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Abstract 

We consider so-called generic combinatorial optimization problem,. 
where the set of feasible solutions is some family of nonempty subsets 
of a finite grouncl set with specifiecl positive initial weights of elements, 
and the objective function represents the total weight of elements of 
the feasible solution. We assume that the set of feasible solutions is 
fixecl, but the weights of elements may be perturbed or are given with 
errors. All possible realizations of weights form the set of scenarios. 
A feasible solution, which for a given set of scenarios guarantees the 
minimum value of the worst-case relative regret arnong all the feasible 
solutions, is callecl a robust solution. The maximum percentage per­
turbation of a single weight, which cloes not destroy the robustness of 
a given solution, is callecl the robustness tolerance of this weight with 
respect to the solution consiclerecl. In this paper we present formulae 
which allow calculating the robustness tolerances with respect to an 
optima! solution obtainecl for some initial weights. 

Keywords: Combinatorial optimization; Robustness and sensitivity 
analysis; Robustness tolerances 



1 Optimality and robustness 

We consider a combinatorial optimization problem in the following generic 
form: 

v(c) = min{w(c, F): FE F}, (1) 

where the set of feasible solutions F is a family of nonempty subsets of a 
given ground set E = {e1, ... ,en} and c = (c(e1), ... ,c(en))r E !Rn denotes 
the vector of weights of the elements of E. For c E !Rn and F E F, the 
objective function in (1) represents the total weight of this solution , i.e .. 

w(c, F) = L c(e). 
eEF 

Numerous discrete optimization problems, like e.g. the traveling salesman 
problem, the minimum spanning tree problem, the shortest path problem, 
the linear 0-1 programming problem, can be stated in this generał form. In 
the following we will use as an example of problem (1) an instance of the 
minimum spanning tree problem. 

Example 1 
Consider an undirected graph G == (V, E), where V == {1, 2, 3, 4, 5} and 

E = {e1 , ... ,e1} = {{l,2},{1,3},{l,4},{2,4},{3,4},{3,5},{4,5}}. Let F 
be a family of subsets of E corresponding to all spanning trees in G, and Jet 
c0 = (14, 11, 14, 15, 13, 18, l 7)r be a vector of the initial weights of edges in G. 
Then the combinatorial optimization problem (1) for c = c0 is the minimum 
spanning tree problem in the weighted graph G. 

The graph G with indicated weights of its edges is shown in Figure 1. 
In Figure 2 all of the spanning trees in G with corresponding weights for 
c = c0 are presented. It is easy to check that the subset of edges Tg = 
{ { 1, 2}, { 1, 3}, { 3, 4}, { 4, 5}} is the unique optima! solution for this instance 
of problem (1) and v(c0 ) = 55. 

Figure 1: Graph G with indicated weights of edges. 

