693.

A TENTH MEMOIR ON QUANTICS.

[From the Philosophical Transactions of the Royal Society of London, vol. CLXIX., Part II. (1878), pp. 603-661. Received June 12,-Read June 20, 1878.]

THE present Memoir, which relates to the binary quintic $(*(x, y))^5$, has been in hand for a considerable time: the chief subject-matter was intended to be the theory of a canonical form which was discovered by myself and is briefly noticed in Salmon's *Higher Algebra*, 3rd Ed. (1876), pp. 217, 218; writing a, b, c, d, e, f, g,..., u, v, w to denote the 23 covariants of the quintic, then a, b, c, d, f are connected by the relation

 $f^2 = -a^3d + a^2bc - 4c^3;$

and the form contains these covariants thus connected together, and also e; it, in fact, is

 $(1, 0, c, f, a^2b - 3c^2, a^2e - 2cf (x, y)^5.$

But the whole plan of the Memoir was changed by Sylvester's discovery of what I term the Numerical Generating Function (N.G.F.) of the covariants of the quintic, and my own subsequent establishment of the Real Generating Function (R.G.F.) of the same covariants. The effect of this was to enable me to establish for any given degree in the coefficients and order in the variables, or as it is convenient to express it, for any given deg-order whatever, a selected system of powers and products of the covariants, say a system of "segregates": these are asyzygetic, that is, not connected together by any linear equation with numerical coefficients; and they are also such that every other combination of covariants of the same deg-order, say every "congregate" of the same deg-order, can be expressed (and that, obviously, in one way only) as a linear function, with numerical coefficients, of the segregates of that deg-order. The number of congregates of a given deg-order is precisely equal to the number of the independent syzygies of the same deg-order, so that these syzygies give in effect the congregates in terms of the segregates: and the proper form in which to exhibit the 43-2

syzygies is thus to make each of them give a single congregate in terms of the segregates: viz. the left-hand side can always be taken to be a monomial congregate a^ab^{β} ... or, to avoid fractions, a numerical multiple of such form; and the right-hand side will then be a linear function, with numerical coefficients, of the segregates of the same deg-order. Supposing such a system of syzygies obtained for a given deg-order, any covariant function (rational and integral function of covariants) is at once expressible as a linear function of the segregates of that deg-order: it is, in fact, only necessary to substitute therein for every monomial congregate its value as a linear function of the segregates. Using the word covariant in its most general sense, the conclusion thus is that every covariant can be expressed, and that in one way only, as a linear function of segregates, or say in the segregate form.

Reverting to the theory of the canonical form, and attending to the relation

$$f^2 = -a^3d + a^2bc - 4c^3,$$

it thereby appears that every covariant multiplied by a power of the quintic itself a, can be expressed, and that in one way only, as a rational and integral function of the covariants a, b, c, d, e, f, linear as regards f: say every covariant multiplied by a power of a can be expressed, and that in one way only, in the "standard" form: as an illustration, take

$a^2h = 6acd + 4bc^2 + ef.$

Conversely, an expression of the standard form, that is, a rational and integral function of a, b, c, d, e, f, linear as regards f, not explicitly divisible by a, may very well be really divisible by a power of a (the expression of the quotient of course containing one or more of the higher covariants g, h, &c.), and we say that in this case the expression is divisible, and has for its divided form the quotient expressed as a rational and integral function of covariants. Observe that in general the divided form is not perfectly definite, only becoming so when expressed in the before-mentioned segregate form, and that this further reduction ought to be made. There is occasion, however, to consider these divided forms, whether or not thus further reduced; and moreover it sometimes happens that the non-segregate form presents itself, or can be expressed, with integer numerical coefficients, while the coefficients of the corresponding segregate form are fractional.

The canonical form is peculiarly convenient for obtaining the expressions of the several derivatives (Gordan's Uebereinanderschiebungen) $(a, b)^i$, $(a, b)^2$, &c., (or as I propose to write them ab1, ab2, &c.), which can be formed with two covariants, the same or different, as rational and integral functions of the several covariants. It will be recollected that in Gordan's theory these derivatives are used in order to establish the system of the 23 covariants: but it seems preferable to have the system of covariants, and by means of them to obtain the theory of the derivatives.

I mention at the end of the Memoir two expressions (one or both of them due to Sylvester) for the N.G.F. of a binary sextic.

The several points above adverted to are considered in the Memoir; the paragraphs are numbered consecutively with those of the former Memoirs upon Quantics.

[693

The Numerical and Real Generating Functions. Art. Nos. 366 to 374, and Table No. 96.

366. - I have, in my Ninth Memoir (1871) [462], given what may be called the Numerical Generating Function (N.G.F.) of the covariants of a quartic; this was

$$A(x) = \frac{1 - a^{6}x^{12}}{1 - ax^{4} \cdot 1 - a^{2}x^{4} \cdot 1 - a^{2} \cdot 1 - a^{3} \cdot 1 - a^{3}x^{6}},$$

the meaning being that the number of asyzygetic covariants $a^{\theta}x^{\mu}$, of the degree θ in the coefficients and order μ in the variables, or say of the deg-order $\theta \, \mu$, is equal to the coefficient of $a^{\theta}x^{\mu}$ in the development of this function. And I remarked that the formula indicated that the covariants were made up of $(ax^4, a^2x^4, a^2, a^3, a^3x^6)$, the quartic itself, the Hessian, the quadrinvariant, the cubinvariant, and the cubicovariant, these being connected by a syzygy a^6x^{12} of the degree 6 and order 12. Calling these covariants a, b, c, d, e, so that these italic small letters stand for covariants,

eg-order.	
1.4	а,
2.0	<i>b</i> ,
2.4	с,
3.0	d,
3.6	е,

D

then it is natural to consider what may be called the Real Generating Function (R.G.F.): this is

$$\frac{1-e^2}{1-a.1-b.1-c.1-d.1-e};$$

the development of this contains, as it is easy to see, only terms of the form $a^a b^\beta c^\gamma d^\delta$ and $a^a b^\beta c^\gamma d^\delta e$, each with the coefficient +1, so that the number of terms of a given deg-order θ . μ is equal to the coefficient of $a^\theta x^\mu$ in the first-mentioned function: and these terms of a given deg-order represent the asyzygetic covariants of that deg-order: any other covariant of the same deg-order is expressible as a linear function of them. For instance, deg-order 6.12, the terms of the R.G.F. are a^3d , a^2bc , c^3 : there is one more term e^2 of the same deg-order; hence e^2 must be a linear function of these: and in fact

$$e^2 = -a^3d + a^2bc - 4c^3,$$

viz. this is the equation

 $\Phi^2 = - U^3 J + U^2 I H - 4 H^3.$

341

367. Sylvester obtained an expression for the N.G.F. of the quintic : this is

$$a^{0} \cdot 1$$

$$+ a^{3} \cdot x^{3} + x^{5} + x^{9}$$

$$+ a^{4} \cdot x^{4} + x^{6}$$

$$+ a^{5} \cdot x + x^{3} + x^{7} - x^{11}$$

$$+ a^{6} \cdot x^{2} + x^{4}$$

$$+ a^{7} \cdot x + x^{5} - x^{9}$$

$$+ a^{8} \cdot x^{2} + x^{4}$$

$$+ a^{9} \cdot x^{3} + x^{5} - x^{7}$$

$$+ a^{10} \cdot x^{2} + x^{4} - x^{10}$$

$$+ a^{11} \cdot x + x^{3} - x^{9}$$

$$+ a^{12} \cdot x^{2} - x^{8} - x^{10}$$

$$+ a^{13} \cdot x - x^{7} - x^{9}$$

$$+ a^{16} \cdot x^{2} - x^{6} - x^{10}$$

$$+ a^{18} \cdot 1 - x^{4} - x^{6} - x^{10}$$

$$+ a^{19} - x^{5} - x^{7}$$

$$+ a^{20} - x^{2} - x^{6} - x^{8}$$

$$+ a^{23} - x^{11}$$

 $1 - ax^5 \cdot 1 - a^2x^2 \cdot 1 - a^2x^6 \cdot 1 - a^4 \cdot 1 - a^8 \cdot 1 - a^{12};$

viz. expanding this function in ascending powers of a, x, then, if a term is $Na^{\theta}x^{\mu}$, this means that there are precisely N asyzygetic covariants of the deg-order θ . μ .

368. It is known that the number of the irreducible covariants of the binary quintic is =23; representing these by the letters a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, (a the quintic itself), the deg-orders of these, and the references* to the tables which give them are

[* See also the paper, 143, in the second volume of this collection.]

Deg-order.		Tab. Mem.
1.5	a	13 2
2.2	Ъ	14 "
".6	с	15 "
3.3	d	16 "
".5	е	17 "
".9	f	18 "
4.0	g	19 "
".4	h	20 "
".6	i	21 "
5.1	j	22 "
".3	k	23 "
".7	l	24 "
6.2	m	83 8
".4	n	84 "
7.1	0	90* 9
".5	p	91 "
8.0	q	25 2 [See also paper 143]
".2	r	92 9
9.3	<i>s</i> †	Ann trank to a second to a second
11.1	t	94 9
12.0	u	29 3
13.1	v	95 9
18.0	w	29A 5.

Starting from the foregoing expression of the N.G.F. of the quintic, we can, instead of each term $a^{\theta}x^{\mu}$, introduce a covariant or product of covariants of the proper deg-order $\theta.\mu$: the mode of doing this depends of course on the different admissible partitions of θ , μ , and it is for some of the terms very indeterminate: for instance, $a^{s}x^{n}$ is *ai*, *bf*, or *ce*. I found it possible to perform the whole process so as to satisfy a condition which will be presently referred to; and I found

[* See vol. vII. of this collection, p. 348.]

+ See end of Memoir. The S of Table 93 has the value -96(D, M)+16BO-7GK, but it is better to use the simple value -(D, M); and the S of the present Memoir has this value, say S = -(d, m).

R.G.F. of quintic=	Deg-orders.
$1 . 1 - b^5$	0.0 - 10.10
$+d . 1 - ag^{2}$	3.3 - 12.8
$+e . 1 - b^2$	3.5 - 7.9
$+f \cdot 1 - b$	3.9 - 5.11
$+h$ $.1-ag^2$	4.4 - 13.9
$+i$ $.1-b^2g$	4.6-12.10
$+j$ $.1-ag^2$	5.1-14. 6
$+k \ .1 - b^2$	5.3 - 9.7
+l $.1-bg$	5.7-11. 9
$+m . 1 - ag^{2}$	6.2 - 15.7
$+n$ $.1-b^2g$	6.4-14.8
$+ o . 1 - b^3$	7.1 - 13.7
$+p . 1 - b^2 g$	7.5-15.9
$+r . 1 - b^2 g$	8.2 - 16.6
$+ dj \cdot 1 - ag^2$	8.4-17.9
+s $.1-abg$	9.3 - 16.10
$+hj \cdot 1 - ag^2$	9.5 - 18.10
$+j^2$. $1-ag^2$	10.2 - 19.7
$+jk \cdot 1 - b^2g$	10.4-18.8
$+t$. 1 – b^{3}	11.1 - 17.7
$+jm.1-ag^2$	11.3 - 20.8
+jo . 1 - bg	12.2 - 18.4
$+v . 1 - b^{5}$	13.1 - 23.11
+js . 1 - bg	14.4 - 20.6
$+jt \ .1-g$	16.2 - 20.2
$+w \cdot 1 - a$	18.0 - 19.5

1-a.1-b.1-c.1-g.1-q.1-u,

where observe that each negative term of the numerator is equal to a positive term multiplied by a power or product of terms a, b, g, contained in the denominator: this is the condition above referred to. The expansion thus consists only of terms each with the coefficient +1; for instance, a part of the function is

 $\frac{s\,(1-abg)}{1-a\,.1-b\,.1-c\,.1-g\,.1-q\,.1-u}, \quad = \frac{s}{1-c\,.1-q\,.1-u} \cdot \frac{1-abg}{1-a\,.1-b\,.1-g},$

where the first factor is the entire series of terms $sc^{\delta}q^{\epsilon}u^{\xi}$, and the second factor is the series of terms $a^{\alpha}b^{\beta}g^{\gamma}$ omitting only those terms which are divisible by abg: and in the product of the two factors the terms are all distinct, so that the coefficients are still each = 1. The same thing is true for every other pair of numerator terms: and since the terms arising from each such pair are distinct from each other, in the expansion of the entire function the coefficients are each = +1. Hence (as in the case of the quartic) for any given deg-order, the terms in the expansion of the R.G.F. may be taken for the asyzygetic covariants of that deg-order; and if there are any other terms of the same deg-order, each of these must be a linear function, with numerical coefficients, of these asyzygetic covariants: thus deg-order 6.14, the expansion contains only the terms $a^{2}h$, acd, bc^{2} ; there is besides a term of the same deg-order, ef, which is not a term of the expansion, and hence ef must be a linear function of $a^{2}h$, acd, bc^{2} ; we in fact have $ef = a^{2}h - 6acd - 4bc^{2}$.

The terms in the expansion of the R.G.F. may be called "segregates," and the terms not in the expansion "congregates"; the theorem thus is: every congregate is a linear function, with determinate numerical coefficients, of the segregates of the same deg-order.

