





Some properties of B-efficiency preference relation

in multiobjective optimization problems

Dmitry Podkopaev
We study B-efficiency preference relation which is used for modeling trade-offs
in multiobjective optimization problems. This relation is the weak Pareto domi-
nance relation over transformed vector evaluations, where the transformation is
linear and is defined by a matrix of special case. We describe the situation, where
number of objective functions is reduced due to singularity of the transformation
matrix and interpret this situation in decision making terms. We compare the
domination cone of B-efficiency preference relation with domination cones of

two wetl-known preference relations.

0. Introduction and problem setting
We consider the multiple objective optimization problem in the following general state-

ment:

r}g{x f(x), ¢3]

where
X is the set of feasible solutions;

S = (1(x) f2(x),. . fi (), fit X — R, ie Ny, are objective functions;
Ni={1,2,.. k}.

Solving this probiem means deriving an element of X, which is the most preferred for the
Decision Maker (DM). As a rule, it is impossible to obtain complete information about DM’s
preferences. Therefore methods of deriving and manipulating partial information about DM’s
preferences gain in importance.

One of approaches to handling partial information about DM’s preferences is to set upper

bounds on trade-offs between objective functions (see for example Kaliszewski 2006). This ap-
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proach is widely used in interactive methods of MCDM with relative preference expressing (see
for example Kaliszewski and Zionts 2004, Roy and Wallenius 1992). A technique of deriving
trade-off solutions based on linear transformation of objective functions is proposed in Pod-
kopaev, 2007a, 2007b. A transformation matrix of special kind is used to represent information
of bounds on trade-offs. It was proved in Podkopaev, 2007a that weakly Pareto optimal solutions
of the transformed problem are Pareto optimal solutions of the initial problem with predeter-

mined bounds on trade-offs.

In this work we study properties of the transformation matrix in terms of DM's preferences.
In particular, in Section 2 we interpret the case where the matrix is singular and obtain a condi-
tion of its singularity. In Section 3 we compare the transformation-based preference model with

two other approaches of preference representation based on analysis of domination cones.

1. Transformation-based approach to finding trade-offs solutions
Let us observe that in problem (1) each feasible solution x€X is represented by its vector

evalvation y=f(x). Therefore instead of problem (1) we can consider the problem

max y 2)
yeY

where
Y = {fix): xe X}

is the set of evaluations, Y c R*.

Given Y, the set of Pareto optimal evaluations P(¥) and the set of weakly Pareto optimal

evaluations W(Y) are defined as
P(Y) = {yeY: ByeY yy&y#y) ),

W(Y) = {yeY: Vy'eWy}IpeN, o, 2y) |



Feasible solution x is called Pareto optimal (weakly Pareto optimal) solution of problem

(), if f)e P(Y) (flx)e W(Y)).
For any y'€ ¥ and any j € Ny, let
Ziy) = (yeRY: y<yi & Vs € NG (0, 2V}

Definition 1 [3]. Lez i, j € Ny, i, If Zi(y" )Y # &, then the number

Ty ¥)= sup 2
yeZ;0nY Y~ Y;

is called trade-off between i-th and j-th objective function for evaluation y™. If Zy(y )Y = &,

then by definition we assume Ty Y)=-c0.

Interpretation 1. Trade-off Tii( y"Y) indicates how much at most evaluation y" can be im-
proved in i-th component relatively to its worsening in j-th component during passage from y” to
any other evaluation from Y, under the condition that the remaining components do not worsen.

It was proposed in (Podkopaev 2007a) to impose constraints on upper trade-off bounds
with the help of linear transformation of vector evaluations. The transformation matrix
B=(Bi/)ixE R** s to be positive, its main diagonal elements have to be equal to one, and the
remaining elements have to satisfy following conditions:

Bpj Bji SBpir 1.7, p € Nk, i#, j#p, €))
By < UBji, i.j,€ Ny, i#. 4)
The transformation of Y is defined by

Ys={By: y€ ¥}.

Theorem 1 [5]. Lez By e W(Yp). Theny” € P(Y) and for any i,j € Ny, i#, we have

Ty V)< —.

Ji



The approach to setting bounds on trade-offs based on Theorem 1 is described as follows.