2 



~~~ 
w(c",T,) = 57 w(c 0 ,T2 ) = 56 w(c 0 ,T3 ) = 59 

w(c 0 ,T4 ) = 58 w(c 0 ,T5 ) = 63 

w(c 0 ,T7 ) = 57 w(c 0 ,T8 ) = 56 w(c 0 ,T9 ) = 55 

w(c 0 ,T13 ) = 64 w(c 0 ,T,_ 4 ) = 58 w(c 0 ,T15 ) = 57 

w(c 0 ,T16 ) = 60 w(c 0 ,T17 ) = 59 w(c 0 ,T18 ) = 64 

w(c 0 ,T19 ) = 57 w(c 0 ,T20 ) = 56 w(c 0 ,T 21 ) = 61 

Figure 2: All the feasible solutions of the problem from Example 1. 
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In the robustness analysis (see e.g. [3, 9, 15)) it is usually assumed that 
the set of feasible solutions Fin problem (1) is fixed but the vector of weights 
can change or it is given with errors. Let C <;; JR.n denotes a set of all possible 
realizations of the vector c, called the s~enu1 ·ius. 'i'ie will a.:;su11u:: LlrnL uu 
additional information concerning possible realizations of weights, like e.g. a 
probability distribution of the vector con C, is available. 

There are various concepts of robustness of solutions in optimization (see 
e.g;. [3. 4, 5, 9, 17, 18) and the bibliography therein). In this paper we will use 
as a robustness measure the maximum relative error ( worst case relative 
regret) of the solution considered, over the set of all scenarios. Namely, 
assume that for any FE F and c EC, we have w(c,F) > O. Let Z(F,C) 
denotes the worst-case relative regret of the solution Fon the set C, i.e., 

Z(F C) _ w(c, F) - w(c, Y) 
' - ~lto/:; w(c, Y) · 

(2) 

A feasible solution X E F will be called a robust solution for the set of 
scenarios C <;; JR.n if the following inequalities hold: 

Z(X,C) ~ Z(F,C) for any FE F. (3) 

Thus, a feasible solution is robust if it guarantees the minimum value of 
the worst-case relative regret on the set C among all the feasible solutions. 

Usually, in so-called robust optimization (see e.g. [l, 2, 3, 8, 9, lG, 2G]) 
the set C of possible scenarios is given and one seeks for a feasible solution 
which is robust for C. In this paper we are interested in the opposite problem: 
Namely, we assume that some feasible solution X 0 is given an we try to find 
a set of scenarios, for which this solution is robust. Thus, this approach is 
similar to standard sensitivity analysis (see e.g., [7, 10, 11, 23, 19, 21, 25]), 
where one wants to find a subset of the problem data, for which some given 
solution is optima!. 

To state the problem formally, assume that the set F of feasible solutions 
in ( 1) is fixed and that some ini tial vector of weights c0 > O is specified. 
Consider the solution X 0 E !1(c0 ), where !1(c0 ) <;; F denotes the set of 
optima! solutions in problem (1) for c = c0 • 

In sensitivity analysis one seeks for the maxima! under inclusion subset 
S(X0 ) <;; JR.n of vectors of the weights, for which the solution X 0 remains 
optima!. Such a set is called the optimality ( or - stability) region of the 
solution X 0 • It is well known (see e.g. [7, 11, 12]) that the optimality region 
is a polyhedral convex cone in JR.n. It is also obvious that an optima! solution 
X 0 E !1(c0 ) is robust for arbitrary scenario c E S(X0 ). 
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Given X E F, Jet R(X) denotes the maxima! subset of scenarios in !Rn 
for which X is a robust solution. We will call this set the robustness region 
of the feasible solution X. 

It is rather difficult to find the robustness region of a given feasible solu­
tion of the combinatorial optimization problem (1); some attempts to obtain 
a subset of R(X0 ) for X 0 E !1(c0 ) are made in [15]. where the maxima! bali 