369. I stop to remark that the numerator of the R.G.F. may be written in the more compendious form

$$\begin{split} &(1-b^5) \left(1-v\right) + (1-b^3) \left(o+t\right) + (1-b^2) \left(e+k\right) + (1-b) f \\ &+ (1-ag^2) \left(d+h+j+m+dj+hj+j^2+jm\right) \\ &+ (1-bg) \left(l+jo+js\right) \\ &+ (1-b^2g) \left(i+n+p+jk\right) \\ &+ (1-abg) s \\ &+ (1-g) jt \\ &+ (1-a) w ; \end{split}$$

but the first-mentioned form is, I think, the more convenient one.

370. It is to be noticed that the positive terms of the numerator are unity, the seventeen covariants d, e, f, h, i, j, k, l, m, n, o, p, r, s, t, v, w, and the products of j by (d, h, j, k, m, o, s, t), where j^2 is reckoned as a product; in all, 26 terms. Disregarding the negative terms of the numerator the expansion would consist of these 26 terms, each multiplied by every combination whatever $a^a b^\beta c^\gamma g^\delta q^\epsilon u^{\varsigma}$ of the denominator terms a, b, c, g, q, u (which for this reason might be called "reiterative"): the effect of the negative terms of the numerator is to remove from the expansion certain of the terms in question, thereby diminishing the number of the segregates: thus as regards the terms belonging to unity, any one of these which contains the factor b^5 is not a segregate but a congregate: and so as regards the terms belonging to d, any one of these which contains the factor ag^2 is a congregate: and the like in other cases.

For a given deg-order we have a certain number of segregates and a certain number of congregates: and the number of independent syzygies of that deg-order is C. X. 44

www.rcin.org.pl

693]

precisely equal to the number of congregates: viz. each such syzygy may be regarded as giving a congregate in terms of the segregates: we have on the left-hand side a congregate, or, to avoid fractions, a numerical multiple of the congregate, and on the right-hand side a linear function, with numerical coefficients, of the segregates.

371. The syzygy is irreducible or reducible; and in the latter case it is, or is not, simply divisible: viz. if the congregate on the left-hand side contains any congregate factor (the other factor being literal), then the syzygy is reducible: it is, in fact, obtainable from the syzygy (of a lower deg-order) which gives the value of such congregate factor. But there are here two cases; multiplying the lower syzygy by the proper factor, the right-hand side may still contain segregates only, and then no further step is required: the original syzygy is nothing else than this lower syzygy, each side multiplied by the factor in question, and it is accordingly said to be simply divisible (S.D.). But contrariwise, the right-hand side, as multiplied, may contain congregates which have to be replaced by their values in terms of the segregates of the same deg-order: the resulting expression is then no longer explicitly divisible by the introduced factor: and the original syzygy, although arising as above from a lower syzygy, is not this lower syzygy each side multiplied by a factor: viz. it is in this case not simply divisible.

For example (see the subsequent Table No. 96, under the indicated deg-orders) (6.6), from the syzygy

 $9d^2 = aj - b^3 + 2bh - cg,$

we deduce (7.11) the syzygy

 $9ad^2 = a^2j - ab^3 + 2abh - acg,$

which (all the terms on the right-hand being segregates) requires no further reduction: it is a reducible and simply divisible syzygy. But we have (6.8) a syzygy giving *de*, and also (6.10) a syzygy giving e^2 ; multiplying the former of these by *e* or the latter of them by *d*, we obtain values of de^2 , but in each case the right-hand sides contain terms which are not segregates, and have thus to be further reduced; the final formula (9.13) is

$$3de^2 = -4a^2bj + 3a^2dg + 4ab^4 - 8ab^2h + 4abcg - 12b^2cd,$$

which is not divisible by any factor: the syzygy is thus reducible, but not simply divisible.

A syzygy, which is not in the sense explained reducible, is said to be irreducible.

372. The number of irreducible syzygies is obviously finite: it has, however, the large value 179 as appears from the annexed diagram, showing the congregates determined by these several syzygies, and the deg-orders of the syzygies:—

		1	d	е	f	h	i	j	k	l	m	n	0	р	r	8	t	v	w	j^2	
0.0	1	b ⁵ 10.10	ag^{2} 12.8	b^2 7.9	ь 5.11	ag^2 13.9	b^2g 12.10	ag^{2} 14.6 aa^{2}	b^2 9.7	<i>bg</i> 11.9	ag^2 15.7	b^2g 14.8	b^{3} 13.7	b^2g 15.9	b^2g 16.6	<i>abg</i> 16.10	b^{3} 17.7	b^{5} 23.11	a 19.5		1
$3.3 \\ 3.5 \\ 3.9$	e		6.6	6.8 6.10	$\begin{array}{c} 6.12 \\ 6.14 \\ 6.18 \end{array}$	7.7 7.9 7.13	$7.9 \\ 7.11 \\ 7.15$	ag^2 17.9 8.6 8.10 ag^2	8.6 8.8 8.12	$8.10 \\ 8.12 \\ 8.16$	9.5 9.7 9.11	$9.7 \\ 9.9 \\ 9.13$	$10.4 \\ 10.6 \\ 10.10$	10.8 10.10 10.14	$11.5 \\ 11.7 \\ 11.11$	$12.6 \\ 12.8 \\ 12.12$	$14.4 \\ 14.6 \\ 14.10$	16.4 16.6 16.10	$21.3 \\ 21.5 \\ 21.9$	13.5	d e f
$\begin{array}{c} 4.4\\ 4.6\end{array}$						8.8	8.10 8.12	$ \begin{array}{c} ag \\ 18.10 \\ 9.7 \\ ag^2 \end{array} $	$9.7 \\ 9.9 \\ b^2 g$	9.11 9.13	$10.6 \\ 10.8 \\ ag^2$	10.8 10.10	11.5 11.7 bg	11.9 11.11	$\begin{array}{c} 12.6\\ 12.8\end{array}$	$13.7 \\ 13.9 \\ bg$	$15.5 \\ 15.7 \\ g$	$17.5 \\ 17.7$	$\begin{array}{c} 22.4\\ 22.6\end{array}$	14.6	h i
5.1 5.3 5.7	k l							19.7	18.8 10.6	10.8 10.10 10.14	$20.8 \\ 11.5 \\ 11.9$	11.5 11.7 11.11	$ 18.4 \\ 12.4 \\ 12.8 $	$12.6 \\ 12.8 \\ 12.12 \\ 12.5 \\$	$ \begin{array}{r} 13.3 \\ 13.5 \\ 13.9 \\ \end{array} $	$20.6 \\ 14.6 \\ 14.10$	$20.2 \\ 16.4 \\ 16.8$	18.2 18.4 18.8	$\begin{array}{c} 23.1 \\ 23.3 \\ 23.7 \end{array}$	15.3 15.5	j_k
$6.2 \\ 6.4 \\ 7.1 \\ 75$	m n o p	-									12.4	12.6 12.8	$ \begin{array}{r} 13.3 \\ 13.5 \\ 14.2 \\ \end{array} $	$13.7 \\ 13.9 \\ 14.6 \\ 14.10$	$ \begin{array}{r} 14.4 \\ 14.6 \\ 15.3 \\ 15.7 \\ \end{array} $	$ 15.5 \\ 15.7 \\ 16.4 \\ 16.8 $	$ \begin{array}{r} 17.3 \\ 17.5 \\ 18.2 \\ 18.6 \end{array} $	$ 19.3 \\ 19.5 \\ 20.2 \\ 20.6 $	$24.2 \\ 24.4 \\ 25.1 \\ 25.5$	16.4 17.3	m n o
8.2 9.3 11.1	r													14.10	16.4	17.5 18.6	$ \begin{array}{r} 18.0 \\ 19.3 \\ 20.4 \\ 22.2 \end{array} $	$21.3 \\ 22.4 \\ 24.2$	$25.5 \\ 26.2 \\ 27.3 \\ 29.1$	$19.5 \\ 21.3$	p r s t
13.1 18.0	v w					internet											i ti ti	26.2	3 1.1 36.0		v 20

Each term inside this diagram is a deg-order indicating the congregate determined by an irreducible syzygy: viz. the congregate is the product of the outside covariants in the line and column containing the deg-order, and of the literal factor (if any) placed immediately above the deg-order. Thus, line d and column i, 7.9 indicates the congregate di, but, same line and column j, 17.9 indicates the congregate dj. ag^2 , $=adg^2j$.

Observe as regards the foregoing diagram, that dj^2 is irreducible (since neither dj nor j^2 is segregate), and similarly j^2h , j^3 , &c., are irreducible: we have thus the last or j^2 column of the diagram.

The simply divisible syzygies are infinite in number, as are also the reducible syzygies not simply divisible. There is obviously no use in writing down a simply divisible syzygy; but as regards the reducible syzygies not simply divisible, these require a calculation, and it is proper to give them as far as they have been obtained.

373. The following Table, No. 96, replaces Tables 88 and 89 of my Ninth Memoir. The arrangement is according to deg-orders, and the table is complete up to the deg-order 8.40: it shows for each deg-order the segregate covariants, and also the congregate covariants (if any), and the syzygies which are the expressions of these in terms of the segregates. When there are only segregates these are given in the same horizontal line with the deg-order; for instance, $|5.9| ab^2$, ah, cd, shows that for the deg-order 5.9 the only covariants are the segregates ab^2 , ah, cd; but when there are also congregates, the segregates are arranged in the same horizontal line with the deg-order, and the congregates, each in its own horizontal line together with its ex-5.11 | * | ai ce $bf = \frac{a}{-1} + \frac{b}{1}$, the segregates pression as a linear function of the segregates: thus are ai, ce, and there is a congregate bf which is a linear function of these, = -ai + ce. The table gives the irreducible syzygies and also the reducible syzygies which are not simply divisible, but the simply divisible syzygies are indicated each by a reference to the divided syzygy which occurs previously in the table.

374. Any syzygy might of course be directly verified by substituting for the several covariants contained therein their expressions in terms of the coefficients and facients of the quintic. But it is to be remarked that among the syzygies, or easily deducible from them, we have (6.18) the before-mentioned equation $f^2 = -a^3d + a^2bc - 4c^3$, and also a set of 17 syzygies, the left-hand sides of which are the covariants g, h, \ldots, u, v, w , each multiplied by a or a^2 , and which lead ultimately to the standard expressions of these covariants respectively, viz. each covariant multiplied by a proper power of a can be expressed as a rational and integral function of a, b, c, d, e, f, linear as regards f. Supposing them thus expressed, a far more simple verification of any syzygy would consist in substituting therein for the several covariants their expressions in the standard form, reducing if necessary by the equation $f^2 = -a^3d + a^2bc - 4c^3$; but of course, as to the syzygies used for obtaining the standard forms, this is only a verification if the standard forms have been otherwise obtained, or are assumed to be correct.

The 17 syzygies above referred to are

Deg-ord. 6.10	$a^2g =$	$12abd + 4b^2c + e^2$,
6.14	$a^2h =$	$6acd + 4bc^2 + ef$
5.11	ai = -	bf + ce,
6.6	$aj = \circ$	$b^3 - 2bh + cg + 9d^2,$
6.8	ak = -	2bi + 3de,
6.12	al =	2ci - 3df,
7.7	am = -	$2b^2d - cj + 3dh,$
7.9	an =	$b^2e - 6bl - 2ck - fg,$
8.6	ao =	2bn + ej,
8.10	ap = -	2cn - fj,
9.5	aq = -	$2b^2j + bdg - 12dm + hj,$
9.7	ar =	$b^2k + bp - co + hk,$
10.8	as =	3bdk + 3dp + 2im,
12.6	at =	bjk + jp - 2mn,
13.5	18au =	$2agq + b^2gj + 6bmj - 6dj^2 - ghj + no,$
14.6	3av =	$2b^3q - 8b^2j^2 - 2b^2gm + 6bdgj - 12bm^2 + 3et,$
19.5	18aw =	$3b^2gt + b^2qo - 4bj^2o - bgmo + 18bmt + 3dgjo - 18djt - 3ght - 6m^2o$,

the last four of these being, however, beyond the limits of the table: the expressions of g, h, i are here in the standard form: the standard forms of the other covariants j, k, \ldots, u , v, w, will be given further on.

Deg-ord.	Congs.	Segregates.
1. 1		1
3 5		a
2.0		Ъ
$\begin{array}{c}2\\4\\6\\8\\10\end{array}$		c
8 10		a^2
3. 1		
$ \begin{array}{cccc} 3. & 1 \\ & 3 \\ & 5 \\ & 7 \\ & 9 \\ \end{array} $		
7 9		ab f
13	101	ac a ³
15		

TABLE No. 96 (Segregates, Congregates, and Syzygies).

693]

TABLE No. 96 (continued).

