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Abstract

‘We consider so-called generic combinatorial optimization problem,
where the set of feasible solutions is some family of nonempty subsets
of a finite ground set with specified positive initial weights of elements,
and the objective function represents the total weight of elements of
the feasible solution. We assume that the set of feasible solutions is
fixed, but the weights of elements may be perturbed or are given with
errors. All possible realizations of weights form the set of scenarios.
A feasible solution, which for a given set of scenarios guarantees the
minimum value of the worst-case relative regret among all the feasible
solutions, is called a robust solution. The maximum percentage per-
turbation of a single weight, which does not destroy the robustness of
a given solution, is called the robustness tolerance of this weight with
respect to the solution considered. In this paper we present formulae
which allow calculating the robustness tolerances with respect to an
optimal solution obtained for some initial weights.
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1 Optimality and robustness

We consider a combinatorial optimization problem in the following generic

form:

v(c) = min{w(c, F): F € F}, (1)
where the set of feasible solutions F is a family of nonempty subsets of a
given ground set E = {e;,...,e,} and ¢ = (c(ey), ..., c(en))T € R™ denotes

the vector of weights of the elements of E. For ¢ € R® and F € F, the
objective function in (1) represents the total weight of this solution. i.e..

w(e, F) = cle).

ecF

Numerous discrete optimization problems, like e.g. the traveling salesman
problem, the minimum spanning tree problem, the shortest path problem,
the linear 0-1 programming problem, can be stated in this general form. In
the following we will use as an example of problem (1) an instance of the
minimum spanning tree problem.

Example 1

Consider an undirected graph G = (V, E), where V' = {1,2,3,4, 5} and
E = {ey,...,er} = {{1,2},{1,3},{1,4},{2,4},{3,4},{3,5}, {4,5}}. Let F
be a family of subsets of E corresponding to all spanning trees in G, and let
® = (14,11, 14,15,13, 18,17)7 be a vector of the initial weights of edges in G.
Then the combinatorial optimization problem (1) for ¢ = ¢° is the minimum
spanning tree problem in the weighted graph G.

The graph G with indicated weights of its edges is shown in Figure 1.
In Figure 2 all of the spanning trees in G with corresponding weights for
¢ = ¢° are presented. [t is easy to check that the subset of edges Ty =
{{1,2},{1,3},{3,4},{4,5}} is the unique optimal solution for this instance

of problem (1) and v(c®) = 55.

Figure 1: Graph G with indicated weights of edges.
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w(c®, T,) = 57 W(c®, Tg) = 56 w(c® Ty) = 55
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wic®, T,,) = 57 wic’ Tyo) = 56 wic® T, = 61

Figure 2: All the feasible solutions of the problem from Example 1.




In the robustness analysis (see e.g. [3, 9, 15)) it is usually assumed that
the set of feasible solutions F in problem (1) is fixed but the vector of weights
can change or it is given with errors. Let C C R™ denotes a set of all possible
realizations of the vector ¢, called the scenaurios. We will assuine thal no
additional information concerning possible realizations of weights, like e.g. a
probability distribution of the vector ¢ on C, is available.

There are various concepts of robustness of solutions in optimization (see
e.g. [3.4.5,9,17, 18] and the bibliography therein). In this paper we will use
as a robustness measure the maximum relative error ( worst case relative
regret) of the solution considered, over the set of all scenarios. Namely,
assume that for any F € F and ¢ € C, we have w(c, F) > 0. Let Z(F,C)
denotes the worst-case relative regret of the solution F' on the set C, i.e.,

s w(C,F) “’UJ(C, Y)

HEO =T UGy @

A feasible solution X € F will be called a robust solution for the set of
scenarios C C R™ if the following inequalities hold:

Z(X,C) < Z(F,C) forany F € F. (3)

Thus, a feasible solution is robust if it guarantees the minimum value of
the worst-case relative regret on the set C among all the feasible solutions.

Usually, in so-called robust optimization (see e.g. [1, 2, 3, 8, 9, 16, 20])
the set C of possible scenarios is given and one seeks for a feasible solution
which is robust for C. In this paper we are interested in the opposite problem:
Namely, we assume that some feasible solution X° is given an we try to find
a set of scenarios, for which this solution is robust. Thus, this approach is
similar to standard sensitivity analysis (see e.g., [7, 10, 11, 23, 19, 21, 25]),
where one wants to find a subset of the problem data, for which some given
solution is optimal.