Let for any ije Ny number o;>0 represents the needed upper bound on trade-off between

i-th and j-th objective functions. Suppose that these numbers satisfy following conditions:
Opj O 2 Opi, 1, ], P € Ny, i, j#Pp, (5)
oy = Vay, i,j, € Ny, i#f. (6)

Define the elements of matrix B as By=1/0y;, i, j& Ny, i#], and put ;=1 for all iEN,. It is easy to
see that those elements satisfy conditions (3) and (4). Then, by Theorem 1, any weakly Pareto

optimal solution of the problem

mgBﬂﬂ @)

is a Pareto optimal solution of problem (1) satisfying following bounds on trade-offs:
T(y".Y)< ¢, for all i je N

We call weakly Pareto optimal solutions of problem (7) B-efficient solutions.

A self-depended interpretation of elements ; in terms of decision making process and rea-
soning of conditions (5), (6) is presented in (Podkopaev 2007b).

Interpretation 2. f; is the maximum loss in i-th objective which DM agrees to pay for
unitary gain in j-th objective under the condition that all the other objectives do not worsen.

The approach based on linear transformation provides some advantages in comparison to
other approaches to handle trade-offs known before. In particular, it allows to set bounds on
trade-offs with k(k-1) degrees of freedom, i. e. independently for each pair of objective func-
tions. Another advantage is enclosing the technique of finding trade-off solutions into the
framework of linear algebra, which makes possible to apply this theory to analysis of preference

relation.




2. Singularity of matrix B and reduction of the number of objectives

Here and henceforth we assume that transformation matrix B=(B;)ix€ R¥™ s positive, its
main diagonal elements equal to one, and the remaining elements satisfy conditions (3) and (4).

Theorem 2. Let i,j € Ny, i#. Equality B;ff; = 1 holds if and only if i-th and j-th rows of
matrix B are proportional to each other.

Proof. Suppose B;;B;; = 1 and let us prove that i-th and j-th rows of matrix B are propor-
tional to each other. Let s N;. Consider three possible cases.

Case 1. s=i. Then we have

Biv=1=PByBji = ByBys-
Case 2. s=j. Then we have
Bis = By = BijPys-
Case 3. s#i, s#{. Then from (3) taking into account §;;;; = 1 we have

Bis = ByBys, &)

Bjs = BjiBiy = Bis/Byj-
The Jast inequality implies 8;s < B;;B;;. Combining this inequality and (8) we obtain

Bi: = Siijs- (9)
In each of three cases we get (9). This means that i-th and j-th rows of matrix B are propor-

tional to each other with coefficient of proportionality ;.
Now suppose that there exists a constant ¢>0 such that B;,=cf};,; for any se N,. Then we

have By = c¢fB;; = c and 1 =, = cf; which implies B;f;; = 1. O

It follows from Theorem 2 that in the case Byf3;; = 1 matrix B is singular and problem (7)

has /-th and j-th objective functions proportional to each other.

To analyze implications from this fact, let us recall that most of quantitative criteria in real-

life optimization problems has ratio scale, i. e. meaning and properties of such a criterion are



invariant to multiplying the objective function to a constant. As an example, converting a quanti-
tative criterion to another metric unit (meters to kilometers, kilograms to pounds etc.) does not
change its properties. Using this argumentation we can formulate following assumption:
If two objective functions in a multiple objective optimization problem are
proportional to each other, then one of these objective functions is redundant.

The situation where B;f;; = 1 can be easily understood with the help of Interpretation 2.
Decision Maker agrees to pay with [3;; units of i-th objective function for unitary gain of j-th ob-
jective function and at the same time agrees to pay with 3;; = 1/f;; units of j-th objective function
for unitary gain of i-th objective function. This implies

Interpretation 3. If B;,8;; = 1, then i-th and j-th objective function are perfectly substitut-
able and so they can be reduced to one surrogate function P fi+f;.

Let us introduce the binary relarion of substitutabiliry on the set of objective functions f,
fo. .. fe. We say, that i-th and j-th objective functions are substitutable, if ;;8;; = 1. Since relation
of proportionality is an equivalence relation (it is reflexive, symmetric and transitive), it follows
from Theorem 2 that relation of substitutability is an equivalence relation too. Let us formulate
this as a corollary.

Corollary 1. Let i,j,s € Ny, i, j=. If 8,5 = 1 and ;P = 1 then ;8 = 1.

The properties of an equivalence relation imparts to Corollary 1 an important interpreta-
tion.

Interpretation 4. The relation of substitutability generates partitioning of the set of objec-
tive functions into groups. In each of there groups the objective functions are perfectly substitut-
able with each other and therefore each group can be reduced 10 one surrogate objective func-

fion.






