Deg-ord.	Congs.		Segregates.	
4. 0		g	The second second second second second	
4		b^2 , h		
6		i		
10	1992	ad, bc ae		
12		$ae a^{2}b, c^{2}$		
$ \begin{array}{r} 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ \end{array} $		af a^2c		
$\frac{18}{20}$		a4		
	12, 30, 60			
5. 1		j k		
5		ag, bd		
$5. \ 1 \\ 3 \\ 5 \\ 7 \\ 9$		$\begin{bmatrix} be, & l \\ ab^2, & ah, & cd \end{bmatrix}$		
11	*	ai, ce		
	bf	-1 +1		
$\begin{array}{c} 13\\15\end{array}$		a^2d, abc a^2e, cf		
17		$a^{3}b$, ac^{2}		
$ \begin{array}{r} 17 \\ 19 \\ 21 \\ 23 \end{array} $	o all' tak	$a^2 f' a^3 c$		
23				
25	<u></u>	a ⁵		
6. 0 2		bg, m	Note and a second second second	
$\frac{2}{4}$		n		
6	*	aj, b^3, bh, cg		
	$d^{2}.9$	+1 -1 +2 -1		
8	*	ak, bi		
	de . 3	+1 +2	annal by all still	
10	*	a^2g , abd , b^2c , ch		
Lange of the	e^2	+1 -12 -4 .		
12	*	abe, al, ci		
	df. 3	1 +2		
	*	a^2b^2 , a^2h , acd, bc^2		
14				
14	ef	. +1 -6 -4		
14 16		$\begin{array}{c c} \cdot & +1 & -6 & -4 \\ \hline a^2 i, & ace \end{array}$		

www.rcin.org.pl

350

[693

TABLE No. 96 (continued).

Deg-ord.	Congs.	and the proceeding of the	Segregates.		
6.18	*	a^3a' , a^2bc , c^3		8.00 38.0	1 de 3
	f^2	-1 + 1 - 4			
$20 \\ 22 \\ 24 \\ 26 \\ 28 \\ 30$		$a^{3}e, acf a^{4}b, a^{2}c^{2} a^{3}f a^{4}c a^{6}$			
7. 1		0			
$\frac{3}{5}$		bj, dg bk, eg, p			
7	*	abg, am, b^2d, cj			
	dh. 3	0 + 1 + 2 + 1			
9	*	an, bl, ck, fg			
200	b²e di.3 eh	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
11	*	a^2j , ab^3 , abh , acg , bcd	at at the search		
	$ad^2 \\ ei$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		S.D.	6.6, d^2
13	*	a^2k , abi , bce , cl			
	$ade\ b^2 f\ fh.3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$::::::::	S.D. S.D.	6.8 , de 5.11, bf
15	*	a^3g , a^2bd , ab^2c , ach , c^2d			
	ae^{2} fi	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ber dan tan ain	. S.D.	$6.10, e^2$
17	*	$a^{2}be$, $a^{2}l$, aci , $c^{2}e$			
1. je. i 1. je. i	adf bcf	· · · · · · · · · · · · · · · · · · ·		. S.D. . S.D.	6.12, df 5.11, bf
19	*	a^3b^2 , a^3h , a^2cd , abc^2			
	aef			. S.D.	6.14, ef
21	*	a^3i, a^2ce, c^2f			
1000	$a^{2}bf$			S.D.	5.11, bf
23	*	a^4d , a^3bc , ac^3			
	af^2			S.D.	$6.18, f^2$

693]

TABLE No. 96 (continued).

Deg-ord.	Congs.	Segregates.
$7. 25 \\ 27 \\ 29 \\ 31 \\ 33 \\ 35$		$a^{4}e, a^{3}cf$ $a^{5}b, a^{3}c^{2}$ $a^{4}f$ $a^{5}c$ a^{7}
8. 0 2 4		$egin{array}{cccccccccccccccccccccccccccccccccccc$
6	* dk . 3 ej	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8	*	$abj, adj, b^4, b^2h, bcg, cm$
	bd^2 ek h^2 . 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	* bde dl.9 fj hi.3	abk, aeg, ap, b^2i , cn
12	*	a^2bg , a^2m , ab^2d , acj , b^3c , bch , c^2g
NAL AND	$adh\ be^2\ cd^2\ el\ fk\ i^2$	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
14	*	a²n, abl, ack, afg, bci
winds	ab ² e adi aeh bdf cde	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
16	*	$a^{3}j, a^{2}b^{3}, a^{2}bh, a^{2}cg, abcd, b^{2}c^{2}, c^{2}h$
N. In	a^2d^2 aei bef ce^2 fl.3	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
0,800	5.8	

[693

1.4

693]

A TENTH MEMOIR ON QUANTICS.

TABLE No. 96 (continued).

Deg-ord.	Congs.	Segregates.	dio-ano
8.18	*	$a^{3}k$, $a^{2}bi$, $abce$, acl , $c^{2}i$	11.0
	$a^2 de ab^2 f$ afh cdf	· · · · · · · · · · · · · · · · · · ·	11, bf 13, fh
20	* af i bf ² cef	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15, fi $18, f^2$
22	* $a^2 df$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
24	$pprox^{2}ef$ cf^{2}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14, ef 18, f^2
26	* a ³ bf	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11, bf
28	* a^2f^2		$18, f^2$
$30 \\ 32 \\ 34 \\ 36 \\ 38 \\ 40$	an T	$a^{5}e, a^{3}cf$ $a^{6}b, a^{4}c^{2}$ $a^{5}f$ $a^{6}c$ a^{8}	
9. 1 3	AL R	gj bo, gk, s	
5	* dm.12	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7 9	* b ² k.3 dn.3 em.3 kk.3 ij *	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
т К. ДТСЛ	bdh . 3 d ³ . 27 en ik	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C. X	7		15

C. X.

45

TABLE No. 96 (continued).

Deg-ord.	Congs.	Segregates.
9. 11	*	a^2o , abn , agi , b^2l , bck , ceg , cp
	adk aej	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$b^3 e$ bdi	+1 -1 $+6$ $+2$ $+1$
	$beh \\ bfg \\ d^2e \cdot 9$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	fm . 3 hl . 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
13	*	$a^2bj, a^2dg, ab^4, ab^2h, abcg, acm, b^2cd, c^2j$
N AL	abd^2 aek ah^2 bei cdh de^2 . 3 fn il	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
10. 0	<u>a</u> z , ,	bg^2 , bq , gm , j^2
4	*	br, gn, jk
, n.e.i	do . 3	+2 -1
6	*	$agj, b^3g, b^2m, bdj, bgh, cg^2, cq$
	d^2g eo hm.3 k^2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8	*	$abo, agk, as, b^2n, bgi, cr$
	bdk bej deg dp . 9 hn . 3 im . 3 jl . 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	*	a^2g^2 , a^2q , ab^2j , $abdy$, ahj , b^3h , b^3cg , bcm , cdj , cgh
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

www.rcin.org.pl

[693

TABLE No. 96 (concluded).

Deg-ord.	Congs.	Segregates.
11. 1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5	*	b^2o , bgk , bs , eg^2 , eq , gp
	dr . 18 ho . 3 jn km. 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c}12. & 0\\ & 2\end{array}$		g^3, g^2q, u gr, jo
4	*	b^2g^2 , b^2q , bgm , bj^2 , dgj , g^2h , hg
	$ko m^2 . 12$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
13. 1		$g^2 j, jq, v$
3	*	bgo, bt, g^2k, gs, kg
	jr . 2 mo . 2	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c} 14. & 0 \\ & 2 \end{array}$	14.10	bg^3 , bgq , bu , g^2m , gj^2 , mq , o^2
4	*	$bgr, bjo, g^2n, gjk, js, nq$
	dgo dt . 18 mr . 12	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Theory of the Canonical Form. Art. Nos. 375 to 381, and Tables Nos. 97 and 98.

375. As the small italic letters have been used to represent the covariants, different letters are required for the coefficients of the quintic: using also new letters for the facients, I take the quintic to be (a, b, c, d, e, $f \chi \xi$, η)⁵. Considering a linear transformation of $\frac{1}{a}$ (a, b, c, d, e, $f \chi \xi$, η)⁵, viz.

$$\frac{1}{a}(a, b, c, d, e, f) \xi - b\eta, a\eta)^{5},$$

45 - 2

this is

ξ5	5ξ⁴η	$10\xi^3\eta^2$	$10\xi^2\eta^3$	$5\xi\eta^4$	η^5
= 1	- b	$+ b^2$	- b ³	$+ b^{4}$	— b ⁵
+b (1	— 2b	$+ 3b^{2}$	$-4b^{3}$	$+ 5b^{4}$)
+ ac (1	- 3b	$+ 6b^{2}$	$-10b^{3}$)
$+ a^{2}d$ (1	- 4b	$+10b^{2}$)
+ a ³ e (1	- 5b)
+ a4f (1),

which is

= (1	0	ac + 1	$a^2d + 1$	a ³ e + 1	$a^4f + 1$	
		$b^2 - 1$	abc – 3	$a^{2}bd - 4$	a ³ be – 5	19.11
			$b^{3} + 2$	$ab^2c + 6$	$a^{2}b^{2}d + 10$	
	• •		and the	$b^4 - 3$	$ab^{3}c - 10$	
					b ⁵ + 4	. 1910. . 1910.

The values of a, b, c, d, e, f, considered for a moment as denoting the leading coefficients of the several covariants ultimately represented by these letters respectively, are

	a	Ъ	C.	d	е	f
-	a + 1	ae + 1	ac + 1	ace + 1	$a^{2}f + 1$	$a^2d + 1$
		bd – 4	$b^{2} - 1$	$ad^{2} - 1$	abe + 5	abc - 3
0		$c^{2} + 3$		$b^{2}e - 1$	acd + 2	$b^{3} - 2$
		Xo.		bcd + 2	b ² d + 8	
				$c^{3} - 1$	$bc^2 - 10$	

satisfying, as they should do, the relation

$$f^2 = -a^3d + a^2bc - 4c^3.$$

Hence forming the values of $a^2b - 3c^2$ and $a^2e - 2cf$, it appears that the value of the last-mentioned quintic function is

$$(1, 0, c, f, a^2b - 3c^2, a^2e - 2cf (\xi, \eta)^5.$$

Writing herein x, y in place of ξ , η , and now using a, b, c, d, e, f to denote, not the leading coefficients but the covariants themselves (a denoting the original quintic, with ξ , η as facients), we have the form

$$A = (1, 0, c, f, a^2b - 3c^2, a^2e - 2cf(x, y)^5,$$

www.rcin.org.pl

693

356

693

a new quintic, which is the canonical form in question: the covariants hereof (reckoning the quintic itself as a covariant) will be written A, B, C, \ldots, V, W , and will be spoken of as capital covariants.

376. The fundamental property is: Every capital covariant, say I, has for its leading coefficient the corresponding covariant i multiplied by a power of a: and this follows as an immediate consequence of the foregoing genesis of A. The covariant i of the form

$$\frac{1}{a}(a, b, c, d, e, f \bigcup \xi, \eta)^{5}$$

has a leading coefficient

$$= \frac{1}{a^4} (a^2 cf - a^2 de + \&c.),$$

which, when a, b, c, d, e, f, ..., i denote leading coefficients, is = i multiplied by a power of a: and upon substituting for the quintic the linear transformation thereof

$$(1, 0, c, f, a^2b - 3c^2, a^2e - 2cf (\xi, \eta)^5,$$

(observing that, in the transformation ξ , η into $\xi - b\eta$, $a\eta$, the determinant of substitution is = a), the value is still = *i* multiplied by a power of a; or using the relation a = a, say the value is = *i* multiplied by a power of *a*. Now the covariant *i* is the same function of the covariants *a*, *b*, *c*, *d*, *e*, *f* that the leading coefficient *i* is of the leading coefficients *a*, *b*, *c*, *d*, *e*, *f*; hence, the italic letters now denoting covariants, the leading coefficient still is = *i* multiplied by a power of *a*: which is the above-mentioned theorem.

377. To show how the transformation is carried out, consider, for example, the covariant B. This is obtained from the corresponding covariant of (a, b, c, d, e, $f(\xi, \eta)^5$, that is,

(ae 1	af 1	bf 1	$(\chi \xi, \eta)^2,$
11	bd – 4	be - 3	ce - 4	
	$c^{2} + 1$	cd + 1	$d^{2} + 3$	est an
		and the second second		and a

by changing the variables, and for the coefficients

a, b, c, d,

writing

1, 0, c, f,
$$a^2b - 3c^2$$
, $a^2e - 2cf$

е,

f

thus the coefficients are

First. Second. Third.
1
$$(a^2b - 3c^2)$$
 1 $(a^2e - 2cf)$ $-4c(a^2b - 3c^2)$
 $+ 3c^2$ $+ 2cf$ $+ 3f^2$
 $= a^2b$ $= a^2e$ $= -4a^2bc + 12c^3$
 $+ 3(-a^3d + a^2bc - 4c^3)$

and we have thus the expression of B (see the Table No. 97); and similarly for the other capital covariants C, D, \ldots, V, W : in every case the coefficients are obtained in the standard form, that is, as rational and integral functions of a, b, c, d, e, f, linear as regards f.

378. It will be observed that there is in each case a certain power of a which explicitly divides all the coefficients and is consequently written as an exterior factor: disregarding these exterior factors, the leading coefficients for B, C, D, E, F are b, c, ad, e, f respectively; that for G is $12abd + 4b^2c + e^2$, which must be =g multiplied by a power of a, and (in Table 97) is given as $=a^2g$; similarly, that for H is $6acd + 4bc^2 + ef$, which must be =h multiplied by a power of a, and is given as $=a^2h$: and so in the other cases. The index of a is at once obtained by means of the deg-order, which is in each case inserted at the foot of the coefficient.