with a center in c0 , belonging to the robustness region of X 0 is investigated. 

Also in standard sensitivity analysis one usually seeks for some subsets 
of the optimality region. In particular, instead of changes of all the weights, 
one may be interested in changes of the weight of some single element only. 
This leads to the ana.lysis of so-called tolerances of weights. The problem of 
finding the tolerances as well as exploiting them in optimiza.tion algorithms 
received significant attention in combinatorial optimization (see e.g. [6, 7, 
10, 23, 19, 21, 22, 24, 25]). In the following we consider analogous problems 
in the robustness analysis framework. 

Let X 0 be an optima! solution in problem (1) for c = c0 • Assume that 
only the weight of a single element e EE can be perturbed, i.e., c(e;) = c0 (e;) 
for e; =J e. It is known (see e.g. [11]) that then X 0 remains optima! if and 
only if the following inequalities holds: 

c0 (e) - r(e) :-:; c(e) :-:; c0 (e) + t+(e), (4) 

where t+ ( e), t-( e) E IR U { oo} denote, respectively, so-called ·upper and /ower 
tolerance of the weight c( e). 

Let 
P ={FE F: e EF} , 

F. = { F E F : e r/ F}, 

and denote 
v•(c) = min w(c, F), 

FE:!" 

v.(c) = min w(c, F). 
FE:Fe 

(5) 

(6) 

Au ·orcli11!; to sta11dard conventions, we ta.ke u' ( c) = oo or ą ( c) = oc if 
F• = 0 or Fe = 0, respectively. 

Observe that given an algorithm for solving problem (1) for arbitrary 
c E IR.n and F <::::: 2E, we may use them also for solving the optimization 
problems (5), (6). 

It is well known (see e.g. [10, 11, 21]), that the following facts hold: 
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Proposition 1 ff e E X 0 , then C(e) = oo and 

t+(e) = v.(c0 ) - v(c0 ). 

ff ef/. X 0 , then t+(e) = oo and 

C(e) = v•(c0 ) - v(c0 ) . 

(7) 

(8) 

From Proposition 1 it follows that if the optimization problem (1) is 
polynomially solvable, tlwn also the tolerances t+(r), t-(r) , r E E , cnn h<' 
computed in polynomial time. Moreover, the opposite implication also holds 
under some mild assumptions (see [6, 23, 19]). 

In the next section we will intro duce an analogue of the tolerances t+ ( e), 
C(e) in the robustness analysis context. Our approach is similar to the 
Wendell's tolerance approach in linear programming (see [24, 25]), which is 
actually more generał, since it allows simultaneous changes of all weights in 
the objective function or right-hand-side vector of linear program). 

2 Robustness tolerances 

Consider the following model of perturbations of the weights of elements in 
problem (1): 

Assume that some initial vector of weights c0 > O is given as well as a 
subset Q c;;; E is specified. The set Q represents all of the elements, for which 
the weights may be perturbed simultaneously and independently, Moreover, 
assume that the maximum percentage perturbation of any weight does not 
exceed 8 · 100% of its initial value for some 8 E [O, 1). This means that 
for a given value of the parameter ó we are fa.ced with the set of scenarios 
C(c0 ,Q,o), where 

C(c0 , Q, 8) = { (c(e1), ... , c(enW E IR.n: jc(e,) - c0 (e,)I s; 8 · c0 (e,), if e, E Q; 

c(e,) = c0 (e.), if e; ff. Q}. 

Consider an optima! solution X 0 E O(c0 ) and Jet Q = {e}, where e EE. 
Obviously, X 0 is a robust solution for the set of scenarios C (c0 , {e}, O). The 
maximum value tr(e) of the parameter 8, such that X 0 remains robust for 
the set of scenarios C ( c0 , { e}, o), will be called the robustness tolerance of the 