To state the problem formally, assume that the set F of feasible solutions
in (1) is fixed and that some initial vector of weights ¢ > 0 is specified.
Consider the solution X° € Q(c°), where Q(c°) C F denotes the set of
optimal solutions in problem (1) for ¢ = ¢°.

In sensitivity analysis one seeks for the maximal under inclusion subset
S(X°) € R™ of vectors of the weights, for which the solution X° remains
optimal. Such a set is called the optimality (or — stability) region of the
solution X°. It is well known (see e.g. |7, 11, 12]) that the optimality region
is a polyhedral convex cone in R™. It is also obvious that an optimal solution
X° € Q(c°) is robust for arbitrary scenario ¢ € S(X°).
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Given X € F, let R(X) denotes the maximal subset of scenarios in R
for which X is a robust solution. We will call this set the robustness region
of the feasible solution X.

It is rather difficult to find the robustness region of a given feasible solu-
tion of the combinatorial optimization problem (1); some attempts to obtain
a subset of R(X°) for X° € Q(c®) are made in (15}, where the maximal ball
with a center in ¢°, belonging to the robustness region of X° is investigated.

Also in standard sensitivity analysis one usually seeks for some subsets
of the optimality region. In particular, instead of changes of all the weights,
one may be interested in changes of the weight of some single element only.
This leads to the analysis of so-called tolerances of weights. The problem of
finding the tolerances as well as exploiting them in optimization algorithms
received significant attention in combinatorial optimization (see e.g. {6, 7,
10, 23, 19, 21, 22, 24, 25]). In the following we consider analogous problems
in the robustness analysis framework.

Let X be an optimal solution in problem (1) for ¢ = ¢®. Assume that
only the weight of a single element ¢ € F can be perturbed, i.e., ¢(e;) = ¢”(e;)
for €; # e. It is known (see e.g. [11]) that then X° remains optimal if and
only if the following inequalities holds:

’le) —t7(e) < cle) < c(e) +tt(e), (4)
where t*(e),t7(e) € RU {oco} denote, respectively, so-called upper and lower
tolerance of the weight c(e).

Let
Fe={FeF: ecl},

Fo={FeF:e¢F}

and denote

e — s Ia

v¥(c) = min w(c, F), (5)

v, = min w(c, F). 6

(&) = min (e, F) )
According to standard conventions, we take v®(c) = 20 or v.(c) = oc if

Fe =0 or F, =0, respectively.

Observe that given an algorithm for solving problem (1) for arbitrary
c € R* and F C 2P, we may use them also for solving the optimization

problems (5), (6).
It is well known (see e.g. {10, 11, 21]), that the following facts hold:
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Proposition 1 If e € X°, then t~(e) = oo and
£4(e) = v(e?) — (). (7)
If e¢ X°, then t*(e) =00 and
t(e) = v*(c") ~ (c”). (®)

From Proposition 1 it follows that if the optimization problem (1) is
polynomially sohable, then also the tolerances 14(e), #7(c). ¢ € E. can he
computed in polynomial time. Moreover, the opposite implication also holds
under some mild assumptions (see [6, 23, 19]).

In the next section we will introduce an analogue of the tolerances t*(e),
t~(e} in the robustness analysis context. Our approach is similar to the
Wendell’s tolerance approach in linear programming (see [24, 25]), which is
actually more general, since it allows simultaneous changes of all weights in
the objective function or right-hand-side vector of linear program).

2 Robustness tolerances

Consider the following model of perturbations of the weights of elements in
problem (1):

Assume that some initial vector of weights ¢® > 0 is given as well as a
subset @@ C F is specified. The set ) represents all of the elements, for which
the weights may be perturbed simultaneously and independently, Moreover,
assume that the maximum percentage perturbation of any weight does not
exceed 6 - 100% of its initial value for some § € [0,1). This means that
for a given value of the parameter § we are faced with the set of scenarios

C(c°, @, 6), where
C(c®,Q,8) = {(c(el), cosclen)T ERY : Je(es) — (e)] <6 cP(es), if e € Q;
cles) = c®(es), if e; & Q}.
Consider an optimal solution X° € (c°) and let Q = {e}, where e € E.
Obviously, X° is a robust solution for the set of scenarios C (¢, {e}, (). The

maximum value t"(e) of the parameter J, such that X° remains robust for
the set of scenarios C(c?, {e}, §), will be called the robustness tolerance of the

weight c(e). Formally,
t"(e) =sup {6 €[0,1): Z(X°C(c”{e},8)) < Z(X,C(c° {e},d)), X € F}.
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In order to find the exact values of the robustness tolerances for e € E we
will exploit some properties of the so-called accuracy function of a feasible
solution of problem (1) introduced in {14].