For A, B, C, E, F there is no power of a as an interior factor: and for the invariants G, Q, U we may imagine the interior factor thrown together with the exterior factor, $(G = a^{6}g, \&c.)$: whence disregarding the exterior factors, we may say that for A, B, C, E, F, G, Q, U the standard forms are also "divided" forms. But take any other covariant-for instance, D: the leading coefficient is ad, having the interior factor a; and this being so it is found that all the following coefficients will divide by a (the quotients being of course expressible only in terms of the covariants subsequent to f): thus the second coefficient of D is -bf + ce, and (5.11) we have -bf + ce = ai, or the coefficient divided by a is = i; and so for the other coefficients of D; or throwing out the factor a, we obtain for D an expression of the form $(d, i, ..., [x, y)^3$, see the Table 98: this is the "divided" form of D: and we have similarly a divided form for every other capital covariant. All that has been required is that each coefficient of the divided form shall be expressed as a rational and integral function of the covariants a, b, c, \ldots, v, w : and the form is not hereby made definite: to render it so, the coefficient must be expressed in the segregate form. But there is frequently the disadvantage that we thus introduce fractions; for instance, the last coefficient of D is = -ci + df, where to get rid of the congregate term df we have (6.12), 3df = -al + 2ci, and the segregate form of the coefficient is $= -\frac{1}{3}al + \frac{2}{3}ci$.

379. We have in regard to the canonical form, a differential operator which is analogous to the two differential operators $xd_y - \{xd_y\}$, $yd_x - \{yd_x\}$ considered in the Introductory Memoir (1854), [139]. Let δ denote a differentiation in regard to the constants under the conditions

$$\begin{split} \delta a &= 0, \\ \delta b &= e, \\ \delta c &= 3f, \\ \delta d &= \frac{1}{a} \left(-bf + ce \right), \ (=i), \\ \delta e &= -6ad - 10bc, \\ \delta f &= 2a^2b - 18c^2, \end{split}$$

358

which (as is at once verified) are consistent with the fundamental relation

$$f^2 = -a^3d + a^2bc - 4c^3;$$

then it is easy to verify that

$$\left(x\frac{d}{dy}-4cy\frac{d}{dx}-\delta\right)A=0;$$

and this being so, any other covariant whatever, expressed in the like standard form, is reduced to zero by the operator

$$x\frac{d}{dy}-4cy\frac{d}{dx}-\delta;$$

and we have thus the means of calculating the covariant when the leading coefficient is known.

Thus, considering the covariant B, the expression of which has just been obtained, = $(B_0, B_1, B_2 \Im x, y)^2$, suppose : the equation to be satisfied is

$$\begin{array}{l} x \left(B_{1}x + 2B_{2}y \right) \\ - 4cy \left(2B_{0}x + B_{1}y \right) \\ - x^{2}\delta B_{0} - xy\delta B_{1} - y^{2}\delta B_{2} = 0 \end{array}$$

viz. we have

$$B_1 - \delta B_0 = 0,$$

$$2B_2 - 8cB_0 - \delta B_1 = 0,$$

$$- 4cB_1 - \delta B_2 = 0;$$

which (omitting, as we may do, the outside factor a^2) are satisfied by the foregoing values B_0 , B_1 , B_2 , = b, e, -3ad-bc. And if we assume only $B_0 = b$, then the first equation gives at once the value $B_1 = e$, the second equation then gives $B_2 = -3ad-3bc$; and the third equation is satisfied identically, viz. the equation is

 $-4ce + \delta \left(3ad + bc \right) = 0,$

that is,

```
\begin{array}{ll} -4ce &=-4ce &=0,\\ +c\delta b &+c\cdot e \\ +b\delta e &+b\cdot 3f \\ +3a\delta d &+3\left(-bf+ce\right) \end{array}
```

which is right.

Of course every invariant must be reduced to zero by the operation δ : thus we have, see the Table No. 97,

```
a^2g = 12abd + 4b^2c + 1e^2,
```

www.rcin.org.pl

693]

and thence

			$ade b^2 f$ bee
$a^2\delta g = (12ad +$	$(8bc) \delta b =$	(12ad + 8bc) e	=+12 + 8
$+ 4b^{2}$. δc	$+ 4b^2$. $3f$	+ 12
+ 12ab	. δd	+ 12b (- bf + ce)	-12 + 12
+ 2e	. δe	+ 2e(-6ad - 10bc)	-12 - 20,

which is = 0, as it should be.

380. As already remarked, the leading coefficients of H, I, J, &c., are each of them equal to a power of a multiplied by the corresponding covariant h, i, j,..; hence, supposing these leading coefficients, or, what is the same thing, the standard expressions of the covariants h, i, j,..., v, w to be known, we can calculate the values of δh , δi , δj ,..., δv , δw (=0, since w is an invariant): and the operation δ , instead of being applicable only to the forms containing a, b, c, d, e, f, becomes applicable to forms containing any of the covariants. The values of δa , δb ,..., δv , δw can, it is clear, be expressed in terms of segregates; and this is obviously the proper form: but for δr , δt , and δv , for which the segregate forms are fractional, I have given also forms with integer coefficients. The entire series is

Deg-order.

2.8	$\delta a = 0,$
3.5	$\delta b = e,$
3.9	$\delta c = 3f,$
4.6	$\delta d = i,$
4.8	$\delta e = -6ad - 10bc,$
4.12	$\delta f = 2a^2b - 18c^2,$
5.3	$\delta g = 0,$
5.7	$\delta h = 2be - 4l,$
5.9	$\delta i = -2ab^2 + 2ah - 18cd,$
6.4	$\delta j = -n,$
6.6	$\delta k = -2aj + 6b^3 - 9bh + 3cg,$
6.10	$\delta l = -3abd - 7b^2c + 7ch,$
7.5	$\delta m = -bk - p,$
7.7	$\delta n = 4cj,$
8.4	$\delta o = b^2 g + 6bm - 6dj - gh,$
8.8	$\delta p = 8abj - 5adg - 10b^4 + 15b^2h - 5bcg + 10cm,$
9.3	$\delta q = 0,$
9.5	$\delta r = \frac{1}{2}(aq + 6b^2j - 5bdg - jh), = 2b^2j - 2bdg - 6dm,$
10.6	$\delta s = -2agj + 2b^{3}g + 3b^{2}m + 21bdj - 4bgh + 2cg^{2} - 3cq,$
12.4	$\delta t = \frac{1}{2} (bgm + 4bj^2 - 3dgj - hq), = -b^2q + hq + 6m^2,$
13.3	$\delta u = 0,$
14.4	$\delta v = \frac{1}{6} \left(-5bgr - 10bjo + 5gjk - 12js - 9nq \right), = -6dt - 6mr + nq,$
19.3	$\delta w = 0.$

360

It is obvious that for every covariant whatever written in the denumerate form $(I_0, I_1, ..., \mathfrak{X}, y)^{\mathfrak{a}}$, the second coefficient is equal to the first coefficient operated upon by δ ; so that the foregoing formulæ give, in fact, the second coefficients of the several covariants.

381. It is worth noticing how very much the formulæ of Table No. 97 simplify themselves, if one of the covariants b, c, d, e vanishes, in particular, if b vanishes. Suppose b=0; writing also (although this makes but little difference) a=1, we have

a = 1,
b = 0,
c = c,
d = d,
e = e,
$f^2 = -d - 4c^3.$
$\begin{array}{rcl} f &=& 0 \\ g &=& e^2, \end{array}$
to the second second state designing subject of the second s
h = 6cd + ef,
i = ce,
$j = 9d^2 + ce^2,$
k = 3de,
$l = -3df + 2c^2e,$
$m = 9cd^2 + 3def - c^2e^2,$
$n = -6cde - e^2 f,$
$o = 9d^2e + ce^3,$
$p = -9d^2f + 12c^2de + ce^2f,$
$q = -54cd^3 - 27d^2ef + 18c^2de^2 + ce^3f,$
$r = 9cd^2e + 3de^2f - c^2e^3,$
$s = -27d^3f + 54c^2d^2e + 9cde^2f - 2c^3e^3,$
$t = -81d^4f - 6d^2e^3 + 216c^2d^3e + 54cd^2e^2f - 24c^3de^3 - c^2e^4f,$
$u = -27d^{5} - 18cd^{3}e^{2} - 4d^{2}e^{3}f + c^{2}de^{4},$
$v = -81d^4ef - 6d^2e^4 + 216c^2d^3e^2 + 54cd^2e^3f - 24c^3de^4 - 1c^2e^5f,$
w (not calculated).

These values are very convenient for the verification of syzygies, &c. Take, for instance, the before-mentioned relation $\delta v = -6dt - 6mr + nq$, that is, if $V = (V_0, V_1)(x, y)$, then $V_1 = -6dt - 6mr + nq$: calculating the three products on the right-hand side, observing C. X. 46

[693

	- 6dt	-6mr	+ nq	Sum
$d^{5}f$	+ 486			+ 486
d^3e^3	+ 36	+ 54	- 27	+ 63
$c^2 d^4 e$	- 1296	- 486	+ 324	-1458
cd^3e^2f	- 324	-324	+ 216	- 432
cde^5			+ 1	+ 1
$c^3d^2e^3$	+ 144	+ 324	-216	+ 252
$c^2 de^4 f$	+ 6	+ 36	- 24	+ 18
c ⁴ e ⁵		- 6	+ 4	- 2

that f^2 when it occurs is to be replaced by its value $-d - 4c^3$, and taking their sum, the figures are as follows:

where the last column is, in fact, what V_1 becomes on writing therein a = 1, b = 0. The verification would not of course apply to terms which contain b; thus, (13.3), a derived syzygy is jr = bt + mo; and the foregoing values give, as they should do, jr = mo: we might for the verification of most of the terms in b use values $a, b, c, d, e, f^2 = 1, b, 0, d, e, -d$: the only failure would be for terms containing bc.

TABLE No. 97 (Covariants of A, in the af- or standard forms: W is not given). The several covariants are—

	.3 2.6	3.9	4.12	5.15	
	1		- and the second		
В	$a = a^2 (b + 1)$	e + 1	ad-3 bc-1	$(x, y)^2$	
	2.2	3.5	4.8		

<i>C</i> = (c + 1	f+1	$a^{2}b + 3$ $c^{2} - 15$	$a^2e + 1$ $cf - 10$	$a^{3}d + 6$ $a^{2}bc - 3$ $c^{3} + 15$		$a^{4}b^{2} - 1$ $a^{3}cd + 2$ $a^{2}bc^{2} + 4$ $a^{2}bc^{2} + 1$	(X, y) ⁶
	2.6	3.9	4.12	5.15	6.18	7.21	$a^{0}c^{4} - 1$ 8.24	

TABLE No. 97 (continued).

$D=a^2$ (ad + 1	bf - 1 ce + 1	$a^{2}b^{2} - 1$ acd + 3 $a^{0}bc^{2} + 4$,, ef + 1	adf + 1 $a^{0}bcf + 1$ $a^{2}e - 1$	$(\mathbf{x}, \mathbf{y})^{3}$
	4.8	5.11	6.14	7.17	

$E=a^2$ (<i>e</i> + 1	ad - 6 $a^{0}bc - 10$	<i>bf</i> - 12 <i>ce</i> + 2	$a^{2}b^{2} - 8$ acd - 36 $a^{0}bc^{2} + 12$,, ef - 2	$a^{2}be - 5$ adf - 24 $a^{0}bcf - 4$ $,, c^{2}e + 2$	$a^{3}bd - 6$ $a^{2}b^{2}c - 2$,, $e^{2} - 1$ $ac^{2}d + 18$ $a^{0}bc^{3} + 6$,, $cef + 2$	'∑x, y)⁵
	3.5	4.8	5.11	6.14	7.17	8.20	

(<i>f</i> +1	$a^2b + 2$	$a^2e + 1$	$a^{3}d + 34$	$a^{2}bf - 40$	$a^4b^2 - 16$	$a^4be - 7$	$a^{5}bd + 6$	$a^{5}de - 12$	$a^{6}b^{3} - 2$	Jx,
	$a^{0}c^{2}-18$	a°cf-36	$a^{2}bc - 42$,, ce + 5	$a^{3}cd + 6$	$a^3 df + 8$	$a^4b^2c - 22$	$a^{4}bce + 11$	$a^{5}bcd+6$	
		(Ball	$a^{0}c^{3} + 168$	$a^{0}c^{2}f - 126$	$a^{2}bc^{2}+134$	$a^{2}bcf$ + 8	$,e^2 - 1$	$,, b^2 f - 9$	$a^4b^2c^2+12$	
			577		,, ef - 5	$,, c^2 e + 55$	$a^{3}c^{2}d+54$	$a^{3}cdf + 24$,, bef + 3	
				1	$a^{0}c^{4} - 252$	$a^{0}c^{3}f - 84$	$a^{2}bc^{2}+66$	$a^{2}bc^{2}f + 32$	$,, ce^2 - 1$	
				14 19	Car H.	144,84	,, cef+38	,, c³e −45	$a^{3}c^{3}d-14$	
			38-34	14.1	-	4	$a^{0}c^{5} + 72$	$a^0c^4f + 9$	a^2bc^4-16	
									$, c^2 ef - 5$	
									$a^0c^6 - 2$	

