(0{Gr) < pe(z) + 6 and dlst(lec) 6 from (3.3). Thus, by
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(4.10) and the construction of g* at Step 2, dist(Gy [C) < 4, |¢*] < pc(%) + 6 and
dist(g* | C) < é. The conclusion follows as in the proof of Lemma 3.3(ii). a]
_ The proof of Lemma 3.7 goes through, with the additional conditions that for k in
K, abox <6 (ef (4.9), {7 }jnen € X (of. (4.8)), dist({V fu, (27} yer [ C) < p,
(3.5) is angmented with [V f,, () ~ (27!, a;, 27')| < p for all (j,1) € Iy, and (4.10)
replaces (2.7). In part (ii) of the proof of Theorem 3.8 for 0 ¢ G.(%), replacing Lemma
3.3(ii) by Lemma 4.4, we may argue as in Sect. 4.3, with z*° and Z*° replaced by z7*
and Z7#. The proof of Theorem 3.11 is modified accordingly. In effect, the preceding
convergence results hold for this modification.
Remark 4.5.

(i) By modifying Lemma 4.4 and its proof, we may replace the factor 0.99 in
(4.8) by any number in (0,1); e.g., 0.999999.

(ii) The sampling region may change relatively slowly to keep most of past
estimates; e.g., we have |z°*! — 2| < €, /6 for k= 1/2 and tf, = t8, = €, /6.
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