weight c(e). Forma.lly, 

tr (e) = sup { 8 E [O, 1) : Z (X 0 , C(c0 , { e}, 8)) s; Z (X, C(c0 , { e }, 8)), X E .F}. 
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... 
In order to find the exact values of the robustness tolerances for e E E we 

will exploit same properties of the so-called accuracy f1mction of a feasible 
solution of problem (1) introduced in [14]. 

Let X be an arbitrary feasible solution of problem (1). Given Q <:;; E and 
8 E [O, 1) , the value a(X,Q,8) of the accuracy function a(X,Q, ·): [O, 1)-> IR 
is equal to the maximum relative error (relative regret) of the solution X on 
the set of scenarios C(c0 , Q, 8), i.e., 

(X Q 8) _ w(c0
, X) - w(c0

, Y) 
a ' ' - cEJl!~,ó) Wf; w(G°, Y) · 

(9) 

Observe that this means, that a(X,Q,8) = Z(X,C) for C = C(c0 ,Q,8). 
The properties of the accuracy function can be therefore directly used in the 
robustness analysis for the set of scenarios C(c0 , Q, 8). In particular, it is 
shown in [14] that the following fact holds: 

Lemma 1 For X EF, Q <:;; E and 8 E [O, 1), 

(X Q 8) _ w(c0 ,X) - w(c0 , Y) + 8 • w(c0 , (X 0 Y) n Q) 
a ' ' -rpf} w(c0 ,Y)-ó·w(C°,YnQ) ' (10) 

where X 0 Y =(X\ Y) u (Y \ X). 

Formula ( 10) can be easily specified for the case Q = { e}. From Lemma 1 
we obtain the following corollary: 

Corollary 1 For X EF, e E E, and 8 E [O, 1) , 

where 

a' 

a" 

Z (X, C(c0 , { e }, 8)) = a(X, {e }, 6) = max {a', a"}, (11) 

w(c0 , X) - v.(c0 ) + 8. w(c0 ,X n {e}) 
v. ( G°) 

w(c0 , X) - v•(c0 ) + ó • [ c0 (e) - w(c0 , X n { e})] 
v•(c0 ) - 8 · c0 (e) 

Proof From (10) it follows that 

Z(X,C(c0 ,{e},8)) = a(X,{e},8) = max{z',z"}, 
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where 

z' 
w(c0 ,X) - w(c0 , Y) +o• w(c0 , (X 181 Y) n {e}) 

~~ w(C°,Y)-o·w(C°,Yn{e}) 

z" 
w(c0 , X) - w(c0 , Y) +o• w(c0 , (X 181 Y) n { e}) 

~~ w(C°,Y)-o-w(C°,Yn{e}) · 

We will show, that z' = a' and z11 = a11 • Indeed, for Y E :F. we have 
Y n {e} = 0 and (X 181 Y) n {e} = X n {e}, which implies 

z' 
w(c0 ,X)-w(c0 ,Y) +o· w(c0 ,(X 181 Y) n {e}) 

lPe~ w(C°,Y)-o •w(C°,Yn{e}) 
w(c0 ,X)-w(c0 ,Y)+o•w(c0 ,Xn{e}) 

lPe~ w(C°,Y) 

w(c0 ,X)-minveF. w(c0 , Y) + ó. w(c0 ,X n {e}) 
minveF. w(c0 , Y) 

w(c0 ,X)-v.(c0 )+o•w(c0 ,Xn{e}) I 
------'------'----'-~-,-~--------'-~=a 

v.(ca) · 

Similarly, for Y EP we have, Y n { e} = { e} and w(c0 , (X 181 Y) n { e}) = 
w(c0 , Xn{e} )+w(c0 , Yn {e} )-2w(c0 , XnYn {e}) = c0 (e)-w(c0 , Xn{e} ), 
which implies 

z" 
w(c0 ,X) -w(c0 , Y) +o• w(c0 , (X 181 Y) n {e}) 

max------'--------'--,--~--c-~-~~-c--c-c-~~~ 
YeF• w(C°,Y)-o•w(C°,Yn{e}) 

w(c0 ,X) - w(c0 , Y) +o· [c0 (e) - w(c0 ,X n {e}) 
max --------~-----~ 
Ye.F" w(C°, Y) - o• c0 (e) 
w(c0 , X) - minYeF• w(c0 , Y) +o· [ c0 (e) - w(c0 , X n {e}) 

minYe.r• w(C°, Y) - o· C°(e) 

w(c0 , X) - v•(c0 ) +o· [ c0 (e) - w(c0 , X n {e})] 11 
------'-----'-----'-~-,----'------'----'-~------'-------'-------'----''--'---'-=a 

v•(c0 ) - ó · c0 (e) · 

To simplify the notation !et for XE :F, e EX, and o E [O, 1), 

Z.(X, o) = Z (X, C(c0 , {e }, o)). 

• 

It will be also convenient to state formulae for calculating z.(X, o) sep­
arately in both cases: e E X and e (/: X. From Corollary 1 we have the 
following facts: 

8 



If X EP and 5 E [O, 1), then 

Z (X 5) = max { w(c0
, X) - v0 (c0

) + 5 · c0 (e) w(c0
, X) - v•(c0

)}. (l 2) 
e , v.(ca) 'v•(ca)-5-c0 (e) 

If XE F. and 5 E [O, 1), then 

· _ { w(c0 , X) - v.(c0 ) w(c0 , X) - v•(c0 ) + 5 · c0 (e)} 
Z.(X, 5) - max ( ) , ( ) 5 ( ) . (13) v. C° v• C° - • c0 e 