 $3.9 \ 4.12 \ 5.15 \ 6.18 \ 7.21 \ 8.24 \ 9.27 \ 10.30 \ 11.33 \ 12.36$

$$G = a^{4} \qquad abd + 12 \\ a^{0}b^{2}c + 4 \\ ,, e^{2} + 1 \\ . \\ = a^{2}g$$

6.10

46 - 2

363

	1			1				
$H=a^2$ (ac	d + 6	$a^2be + 2$	$a^{2}b^{2}c + $	4 $a^{3}de +$	-2 a^4b^3	+ 2	$(x, y)^4$
	a	$bc^{2} + 4$	adf + 12	$,, e^2 +$	$1 a^{2}b^{2}f +$	- 4 ,, d^2	+ 6	
	22	ef + 1	$a^{0}bcf - 8$	ac^2d-3	6 ", bce –	-6 $a^{3}bc$	d-2	
			$, c^2 e - 8$	$a^{0}bc^{3}-2$	4 $acdf$ -	-12 $a^{2}b^{2}$	$c^2 - 8$	
		-25-57		,, cef -	$6 \qquad a^{0}bc^{2}f -$	- 8 ,, bę	f - 3	
					,, c ³ e +	- 8 ,, ce	² + 1	
		and the second		-		ac ³ d	2 + 6	
	1	all a start of the		a sy salling	H HI WAY	a°be	4 + 4	
	=0	u ² h				" c ²	ef + 1	
	6.3	14	7.17	8.20	9.23	10.5	26	
							A Same	_
$=a^2$ (bf	-1	$a^2b^2 - 2$	adf - 15	$a^{3}bd-20$	$a^{3}de - 5$	$a^4b^3 + 2$	$a^4b^2e + 1$	Xx, y
ce	+1	acd - 6	$a^{0}bcf + 5$	$ac^{2}d + 60$	$a^2b^2f + 5$	$,,d^2 - 12$	$a^{3}bdf + 3$	
		$a^{0}bc^{2}+8$	$,, c^2 e - 5$,,bce – 5	$a^{3}bcd - 2$,,cde-5	
	Er.	,, ef - 2	and they		acdf + 30	$a^2b^2c^2 - 6$	a^2b^2cf+1	+ 12
a la sa			Ne states.		$a^{0}bc^{2}f+5$		1 Station State	
11 1.4 1.40			175 A. 1860		$,,c^{3}e - 5$	$ac^{3}d - 30$		
	1.12%		We Bland	1 4		$a^{0}bc^{4}-8$		
	len l		West Bar 14		a sector	$,,c^{2}ef - 2$	A STATE OF LEASE	
=	ai						,, c ⁴ e + 1	
						and the same of th		_

			The start of the second
$J=a^4($	$a^2b^3 + 1$	$a^2b^2e - 1$	$(x, y)^1$
	$,, d^2 + 9$	a b df - 6	
	$a^{0}b^{2}c^{2} - 4$	" <i>cde</i> + 6	
	,, bef - 2	$a^{0}b^{2}cf-4$	and the
	$,, ce^2 + 1$	$,, bc^2e + 8$	and a
		$,,e^{2}f + 1$	
	$=a^{3}j$		
	8.16	9.19 -	

TABLE No. 97 (continued).

364

[693

 $K = a^4$ (ade + 3 $a^2b^3 + 4$ $a^2b^2e + 1$ $a^{3}b^{2}d + 6$ $(x, y)^3$ $,, d^2 - 18$ abdf + 6 $a^{0}b^{2}f + 2$ $a^2b^3c + 2$,, bce - 2acde - 15abcd - 18 $,, cd^2 - 18$ $a^{0}b^{2}c^{2}-16$ $a^{0}b^{2}cf - 2$ $abc^2d - 30$ $,, bc^2e - 2$,, bef - 5adef - 9 $, ce^2 + 1$ $, e^{2}f - 1$ $a^{0}b^{2}e^{3} - 8$, bcef - 5 $=a^2k$ $,, c^2 e^2 + 3$ 7.13 8.16 9.19 10.22

						and the second second			
$L=a^2($	$a^{\circ}bcf-2$	$a^{2}b^{2}c - 7$ $ac^{2}d + 42$ $a^{0}bc^{3} + 28$	$a^{2}b^{2}f - 9$,, bce + 9 acdf + 63 $a^{0}bc^{2}f + 42$	$\begin{array}{l} ,, d^2 - 39 \\ a^3 b c d + 40 \\ a^2 b^2 c^2 + 59 \\ ,, b e f + 7 \\ ,, c e^2 - 1 \\ a c^3 d - 210 \end{array}$	$a^{3}bdf + 39$,, $cde - 14$ $a^{2}b^{2}cf + 16$,, $bc^{2}e - 12$,, $e^{2}f + 1$ $ac^{2}df - 105$	$a^{5}b^{2}d + 15$ $a^{4}b^{3}c - 9$ $,, cd^{2} + 18$ $a^{3}bc^{2}d - 33$, def - 3 $a^{2}b^{2}c^{3} + 15$, bcef + 21 $, c^{2}e^{2} - 12$	$a^{4}b^{3}f - 7$,, $b^{2}ce + 14$,, $d^{2}f + 12$ $a^{3}bcdf + 23$,, $c^{2}de - 26$ $a^{2}b^{2}c^{2}f + 25$	$\begin{array}{l} ,, bd^2 + 3 \\ a^5b^2cd + 10 \\ ,, de^2 + 2 \\ a^4b^3c^2 + 13 \\ ,, b^2ef + 4 \\ ,, bce^2 - 2 \end{array}$	Qx, y) ⁷
	$=a^2l$		**	", c ² ef- 35	,, c ⁴ e + 70	$ac^4d + 126$ $a^9bc^5 + 84$,, $c^3ef + 21$	$ac^{3}df + 21$ $a^{0}bc^{4}f + 14$,, cdef - 7	
	7.17		9.23 ($a^{3}b^{2}d$ $a^{2}b^{3}c$,, cd^{2} $a bc^{2}d$,, def $a^{0}b^{2}c^{3}$,, $bcef$,, $c^{2}e^{2}$ $= a^{4}m$ 10.22	$ \begin{array}{c} - 1 \\ + 9 \\ + 12 \\ + 3 \\ + 4 \\ + 2 \\ - 1 \\ \end{array} $	$a^{3}bde - 1$ $a^{2}b^{3}f - 1$ $, b^{2}ce + 2$ $, d^{2}f + 9$ a bcdf + 12 $, c^{2}de - 12$ $a^{0}b^{2}c^{2}f + 4$ $, bc^{3}e - 8$ $, ce^{2}f - 1$	$,, bd^2$ -	$ \begin{array}{c c} -1 \\ +3 \\ +6 \\ +1 \\ +5 \\ +2 \\ -1 \\ -9 \\ -12 \\ -3 \\ -4 \\ -2 \end{array} $	(14.38)	
			10.22	din the	11.20	14.20			

TABLE No. 97 (continued).

TABLE No. 97 (continued).

$N = \alpha^4 \left(\int_{-\infty}^{\infty} dx \right)$	$a^{2}b^{2}e + 1$ $a bdf + 6$ $a^{0}b^{2}cf + 4$ $bc^{2}e - 8$ $e^{2}f - 1$ $= a^{3}n$	$a^{2}b^{3}c + 4$,, $cd^{2} + 36$ $a^{0}b^{2}c^{3} - 16$,, $bcef - 8$,, $c^{2}e^{2} + 4$	$a^{2}b^{3}f + 6$,, $b^{2}ce - 6$,, $d^{2}f + 54$	$a^{4}b^{4} + 4$ $, bd^{2} + 12$ $a^{3}b^{2}cd + 8$ $, de^{2} + 4$ $a^{2}b^{3}c^{2} - 12$ $, b^{2}ef - 4$ $, c^{2}d^{2} - 108$ $a bc^{3}d - 96$, cdef - 24 $a^{0}b^{2}c^{4} - 16$ $, bc^{2}ef - 8$ $, c^{3}e^{2} + 4$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	9.19	"" "" "" "" "" ""	$egin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} + 1 \\ {}^{2} - 18 \\ d + 24 \\ f + 18 \\ {}^{2} - 12 \\ + 8 \\ f - 8 \\ {}^{2} - 10 \\ - 1 \end{array}$	13.31
$P = a^4$ ($a^{3}bde - 2$ $a^{2}b^{3}f - 1$ $a^{2}b^{3}f - 9$ $a bcdf - 12$ $c^{2}de + 12$ $a^{0}b^{2}c^{2}f - 4$ $bc^{3}e + 8$ $ce^{2}f + 1$	$\begin{array}{c} ,, bd^{2} + 12 \\ a^{3}b^{2}cd - 10 \\ a \\ ,, de^{2} - 5 \\ a^{2}b^{3}c^{2} - 2 \\ a \\ ,, b^{2}e^{2}f - 1 \\ ,, bce^{2} + 3 \\ ,, c^{2}d^{2} + 90 \\ ,, c^{2}d^{2} + 90 \\ ,, c^{2}d^{2} + 30 \\ a \\ a^{0}b^{2}c^{4} + 40 \\ ,, bc^{2}ef + 20 \\ ,, b^{2}e^{2}f + 20 \\ ,, c^{3}e^{2} - 10 \\ , \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} a^{6}b^{5} + 2 \\ , b^{2}d^{2} + 12 \\ a^{5}b^{3}cd - 2 \\ , bde^{2} - 3 \\ , cd^{3} - 36 \\ a^{4}b^{4}c^{2} - 12 \\ , b^{3}ef - 5 \\ , b^{2}ce^{2} + 4 \\ , bc^{2}d^{2} - 66 \\ , d^{2}ef - 18 \\ a^{3}b^{2}c^{3}d - 10 \\ , bcdef - 4 \\ , c^{2}de^{2} + 1 \\ a^{2}b^{3}c^{4} + 14 \\ , b^{2}c^{2}ef + 1 \\ , c^{2}de^{2} + 1 \\ , c^{2}de^{$

www.rcin.org.pl

366

TABLE No. 97 (continued).

Q = a ⁶	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$R = a^{6} \left(\begin{array}{c} a^{3}bde \\ a^{2}b^{4}f \\ ,, b^{3}ce \\ ,, bd^{2}f \\ ,, cd^{2}e \\ a b^{2}cdf \\ ,, bc^{2}de \\ ,, de^{2}f \\ a^{0}b^{3}c^{2}f \\ ,, b^{2}c^{3}e \\ ,, bec^{2}f \\ ,, c^{2}e^{3} \end{array} \right)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$ c, y) ²
$S = a^6$ ($a^{3}b^{3}df + 7$ $b^{2}cde - 12$ $d^{3}f - 27$ $a^{2}b^{4}cf + 2$ $b^{3}c^{2}e - 6$ $bcd^{2}f - 54$ $c^{2}d^{2}e + 54$ $a b^{2}c^{2}df - 36$ $bc^{3}de + 72$ $cde^{2}f + 9$ $a^{0}b^{2}c^{3}f - 8$ $b^{2}c^{4}e + 24$ $bc^{2}e^{2}f + 6$ $c^{3}e^{3} - 2$ $= a^{6}s$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	∑x, y) ³
	15.33	16.36	17.39	18.42	

[693

TABLE	No.	97	(continued).	