Let X be an arbitrary feasible solution of problem (1). Given @ C F and
§ €10,1), the value a(X, @, §) of the accuracy function a(X,Q,-) : [0,1) = R
is equal to the maximum relative error (relative regret) of the solution X on

the set of scenarios C(c% @, ), i.e,

_ w(c®, X) ~ w(c®,Y)
a(X,Q,0) = el e WERG) : )

Observe that this means, that a(X,Q,6) = Z(X,C) for C = C(c*, Q, 6).
The properties of the accuracy function can be therefore directly used in the
robustness analysis for the set of scenarios C(c°, @), ). In particular, it is
shown in [14] that the following fact holds:

Lemma 1l For X € F, QC E and § € [0,1),

_ w(c®, X) —w(c®,Y)+6 w(c, (X Y)NQ)
o(X, Q,0) = max w(ee, YY) —6-w(e, ¥ N Q) - (10)

where X ® Y = (X \Y)U (Y \ X).

Formula (10) can be easily specified for the case Q@ = {e}. From Lemma 1
we obtain the following corollary:

Corollary 1 For X e F,e€ E, and § € [0,1),

Z(X,C(c’, {e},8) = a(X, {e},d) = max {a’,a"}, (11)
where
w(et, X) = ue(c) + 6 - w(c®, X N {e})
@ = ve(c?) ’
o w(e?, X) =ve(e®) + 8- [c(e) —w(c®, X N{e})]
@ = ve(c®) = 6 c°(e) '

Proof From (10) it follows that

Z(X,C(c°,{e},8)) = a(X, {e},d) = max {2, 2"},



where

w(e®, X) —w(c®,Y) + 6 w(c®, (X ®@Y)N{e})

- w(e?,Y) =8 - w(ce, Y N {e}) '
v ax w(c®, X) —w(e®,Y)+6 - w(c, (X @Y)N{e})
Yere w(c?,Y) — 6 w(cee,Y N {e}) ’

We will show, that 2 = a’ and 2" = a”. Indeed, for Y € F, we have
Yn{e}=0and (X ®Y)N{e} =X N{e}, which implies

w(c®, X) —w(c®,Y)+ 6 w(c, (X ®Y)n{e})

/

2= ¥ w(c,Y) =6 -w(c?, Y N {e})
= mex w(e®, X) —w(e®,Y)+ 6 w(c®, X N{e})
Yer. w(c®,Y)

w(c®, X) — minyer, w(c®,Y) + 6 - w(c’, X N{e})
minyez, w(c?,Y)
w(c®, X) — ve(c®) + 6 - w(c®, X N {e}) o

ve{c°) =

Similarly, for Y € F° we have, Y N{e} = {e} and w(c’, (X @Y )N {e}) =
w(c®, XN{e}) +w(c®, Y n{e}) = 2w(c’, XNY n{e}) = c*(e) —w(c®, X N {e}),
which implies

w(c®, X) —w(c®,Y)+ 8w, (X@Y)n{e})

2T R w(c?,Y) — 6 -w(c, Y Nn{e})
= max w(c®, X) —w(c®,Y)+ 6 [c(e) —w(c’, X N {e})
T vere w(ce,Y) — 6 co(e)

w(c®, X) — minyere w(c®,Y) + 8- [c°(e) —w(c®, X N{e})
miny¢ze w(c®,Y) — & - c°(e)

w(ce®, X) —v¥(c”) + 6 - [c°(e) —w(c”, X N {e})] g
ve(c?) — § - c?(e) ’

To simplify the notation let for X € F, e € X, and § € [0, 1),
Z(X,0) = Z(X,C(c’,{e},0)).

It will be also convenient to state formulae for calculating Z.(X, ) sep-
arately in both cases: e € X and e ¢ X. From Corollary 1 we have the
following facts:


