In the following example we will apply the above formulae to illustrate 
the behavior of the worst-case regret functions for two feasible solutions of 
the minimum spanning tree problem considered in Example 1. 

Example 2 
Consider again the minimum spanning tree problem from Example 1. 

Assume that only a weight of the edge e = {3, 4} can be perturbed and that 
all the remaining weights are given by the initial vector c0 as in Example 1. 
We are therefore faced with the set of scenarios C(c0 , { {3, 4} }, 5). Moreover, 
we have v(c0 ) = v•(c0 ) = 55, v.(c0 ) = 56. Consider the following two feasible 
solutions: T1 and Tg, where 

T1 = {{l,2},{l,3},{l,4},{3,5}}, 
Tg= {{l,2},{l,3},{3,4},{4,5}}. 
The solution T9 is an optima! solution in problem (1) for c = c0 and 

e E Tg, therefore the formula (13) is appropriate to calculate z.(Tg, 5). To 
find Z.(T1 , 5) one can use (12), because e rt T1 . 

In Figure 3 the worst-case regret functions for the feasible solutions T1 

and T2 are shown. O 

The following theorem gives simple formulae for calculating the robust­
ness tolerances tr(e), e EE, for an initially optima! solution X 0 E fl(c0 ). 

Theorem 1 For X 0 E fl(c0 ), 

{ 
1 

t'"(e) = I 
min { 1, [ v•(c0 ) 2 - v(c0 ) 2 ]' · c0 (e) - 1 } 

if e E X 0 , 

if e rt X 0 • 

(14) 

Proof From the definition of the robustness tolerances we have for e E E, 
X 0 E fl(c0 ), 

t'"(e) = sup {5 E [O, 1): Z0 (X 0 , 5) ~ Z0 (X, 5), XE :F}. 
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I I 
O. 35· 

Ze(T1,ó) 
O. 3-~ 

Ze(T9,ó) 
O. 25· 

o.::: 
-------

------
i----

O .1'.: 
----,.. 

O.~ 
,..-

,.. ,.. ,.. 
,..-

o. o::; •. 
_,.. 

,.. .... -,.,, ,.. .... 
0.2 0.4 0.6 0.8 

ó 

Figure 3: Worst-ca.se regret functions of the solutions T1 and Tg. 

(i) Consider first the case when e E X 0 , which irnplies v(c0 ) = ve(c0 ). It is 
easy to see that then Ze(X0 , ó) :::; z.(X, ó) for arbitrary ó E [O, 1), XE F". 
Indeed, from (12) we have for X= X 0 , 

z.(x•, ó) = max { v(c•) - v::~~: ó. c•(e)' O}' 
and for arbitrary X E F", 

z.(x, ó) max ----~---~, -,.......,.~-,---,-,.... { w(c0 , X) - ve(c0 ) + ó · c0 (e) w(c0 , X) - v"(c0 )} 

ve(G°) v•(c0 ) - ó · c0 (e) 

2: {v(c0
) -v.(c0

) + ó · c0 (e) o} 
max v.(G°) , . 

Thus, given X 0 EF• n !1(c0 ) for any e E X 0 , 

tr(e) = sup {ó E [O, 1): Z.(X0 , ó):::; Z.(X, ó), XE Fe}. 
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But according to (13) for XE Fe and 8 E [O, 1), 

{ w(c0 , X) - v.(c0 ) w(c0 , X) - v•(c0 ) + 8 · c0 (e) } 
Z.(X, 8) max v,(co) , v•(co) - 8. co(e) 

{ w(c0 , X) - v•(c0 ) + 8 · c0 (e)} 
2 max O, ~-~------

v•(c") - 8 • c0 (e) 
w(c0 , X) - v•(c0 ) + 8 · c0 (e) 

v•(c") - 8 · c"(e) 

2 v(c0
) - v•(c0

) + 8 · c0 (e) = Z (Xo 8) 
v•(c0 ) - 8 · c0 (e) • ' · 

This means that X 0 remains robust for arbitrary 8 E [O, 1), which implies 
that tr(e) = 1 when e E X 0 • 

(ii) Consider now the case when e ff. X 0 • From (13) for arbitrary 8 E [O, 1), 

Z (Xo 8) = max {o v(co) - v•(co) + 8. co(e)} 
• ' ' v•(c0 )-8-c"(e) ' 

and for X EF., 

{ w(c0 ,X)-v,(c0 ) w(c0 ,X)-v•(c0 ) +8 • c0 (e)} 
z.(X, 8) max v.(c") , v•(c") _ 8 . c"(e) 

{ o v(c0 ) - v•(c0 ) + 8 · c0 (e)} 
2 max , v•(c") _ 8 _ c"(e) . 

This implies Z.(X0 ,8) ~ Z.(X,8) for any XE :F,, and consequently, 

tr(e) = sup { 8 E [O, 1) : Z,(X 0 , 8) ~ Z,(X, 8), XE P}. 

Substituting v(c0 ) = v.(c0 ) in (13) we obtain for X E :F•, 8 E [O, 1), 

Z (X 8) = max { w(c0
, X) - v(c0

) + 8 • c0 (e) w(c0
, X) - v•(c0

)} _ (l5) 
• ' v(c") ' v•(c") - 8 · c"(e) 