$T = \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		IL A AND THE			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T = ($a^{5}b^{4}de + 7$	$a^{6}b^{7} + 2$	$(x, y)^1$ $U =$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$,, bd^{3}e + 27$	$,, b^4 d^2 + 6$		$,, b^3 d^3 + 14$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$a^4b^6f + 1$	$a^{5}b^{5}cd - 10$	12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	$,, d^5 - 27$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$,, b^{3}de^{2} - 8$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$,, b^2 c d^2 - 54$	2-6.1.2.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	$,, b^4 cd^2 + 34$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$,, d^3 e^2 - 27$		$,, b^2 d^2 e^2 + 11$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$a^4b^6c^2 - 14$		$,, bcd^4 - 81$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$,, b^{5}ef - 7$	1 A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	$a^{3}b^{5}c^{2}d + 32$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$,, b^4 c e^2 + 9$		$,, b^4 def + 10$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					$,, b^{3}cde^{2} - 6$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$, b^2 d^2 ef - 27$		$, b^2 c^2 d^3 - 144$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$, bcd^2e^2 + 9$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$a^{3}b^{4}c^{3}d - 8$		$a^2b^6c^3 + 8$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$a^2b^4c^3e - 8$	$,, b^3 c def + 4$	M1()	$,, b^{5} cef + 4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$b^2 c^2 d^2 f - 216$	$,, b^2 c^2 de^2 + 18$		$,, b^4 c^2 e^2 - 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$, b^2 c^2 e^3 + 2$	$,, bc^{3}d^{3} + 432$	Repair Mary 1 4	$,, b^3 c^3 d^2 - 152$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$,, bc^{3}d^{2}e + 432$	$,, b d e^{3} f + 3$	The second second second second	$, b^2 c d^2 e f - 60$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$, cd^2e^2f + 54$	$, cd^{3}ef + 108$		$, bc^2d^2e^2 + 6$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$a b^3 c^3 df - 96$	$,, cde^4 - 1$		$,, d^2 e^3 f - 4$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.200	$b^{2}c^{4}de + 288$	$a^2b^5c^4$ + 16	Mar Marine a	$a b^4 c^4 d - 80$
$ \begin{vmatrix} a^{0}b^{4}c^{4}f & -16 & ,, b^{2}c^{4}d^{2} & +432 \\ ,, b^{3}c^{5}e & +64 & ,, b^{2}ce^{3}f & -5 \\ ,, b^{2}c^{3}e^{2}f & +24 & ,, bc^{2}d^{2}e^{f} + 216 \\ ,, bc^{4}e^{3} & -16 & ,, bc^{2}e^{4} & +1 \\ ,, c^{2}e^{4}f & -1 & ,, c^{3}d^{2}e^{2} & -108 \\ , a b^{3}c^{5}d & +192 & , \\ ,, b^{2}c^{3}de^{f} & +144 \\ ,, bc^{4}de^{2} & -144 \\ ,, bc^{4}de^{2} & -144 \\ ,, bc^{4}de^{2} & -144 \\ ,, b^{2}c^{2}e^{3}f & -12 \\ ,a^{0}b^{4}c^{6} & +322 \\ ,, b^{3}c^{4}e^{f} & +32 \\ ,, b^{2}c^{5}e^{2} & -48 \\ ,, bc^{3}e^{3}f & -8 \\ \end{vmatrix} $		$, bc^2 de^2 f + 72$	$,, b^4 c^2 ef + 20$		$,, b^3 c^2 def - 56$
$ \begin{vmatrix} a^{0}b^{4}c^{4}f & -16 & ,, b^{2}c^{4}d^{2} & +432 \\ ,, b^{3}c^{5}e & +64 & ,, b^{2}ce^{3}f & -5 \\ ,, b^{2}c^{3}e^{2}f & +24 & ,, bc^{2}d^{2}e^{f} + 216 \\ ,, bc^{4}e^{3} & -16 & ,, bc^{2}e^{4} & +1 \\ ,, c^{2}e^{4}f & -1 & ,, c^{3}d^{2}e^{2} & -108 \\ , a b^{3}c^{5}d & +192 & , \\ ,, b^{2}c^{3}de^{f} & +144 \\ ,, bc^{4}de^{2} & -144 \\ ,, bc^{4}de^{2} & -144 \\ ,, bc^{4}de^{2} & -144 \\ ,, b^{2}c^{2}e^{3}f & -12 \\ ,a^{0}b^{4}c^{6} & +322 \\ ,, b^{3}c^{4}e^{f} & +32 \\ ,, b^{2}c^{5}e^{2} & -48 \\ ,, bc^{3}e^{3}f & -8 \\ \end{vmatrix} $		$, c^{3}de^{3} - 24$	$,, b^3 c^3 e^2 - 24$	ALL AND ALL	$,, b^2 c^3 de^2 + 48$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$,, b^2 c^4 d^2 + 432$	State State State	$,, bcde^{3}f + 2$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$,, b^3 c^5 e + 64$	$,, b^2 c e^3 f - 5$		$,, c^2 de^4 + 1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$,, bc^2d^2ef + 216$	Mar Banking . 18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$bc^2e^4 + 1$	to the way of	$,, b^4 c^3 ef + 16$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$,, c^2 e^4 f - 1$	$, c^{3}d^{2}e^{2} - 108$	10 - And - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1	$,, b^3 c^4 e^2 + 24$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$a b^3 c^5 d + 192$		
$\begin{array}{ c c c c c c c c } & ,, bc^4de^2 & -144 \\ & ,, c^2de^3f & -12 \\ & a^0b^4c^6 & + 32 \\ & ,, b^3c^4ef & + 32 \\ & ,, b^2c^5e^2 & -48 \\ & ,, bc^3e^3f & -8 \end{array}$			$,, b^2 c^3 def + 144$	and a starter to	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$,, bc^4 de^2 - 144$	· · · · · · · · · · · · · · · · · · ·	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					$=a^{9}u$
$,, b^2 c^5 e^2 - 48$ $,, b c^3 e^3 f - 8$					
$,, b^2 c^5 e^2 - 48$ $,, b c^3 e^3 f - 8$			$,, b^3 c^4 ef + 32$		21.45
$,, bc^3e^3f - 8$					
				The said of	
		$=a^{8}t$		The second second	
		1 Mro-	E. C. C.		

19.41

20.44

TABLE No. 97 (concluded).

	a substantial substanti	The second s
$V = a^{10}$ ($a^{6}b^{8} - 4$	$a^{6}b^{7}e - 2$
	$b^{5}d^{2} - 12$	$, b^4 d^2 e - 48$
1. 1. 1. 1.	$a^{5}b^{6}cd + 20$	$bd^4e - 162$
TRANSFER CARE	$b^4 de^2 + 23$	$a^{5}b^{6}df - 6$
. 0	$b^{3}cd^{3} + 108$	$,, b^{5}cde + 8$
	$bd^{3}e^{2} + 81$	$,, b^3 d^3 f - 144$
6.4 7	$a^4b^7c^2 + 28$	$,, b^{3}de^{3} + 8$
	$,, b^{6}ef + 15$	$,, b^2 c d^3 e + 324$
1.5.4 400	$,, b^5 c e^2 - 20$	$,, d^5 f + 486$
	$b^{4}c^{2}d^{2} + 168$	$,, d^3 e^3 + 63$
and the second	$, b^{3}d^{2}ef + 78$	$a^{4}b^{7}cf - 2$
	$, b^2 c d^2 e^2 - 72$	$,, b^{6}c^{2}e + 18$
	$, bc^2d^4 - 324$	$,, b^5 e^2 f + 7$
	$,, d^4 ef = 81$	$, b^4 c d^2 f - 144$
La la .	$, d^2 e^4 - 6$	$, b^4 c e^3 - 9$
	$a^{3}b^{5}c^{3}d + 16$	$, b^{3}c^{2}d^{2}e + 648$
	$,, b^4 c def + 8$	$, b^2 d^2 e^2 f + 99$
	$,, b^3 c^2 de^2 - 112$	$, bcd^4f + 1458$
	$b^{2}c^{3}d^{3} - 864$	$,, bcd^2e^3 - 27$
	$b^{2}de^{3}f - 18$	$,, c^2 d^4 e - 1458$
	$, bcd^{3}ef - 432$	$a^{3}b^{5}c^{2}df - 32$
1996	$,, bcde^4 + 7$	$, b^4 c^3 de + 208$
	$, c^2 d^3 e^2 + 216$	$,, b^{3}cde^{2}f + 20$
	$a^2b^6c^4 - 32$	$,, b^2 c^2 d^3 f + 1728$
	$, b^5 c^2 ef - 40$	$,, b^2 c^2 de^3 - 40$
	$b^{4}c^{3}e^{2} + 40$	$, bc^{3}d^{3}e - 3456$
1. I.I.	$b^{3}c^{4}d^{2} - 864$	$,, bde^4f - 3$
	$, b^{3}ce^{3}f + 10$	$cd^{3}e^{2}f - 432$
	$b^{2}c^{2}d^{2}ef - 648$	$,, cde^5 + 1$
	$bc^{3}d^{2}e^{2} + 648$	$a^{2}b^{4}c^{2}e^{2}f - 20$
1	$, cd^2e^3f + 54$	$,, b^3 c^3 d^2 f + 1008$
	$a b^4 c^5 d - 384$	$, b^{3}c^{3}e^{3} + 20$ $, b^{2}c^{4}d^{2}c^{2} = 3024$
	$,, b^{3}c^{3}def - 384$,,00000 - 0024
	$b^{2}c^{4}de^{2} + 576$	$,, b^2 c e^4 f + 5$
	$bc^{2}de^{3}f + 96$	$, bc^2 d^2 e^2 f - 756$
	$,, c^{3}de^{4} - 24$	$,, bc^2 e^5 - 1$
	$a^{0}b^{5}c^{6} - 64$	$,, c^{3}d^{2}e^{3} + 252$
	$,, b^4 c^4 ef - 80$	$a b^4 c^4 df + 288$
	$b^{3}c^{5}e^{2} + 160$	$,, b^3 c^5 de - 1152$
	$b^{2}c^{3}e^{3}f + 40$	$, b^2 c^3 de^2 f - 432$
	$bc^4e^4 - 20$	$,, bc^4 de^3 + 288$
	$,, c^2 e^5 f - 1$	$, c^2 de^4 f + 18$
		$a^{0}b^{5}cf + 32$
		$,, b^4 c^6 e - 160$
		$b^{3}c^{4}e^{2}f - 80$ $b^{2}c^{5}e^{3} + 80$
1 1 1 C.	all a	
	$=a^9v$	$,, c^4 e^5 - 2$
	22.46	23.49

C. X

47

www.rcin.org.pl

369

 $(x, y)^2$

693]

TABLE No. 98. Covariants of A, divided and (except as to a few coefficients) segregate.

A and B as given in Table 97 were divided and segregate.

C was divided but not segregate: the divided and segregate form is

D divided and segregate is

an integer non-segregate form of the fractional coefficient is

$$ci = 1$$

 $df + 1$

E was divided but not segregate: the divided and segregate form is

= (e	2 + 1	ad - 6 $a^{0}bc - 10$	ai + 12 $a^{\circ}ce - 10$	$a^{2}b^{2} - 8$,, $h - 2$ acd - 24 $a^{0}bc^{2} + 20$	$a^{2}be - 5$,, $l + 8$ aci - 12 $a^{0}c^{2}e + 5$	$a^{4}g - 1$ $a^{3}bd + 6$ $a^{2}b^{2}c + 2$, $ch + 2$	$[\mathfrak{X}, y)^{5}.$
			1.54 (C) 1.55 4.6	<i>a~oc~</i> + 20	<i>u</i> · <i>c</i> · <i>e</i> + · · <i>b</i>	c, ch + 2 $ac^{2}d + 6$ $a^{0}bc^{3} - 2$	
3.	5	4.8	5.11	6.14	7.17	8.20	

TABLE No. 98 (continued).

÷ 3

4.0

÷ 3

÷ 3

F was divided but not segregate: the divided and segregate form is

1	AND STREET								
f+1	$a^{2}b + 2$	$a^2e + 1$	$a^{3}d + 34$	$a^{3}i + 40$	$a^{4}b^{2} - 16$	$a^{4}be - 21$	$a^{6}g - 1$	$a^{6}k - 4$	$a^{6}b^{3} - 2$
	$a^{0}c^{2}-18$	a ^o cf-36	$a^{2}bc - 42$	$a^2ce - 35$,, h - 5	$a^{3}l - 8$	$a^{5}bd + 18$	$a^{5}bi + 1$,, bh + 3
		S. They be	$a^{0}c^{3}+168$	$a^{0}c^{2}f + 126$	$a^{3}cd + 46$	" <i>ci</i> – 16	$a^4b^2c - 18$	$a^{4}bce + 2$,, cg - 1
		1.4.2		P , 9 10	$a^{2}bc^{2} + 155$	$a^2c^2e + 189$,, ch + 38	" <i>cl</i> – 8	$a^4b^2c^2+4$
		10-1			$a^{0}c^{4} + 252$	$a^{0}c^{3}f - 252$	$a^{3}c^{2}d - 174$	$a^{3}c^{2}i - 16$	$,, c^{2}h - 5$
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				$a^{2}bc^{2} - 86$	$a^2c^3e - 13$	$a^{3}c^{3}d + 16$
				Detter 14			$a^{0}c^{5} + 72$	$a^{0}c^{4}f + 9$	$a^{2}bc^{4} + 4$
								A ARAP A	$a^{0}c^{6} - 2$
3.9	4.12	5.15	6.18	7.21	8.24	9.27	10.30	11.33	12.36

where for an integer non-segregate value of the fractional coefficient, see the original form of F.

G as an invariant was divided and segregate, $G = a^6 g$.

H divided and segregate is

$H = a^4$ (h + 1	<i>be</i> + 2	$a^2g + 1$	$a^2k + 2$	$a^{3}j + 2$	$[\mathbf{\tilde{y}}_{x}, y)^{4},$
		1 - 4	abd - 12	abi - 8	$a^2b^3 + 4$	
			$a^{\circ}ch - 6$	$a^{\circ}bce - 6$,, bh - 5	
		al i		" cl + 12	,, cg + 1	
					abcd + 12	
					$a^0c^2h + 3$	
	4.4	5.7	6.10	7.13	8.16	p Bobiri

where the fractional coefficients are =

ade + 2	$a^2b^3 + 2$
$a^{0}b^{2}f + 4$	$,, d^2 + 6$
,, bce – 6	abcd - 2
" <i>cl</i> + 4	$a^{0}b^{2}c^{2}-8$
	,, bef - 3
	$,, c^{2}h + 1$
	$,, ce^2 + 1$
18	N

47 - 2

www.rcin.org.pl

693]

TABLE No. 98 (continued).

I divided and segregate is

		-	in the second		÷ 3	÷ 3	÷ 3	1 41
$I = a^3$ (i + 1	$ab^2 - 2$	al + 5	$a^{2}bd-20$	$a^{3}k - 5$	$a^{4}j - 4$	$a^3b^2e + 3$	$(x, y)^6$,
		,, h + 2	$a^{0}ci-15$	$a^{0}c^{2}d + 60$	$a^2bi - 25$	$a^{3}b^{3} + 10$	" <i>bl</i> + 9	
	N 9	$a^{\circ}cd - 18$		in 30 m	acl - 30	,, bh - 8	" <i>ck</i> – 5	
	10,			Carlos and the	$a^{0}c^{2}i + 45$,, cg + 4	" <i>fg</i> – 3	
	- 21 - 2			11. PTT		$a^{2}bcd-6$	$a^{2}bci - 8$	
	- 25	2				$a bc^2 - 18$	$a b^2 cf - 9$	
	6 1.20	A 199 2 1				$,, c^{2}h - 6$	$,, bc^{2}e - 15$	
-	1	19.56				$a^{0}c^{3}d - 54$	$,, c^2 l + 3$	
							$a^{0}c^{3}i - 3$	
1.000	in the	ST. ST.	all and a	2.10	123	141. 1 N	3. 3.5. 6.	ET. K.
	4.6	5.9	6.12	7.15	8.18	9.21	10.24	

where the fractional coefficients are =

$a^2de - 5$	$a^{3}b^{3} + 2$	$a^{3}b^{2}e + 1$
$a b^2 f + 5$	$,, d^2 - 12$	$a^{2}bdf + 3$
,, bce – 5	$a^{2}bcd - 2$,, cde – 5
$a^{0}c^{2}i - 5$	$a b^2 c^2 - 6$	$a b^2 cf + 1$
,, <i>cdf</i> + 30	$,, c^2h - 2$	$,, bc^2e - 5$
* 11 11	$,, ce^2 - 2$	$,, e^2 f - 1$
	$a^{0}c^{3}d - 18$	$a^{0}c^{3}i + 1$
	1 11/1 1	$,, c^2 df - 3$

J divided and segregate is

$$J = a^{7} (j, -n \oint x, y)^{1}.$$

5.6 6.4

K divided and segregate is

		Same Carlo and a state of the second			:
$K = a^6$ (<i>k</i> + 1	aj = 2 $a^{0}b^{3} + 6$ bh = 9	an + 1 $a^{0}ck - 3$	$a^2m - 3$ $acj + 1$ $a^0b^3c - 2$	$\int dx, y)^3.$
	5.3	,, cg + 3 6.6	7.9	,, bch + 3 $,, c^2g - 1$ 8.12	

[693

372

373

TABLE No. 98 (continued).

L divided and (as to first six coefficients) segregate is

				÷ 3	÷ 3		2	78 10 Bar 10	
$L = a^4$ (1+1	abd - 3	$a^{2}k - 4$	$a^{3}j - 13$	$a^{3}n - 3$	$a^4m - 1$	$a^{3}bde - 7$	$a^{4}b^{4} - 2$	$[x, y)^7$
		$a^{0}b^{2}c - 7$	abi + 1	$a^{2}b^{3} - 5$	$a^{2}bl - 45$	$a^{3}b^{2}d + 13$	$a^2b^3f - 7$	$,, bd^2 + 3$	
		,, ch + 7	$a^{\circ}cl-21$,, bh - 5	,, ck - 20	"cj + 3	$,, b^2 ce + 14$	$a^{3}b^{2}cd + 10$	
				" <i>cg</i> + 10	abci - 10	$a^2b^3c - 13$	$,, d^2f + 12$	$,, de^2 + 2$	
		a s		abcd + 30	$a^{0}c^{2}l + 105$,, bch + 29	abcdf + 23	$a^2b^3c^2 + 13$	
				$a^{0}b^{2}c^{2} + 105$		$,, c^2g - 16$,, $c^2 de - 24$	$, b^2 ef + 4$	
			1 91 AU	,, ch - 105	E. H.	$abc^2d - 3$	$a^{0}b^{2}cf + 25$	$,, bce^2 - 2$	
						$a^{0}b^{2}c^{3}-21$	$,, bc^{3}e - 55$	$,, c^2 d^2 - 15$	
	the	Succession in the	and There	Winner.	1.	$,, c^{3}h + 21$	$,, c^{3}l - 3$	$abc^{3}d - 28$	
							$,, c^2 fh + 2$,, cdef - 7	
				1 400-		N. S.	$,, ce^2 f - 7$	$a^{0}b^{2}c^{4} - 19$	
					1 44 14			,, $bc^2 ef - 10$	
	~~	- 15 - 2			1.6 - 7			$, c^{4}h - 1$	
				i strgorge	(eneline)	in sturie f	a of set b	$,, c^3 e^2 + 5$	
	5.7	6.10	7.13	8.16	9.19	10.22	11.25	12.28	

where the fractional coefficients are =

$a^2b^3 - 6$	$a^2b^2e - 1$
$,, d^2 + 3$	abdf + 39
abcd + 26	,, cde - 22
$a^{0}b^{2}c^{2} + 31$	$a^{0}b^{2}cf + 16$
,, bef + 7	$,, bc^2e - 4$
$,, c^{2}h - 7$	$,, c^2 l + 19$
$,, ce^2 - 1$,, cfh - 8
,,fl - 14	$,, e^2 f + 1$

the last two coefficients have not been reduced to the segregate form. M divided and segregate is

$$M = a^{8} \left(\begin{array}{c|ccccc} m+1 & bk-1 & abj & -1 \\ p & -1 & adg & +1 \\ n, {}^{\circ}cm-1 & \\ \hline 6.2 & 7.5 & 8.8 \end{array} \right)^{2} \cdot$$

www.rcin.org.pl

693]

TABLE No. 98 (continued).

N divided and segregate is

$$N = a^{7} \left(\begin{array}{c|c|c} n+1 & cj+4 & ap-6 & a^{2}bj-4 & a^{3}o & +1 \\ cn-6 & ,, dg+4 & a^{2}bn & -1 \\ a b^{4} & +8 & acp & +2 \\ ,, b^{2}h & -12 & a^{0}c^{2}n & +1 \\ ,, dcg+4 & , cm-8 & a^{0}c^{2}j & -4 \end{array} \right)$$

O divided and segregate is

$$O = a^{10} \left(\begin{array}{c|c} o+1 & b^2g+1 & \\ bm+6 & \\ df'-6 & \\ gh-1 & \end{array} \right)^{1}.$$

... ...

P divided and (as to first three coefficients) segregate is

	p+1	a b j + 8 , dg - 5 $a^{0}b^{4} - 14$ $, b^{2}b + 15$, bcg - 5 , cm + 10	$a^{2}o + 7$ $abn - 2$ $a^{0}cp - 14$	$a^{2}bm + 8$,, dj + 3 $a b^{3}d + 9$, bcj + 13 , bdh - 5 , cdg - 12 $, d^{3} - 81$ $a^{0}b^{4}c - 5$ $, b^{2}ch - 8$ $, b^{2}e^{2} - 1$ $, bc^{2}g - 1$ $, bcd^{2} - 9$, bel - 1 , bfk + 1 $, c^{2}m - 12$, dei + 9 $, e^{2}h + 1$, fp - 2	$a^{2}b^{2}k - 3$,, bp - 3 ,, em + 2 $a b^{2}de + 3$, bdl + 3 , bfj + 8 $, d^{2}i - 27$, deh - 3 , dfg - 8 $a^{0}b^{3}ce - 7$ $, b^{2}cl + 1$ $, bc^{2}k + 9$, bcdi - 9 , bceh + 10 $, c^{2}g - 3$ $, c^{2}p + 9$ $, cd^{2}e + 18$, cfm + 4 , efk + 3	$a^{3}b^{2}j + 2$,, $bdg - 2$ $a^{2}bcm + 2$,, $bek - 1$,, $ep - 1$ $a b^{3}cd + 24$,, $bc^{2}j - 6$,, $bcdh - 33$,, $c^{2}dg + 15$,, $cd^{3} - 54$,, $dfk - 9$ $a^{6}b^{4}c^{3} + 8$,, $b^{2}c^{2}h - 11$,, $bc^{3}g + 3$,, $bc^{2}d^{2} - 18$,, $bcfk - 1$,, $c^{3}m - 6$,, $cfp + 2$	(Tx, y)
7.	5	8.8	9.11	10.14	11.17	12.20	1

the last three coefficients have not been reduced to the segregate form.

[693

TABLE No. 98 (continued).

Q as an invariant was divided and segregate, $Q = a^{12} q$. 8.0

R divided and segregate is

where the fractional coefficients are =

$b^2 j + 2$	bdk + 3
bdg-2	bej + 1
dm - 6	<i>cr</i> + 1
ling-regulat	deg - 1
	dp + 3

S divided and (as to the first three coefficients) segregate is

A WAY AND		<u>Fellins</u>		÷ 2	
$S = a^{12}$ (<i>s</i> + 1	agj - 2	a br - 1	$a^{2}bq + 4$	$(x, y)^3$,
		$a^{0}b^{3}g + 2$,, do – 1	$a b^3 j + 4$	
		$,, b^2m + 3$	$a^{\circ}cs - 3$	$,, b^2 dg - 4$	
		" <i>bdj</i> + 21		,, bdm - 31	
	AND A	$,, bgh - \dot{4}$	and the second	$,, d^2j - 3$	
		$,, cg^2 + 2$		$a^{0}b^{6} + 4$	
		"cq – 3		$,, b^3 d^2 + 16$	
	- Standard		Taking	$,, bd^{2}h - 24$	
				,, den + 4	
				" <i>fs</i> – 1	
	9.3	10.6	11.9	12.12	

but the last coefficient is neither segregate nor integer.

693]

TABLE No. 98 (concluded).

T divided and segregate is

$$\begin{array}{c|c} \div 2 \\ T = a^{16} \left(\begin{array}{c|c} t + 1 & bgm + 1 \\ bj^2 + 4 \\ dgj - 3 \\ hq - 1 \end{array} \right) \\ \hline 11.1 & 12.4 \end{array}$$

where the fractional coefficient is =

$$b^2 q - 1$$

$$hq + 1$$

$$m^2 + 6$$

U as an invariant was divided and segregate, $U=]a^{18}\quad u.$ 12.0

V divided and segregate is

$$T = a^{19} \left(\begin{array}{c|c} v + 1 & bgr - 5 \\ bjo - 19 \\ gjk + 5 \\ js - 12 \\ nq - 9 \end{array} \right)$$

$$13.1 \qquad 14.4$$

where the fractional coefficient is =

$$dt = 6$$
$$mr = 6$$
$$nq + 1$$

W as an invariant was divided and segregate, $W = \alpha^{27} w$. 18.0

www.rcin.org.pl

Derivatives. Art. Nos. 382 to 384, and Tables Nos. 99 and 100.

382. I call to mind that any two covariants a, b, the same or different, give rise to a set of derivatives $(a, b)^1$, $(a, b)^2$, $(a, b)^3$, &c., or, as I propose to write them, ab1, ab2, ab3, &c., viz.:

$$ab1 = d_x a \cdot d_y b - d_y a \cdot d_x b,$$

$$ab2 = d_x^2 a \cdot d_y^2 b - 2d_x d_y a \cdot d_x d_y b + d_y^2 a \cdot d_x^2 b,$$

$$ab3 = d_x^3 a \cdot d_y^3 b - 3d_x^2 d_y a \cdot d_x d_y^2 b + 3d_x d_y^2 a \cdot d_x^2 d_y b - d_y^3 a \cdot d_x^3 b,$$

&c. :

or, as these are symbolically written,

 $ab1 = \overline{12}a_1b_2, \quad ab2 = \overline{12}^2a_1b_2, \quad ab3 = \overline{12}^3a_1b_2, &c.;$

where

$$12 = \xi_1 \eta_2 - \xi_2 \eta_1, \quad = \frac{d}{dx_1} \frac{d}{dy_2} - \frac{d}{dx_2} \frac{d}{dy_1},$$

the differentiations $\frac{d}{dx_1}$, $\frac{d}{dy_1}$ applying to the a_1 and the $\frac{d}{dx_2}$, $\frac{d}{dy_2}$ applying to the b_2 , but the suffixes being ultimately omitted: hence if θ be the index of derivation, the derivative is thus a linear function of the differential coefficients of the order θ of the two covariants a and b respectively: and we have the general property that any such derivative, if not identically vanishing, is a covariant. If the a and the b are one and the same covariant, then obviously every odd derivative is =0; so that in this case the only derivatives to be considered are the even derivatives aa2, aa4, &c.: moreover, if the index of derivation θ exceeds the order of either of the component covariants, then also the derivative is =0: in particular, neither of the covariants must be an invariant. The degree of the derivative is evidently equal to the sum of the degrees of the component covariants; the order is equal to the sum of the orders less twice the index of derivation.