From (15) it follows that for arbitrary x• E argminFE.P w(c0 , F) and for 
any 8 E [O , 1), 

Z,(X, 8) 2 z.(x•, 8) = max { v•(co) - v~~;t 8. co(e)' O}. 

This implies, that w hen e ff. X 0 , we have 

z.(X 0 ,8) ~ Z,(X,8), for any XE P, 
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if and only if 

{ O v(c0 ) - v•(c0 ) +o• c0 (e)} { v•(c0 ) - v(c0 ) +o • c0 (e) o} 
max ' v•(c0 ) - o• cO(e) :::; max v(cO) ' · 

But this inequality holds for 

o:::; min { 1, 
[ v•(c0 ) 2 - v(c0 )2 J½} 

c0 (e) ' 

which finally proves (14). • 

0.5 .-·· 
Ze{Tg,6) .-·· 

_ .. -.• __ ... -· 
O. 4-

Ze(T,6), Tt'.I'g 

_ .. -· 
o. 

o. 

o. 

0.2 0.4 0.6 !0.8 ,5 
t'(e) 

Figure 4: Worst-case regret functions of feasible solutions in problem (1). 

Example 3 
Consider again the minimum spanning tree problem from Example 1 and 

its optima! solution Tg= {{l,2},{l,3},{3,4},{4,5}}. From Theorem 1 it 
fellows that the robustness tolerances of all the edges belonging to Tg are 
equa.l to 1. Consider therefore some edge from the set E \ Tg, e.g. the edge 
e = { 1, 4}, and the corresponding set of scenarios C = C( c0 , {{ 1, 4}}, o). We 
have c0 (e) = 14, v(c0 ) = w(c0 , Tg)= 55, v•(c0 ) = 56. Calculating tr(e) from 
(14) we obtain: 

2 2 l 
r ( ) _ ( 56 - 55 ) 2 ~ 10.54 ~ O 75 t e - 14 ~ 14 ~ · · 
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Thus, the spanning tree Tg guarantees the minimum value of the worst-case 
relative regret if the weight of the edge e = { 1, 4} is perturbed by no more 
than approximately 75%, and all the remaining weights are unchanged. 

In Figure 4 the worst case regret functions of all the feasible solutions 
in problem (1), are shown; bold line indicates the worst-case regret function 
of the spanning tree Tg. Observe that the solution Tg guarantees, indeed, 
the minimum value of the worst-case regret among all the feasible solutions 
provided ó :<:::; tr(e) ~ 0.75. For larger values of ó a feasible solution T2 
appears to be better from the robustness point of view. The worst-case 
regret functions for both the solutions T2 and Tg are shown in Figure 5. 

j 

0.3--
Ze(T2 ,ó) / 

, 

/ 

0.25'~ Ze{Tg,ó) 
/ 

,,,_~-- ·· 
~ . 

o.:-----+-----+----_,~--
.,,,. 

... ;,: .. / .. · / 

0.1:'>+----t-----+---~..:_ 
/ 

/ ,, ,, 
o.:t-+----+----.--~-+-,,._--_,r----+--+------+-

,, 
/ 

/ 
O.O:'-rt---...---'-t-___....---+------1---+-+-----+-

0.2 0.4 0.6 Io.a ó t'(e) 

Figure 5: Worst-case regret functions of the solutions T2 and Tg. 

o 

3 Conclusions 

In this paper we consider an influence of perturbations of single weights on 
the robustness of an initially optima] solution for the generic combinatorial 
optimization problem. Maximum percentage perturbation of the weight, 
which do not destroy the robustness of the solution considered, is called 
the robustness tolerance of this weight. It is shown, that the robustness 
tolerances of the weights for all elements belonging to the optima] solution 
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are equal to 1, and the tolerances of weights for all remaining elements can be 
computed easily if the optima! value of an auxiliary optimization problem is 
known. This auxiliary problem consists in forcing an additional requirement, 
that the element considered does not belong to any feasible solutiun. ObserVt· 
that this leads to polynomial solvability of the robustness tolerance problem 
provided that the original optimization problem is polynomially solvable. 
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