383. It was by means of the theory of derivatives that Gordan proved (for a binary quantic of any order) that the number of covariants was finite, and, in the particular case of the quintic, established the system of the 23 covariants. Starting from the quantic itself a, then the system of derivatives aa2, aa4, &c., must include among itself all the covariants of the second degree, and if the entire system of these is, suppose, b, c, &c., then the derivatives ab1, ab2, &c., ac1, ac2, &c., must include among them all the covariants of the third degree, and so on for the higher degrees; and in this way, limiting by general reasoning the number of the independent covariants of each degree obtained by the successive steps, the foregoing conclusion is arrived at. But returning to the quintic, and supposing the system of the 23 covariants established, then knowing the deg-order of a derivative we know that it must be a linear function of the segregates of that deg-order; and we thus confirm, à posteriori, the results of the derivation theory. I annex the following Table No. 99, showing all the derivatives which present themselves, and for each of them the 48 C. X.

covariants as well congregate as segregate of the same deg-order: the congregates are distinguished each by two prefixed dots, .. bf, &c. No further explanation of the arrangement is, I think, required. We see from the table in what manner the different covariants present themselves in connexion with the derivation-theory. Thus starting with the quintic itself a, we have the two derivatives aa4, aa2, which are in fact the covariants of the second degree (deg-orders 2.2 and 2.6 respectively) b and c. For the third degree we have the derivatives ab2, ab1, ac5, ac4, ac3, ac2, ac1: the deg-order of ac5 is 3.1, and there being no covariants of this deg-order, ac5 must, it is clear, vanish identically: ab2 and ac4 are each of them of the deg-order 3.3, but for this deg-order we have only the covariant d, and hence ab2 and ac4 must be each of them a numerical multiple of d; similarly, deg-order 3.5, abl and ac3 must be each of them a numerical multiple of e; deg-order 3.7, ac2 must be a numerical multiple of ab; and deg-order 3.9, ac1 must be a numerical multiple of f: the 7 derivatives, which prima facie might give, each of them, a covariant of the third degree, thus give in fact only the 3 covariants d, e, f; and in order to show according to the theory of derivations that this is so, it is necessary to prove—1°, that ac5=0; 2°, that ac4 and ab2 differ only by a numerical factor; 3°, that ab1 and ac3 differ only by a numerical factor; 4°, that ac2 is a numerical multiple of ab: which being so, we have the 3 new covariants. The table shows that

so that the whole number of derivatives is 429, giving the 22 covariants b, c, ..., w. While it is very remarkable that (by general reasoning, as already mentioned, and with a very small amount of calculation) Gordan should have been able in effect to show this, the great excess of the number of derivatives over that of the covariants seems a reason why the derivations ought not to be made a basis of the theory.

It is to be remarked that we may consider derivatives pq1, pq2, &c., where p, q instead of being simple covariants are powers or products of covariants, but that these may be made to depend upon the derivatives formed with the simple covariants. (As to this see my paper "On the Derivatives of Three Binary Quantics," Quart. Math. Journal, t. xv. (1877), pp. 157—168, [681].)

Deg.			2					14 M.	3		
Ord.		0	2	4	6		1	3	5	7	9
13437	1.0,63	84	в	of b	c	minp	pdi	d	e	ab	f
64	aa	Printo	4	10 720	2	ab	1 11	2	1	G. 103	dand
1975						ac	5	4	3	2	1

TABLE No. 99 (Index Table of Derivatives).

378

693]

TABLE No. 99 (continued).

Deg.					4								5			
Ord.	Ting	0	2	4	6	8	10	12	-	1	3	5	7	9	11	13
		g		b^2	i	ad	ae	a^2b		j	k	ag	be	ab^2	ai	a^2d
	- Qm			h o		bc		c^2				bd	l	ah	bf	abc
	ad		3	2	1			. State	. Ve C					cd	ce	
	ae	5	4	3	2	1			ah	4	3	2	1			the second
	af			5	4	3	2	1	ai	5	4	3	2	1		
	bb	2							bd	2	1					
	bc			2	1				be		2	1				
	cc	6		4		2			bf				2	1		
									cd		3.	2	1			
			- 5451A						ce	5	4	3	2	1		
									cf		6	5	4	3	2	1

19 derivs.

29 derivs.

eg.	R.	•	14	e e		6			
rd.		0 .	2	4	6	8	10	12	14
			bg	n	aj	ak	a^2g	abe	a^2b^2
			m		b^3	bi	abd	al	a^2h
					bh	de	b^2c	ci	acd
			1		cg		ch	df .	bc^2
					$\dots d^2$		$\dots e^2$		ef
	aj			1	1		e	1º may	1
	ak		3	2	1				
	al		5	4	3	2	1		
	bh		2	1					
	bi			2	1				
	ch		4	3	2	1			
	ci	6	5	4	3	2	1		
	dd		2					- 14	
	de		3	2	1				
	df				3	2	1		
	ee		4		2				
	ef			5	4	3	2	1	
	ff		8		6		4		2

41 derivs.

48-2

Deg.					7			
Ord.		1	3	5	7	9	11	13
		0	bj	bk	abg	an	a^2j	a^2k
			dg	eg	am	$b^{2}e$	ab^3	abi
They is				p	b^2d	ы	abh	ade
and the					cj	ck	acg	$\dots b^2 f$
					$\dots dh$	di	$\dots ad^2$	bce
Linguis						eh	bcd	cl
						fg	ei	fh
44	am		2	1			Still.	
, sen	an	4	3	2	1			
- AR	bj	1						
S. Stratt	bk	2	1					
	ы			2	1			
212	cj			1				
	ck		3	2	1			
unit	cl	6	5	4	3	2	1	
19992	dh	3	2	1				
	di		3	2	1		NY 11-	
	eh	4	3	2	1			
	ei	5	4	3	2	1		
ins.	fħ			4	3	2	1	
	fi		6	5	4	3	2	1

TABLE No. 99 (continued).

46 derivs.

TABLE No. 99 (continued).

g.					8		3	
d.	0	2	4	6	8	10	12	14
-	g^2	r	b^2g	as	abj	abk	a^2bg	a^2n
	9		bm	bn	adg	aeg	a^2m	$ ab^2e$
. 30			dj	dk	<i>b</i> ⁴	ap	ab^2d	abl
			gh	ej	b^2h	b^2i	acj	ack
				gi	bcg	bde	adh	adi
					$\dots bd^2$	cn	$b^{3}c$	aeh
					cm	dl	bch	afg
					ek	fj	be^{2}	bci
					$\dots h^2$	hi	c^2g	bdf
							$\dots cd^2$	cde
							el	
							$\dots fk$	
							i^{2}	
ao			1					
ap	5	4	3	2	1			
bm	2	1						
bn		2	1					
cm		al	2	1				
cn		4	3	2	1		1	
dj		1						
dk	3	2	1	-				
dl			3	2	1			
ej			1	, 1				
ek		3	2	1	9	1		
el		5	4	3	21	1		
fj				2	$\frac{1}{2}$	1		
fk		-	C	3 5	2 4	1 3	- 2	1
fl		7	6	Ð	4	0	4	1
hh	4	5	2	2	1			
hi ii	6	4	3 4	2	2			

52 derivs.

693]

TABLE No. 99 (continued).

eg.			9			
rd.	1	3	5	7	9	11
	gj	ьо	ag^2	ar	ab^2g	a^2o
100		gk	aq	$ b^{2}k$	abm	abn
342.		8	$b^2 j$	beg	adj	adk
100			bdg	bp	agh	aej
0.030			$\dots dm$	co	b^3d	agi
10 ····			hj	$\dots dn$	bcj	b ³ e
din				em	bdh	b^2l
1866				gl	cdg	bck
100				$\dots hk$	d^{3}	bdi
Volum in				ij	en	beh
2 33 d				. nh. in	ik	bfg
						ceg
						cp
						d^2e
						fm
				I.		hl
ar		2	1			
			-			
bo	1		-			
bo	1	2	1			
bo bp	1 .	2	1			
bo bp co		2		2	1	
bo bp co cp	5		1 1	2	1	
bo bp co cp dm	5 2	4 1	1 1 3	2	1	
bo bp co cp dm dn	5	4 1 2	1 1 3 1	2	1	
bo bp co cp dm dn em	5 2 3	4 1 2 2	1 1 3 1 1		1	
bo bp co cp dm dn em em en	5 2	4 1 2	1 1 3 1	1		
bo bp co cp dm dn em en fm	5 2 3	$4 \\ 1 \\ 2 \\ 2$	1 1 3 1 1 2	1 2	-	** * ** * * * * * * *
bo bp co cp dm dn em en fm fn	5 2 3	4 1 2 2 3	1 1 3 1 1	1		1
bo bp co cp dm dn em en fm fm fn hj	5 2 3 4	4 1 2 2 3	1 1 3 1 1 2 4	1 2	-	1
bo bp co cp dm dn em en fm fn hj hk	5 2 3	$ \begin{array}{c} 4 \\ 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \end{array} $	1 1 3 1 1 2 4 1	1 2 3	1 2	1
bo bp co cp dm dn em en fm fn hj hk hk hl	5 2 3 4	4 1 2 2 3	1 1 3 1 1 2 4 1 3	1 2	-	1
bo bp co cp dm dn em en fm fn hj hk hl ij	5 2 3 4	$ \begin{array}{c} 4 \\ 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \\ 4 \end{array} $	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ 1 \\ 2 \\ 4 \\ 1 \\ 3 \\ 1 \\ 3 \\ 1 \end{array} $	1 2 3 2	1 2	1
bo bp co cp dm dn em en fm fn hj hk hk hl	5 2 3 4	$ \begin{array}{c} 4 \\ 1 \\ 2 \\ 2 \\ 3 \\ 1 \\ 2 \end{array} $	1 1 3 1 1 2 4 1 3	1 2 3	1 2	1

46 derivs.

382

[693

693]

TABLE No. 99 (continued).

g.					10			
d. -		0	2	4	6	8	10	12
		1	bg^2	br	agj	abo	a^2g^2	a^2r
			bq	do	b^3g	agk	a^2q	$ ab^2k$
			gm	gn	b^2m	as	ab^2j	abeg
19			j^2	jk	bdj	b^2n	abdg	abp
					bgh	bdk	adm	aco
					cg^2	bej	ahj	adn
					cq	bgi	b^{5}	aem
					$\dots d^2g$	cr	$b^{3}h$	agl
					eo	deg	$b^2 cg$	ahk
			100		hm	dp	$ b^2 d^2$	aij
40					$\dots k^2$	hn	bcm	$b^{3}i$
						im	bek	$ b^2 de$
						jl	$ bh^2$	bcn
							cdj	bdl
							cgh	bfj
							$\dots d^2h$	bhi
							$\dots e^2g$	cdk
							ep	cej
							fo	cgi
							in	$\dots d^2 i$
							kl	deh
								$\dots dfg$
			Shake and shake a state of the	The share the los he	How have the second		4-2-1 () () () () ()	
-	as		3	2	1			
-	br	2	3 1					
-	br cr	2	1	2 2	1			
-	br cr do	2	1	2	1	1		
-	br cr	2	1	2				
-	br cr do dp eo		1 1 3	2 2 1	1	1		
-	br cr do dp eo ep	2	1	2	1	1		
-	br cr do dp eo ep fo		1 1 3	2 2 1 3	1 1 2	1		
	br cr do dp eo ep fo fp		1 1 3 4	2 2 1 3 5	1		2	1
-	br cr do dp eo ep fo fp hm	5	1 1 3 4 2	2 2 1 3 5 1	1 1 2 4	1	2	1
-	br cr do dp eo ep fo fp hm hn		1 1 3 4	2 2 1 3 5 1 2	1 1 2 4 1	1	2	1
	br cr do dp eo ep fo fp hm hn im	5	1 1 3 4 2 3	2 2 1 3 5 1 2 2	1 1 2 4 1 1	1 3	2	1
	br cr do dp eo ep fo fp hm hn im im	5	1 1 3 4 2 3 4	2 2 1 3 5 1 2	1 1 2 4 1	1	2	1
	br cr do dp eo ep fo fp hm hn im in jk	5	1 1 3 4 2 3	2 2 1 3 5 1 2 2	1 1 2 4 1 1 2	1 3	2	1
	br cr do dp eo ep fo fp hm hn im jk jl	5	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \end{array} $	2 2 1 3 5 1 2 2	1 1 2 4 1 1	1 3	2	1
	br cr do dp eo ep fo fp hm hn im jk jl kk	5	1 1 3 4 2 3 4	2 1 3 5 1 2 2 3	1 1 2 4 1 1 2 1	1 3 1	2	1
	br cr do dp eo ep fo fp hm hn im jk jl	5	$ \begin{array}{c} 1 \\ 1 \\ 3 \\ 4 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \end{array} $	2 2 1 3 5 1 2 2	1 1 2 4 1 1 2	1 3	2	1

44 derivs.

TABLE No. 99 (continued).

			11		
- Sin	1	3	5	7	9
i in	go	bgj	b^2o	abg^2	abr
	t	dg^2	bgk	abq	ada
		dq	bs	agm	agn
		jm	dr	aj^2	ajk
			eg^2	b^3j	b ³ k
			eq	$b^2 dg$	b2e
			gp	bdm	b^2p
			ho	bhj	bco
			jn	cgj	bda
			km	$\dots d^2 j$	ben
				dgh	bgl
				er	bhk
				io	bij
				kn	cjk
					CS
					$\dots d^2k$
					dej
					dgi
					egh
					fg^2
					fq
					hp
					lm
bs	2	1		1	
cr		3	2	1 1 0	
	2	3 1		1	
cr		3	2	1	4
cr dr er fr		3 1		1	1
cr dr er		3 1		2	4
cr dr er fr		3 1 2			4
cr dr er fr ho	2	$ \begin{array}{c} 3 \\ 1 \\ 2 \\ 1 \end{array} $	1 2 1	2	4
cr dr er fr ho hp	2	$ \begin{array}{c} 3 \\ 1 \\ 2 \\ 1 \end{array} $	1	2	4
cr dr er fr ho hp io ip	2	3 1 2 1 3	1 2 1	2 -	1
cr dr er fr ho hp io ip jm	2 4 5	3 1 2 1 3	1 2 1	2 -	1
cr dr er fr ho hp io ip	2 4 5	3 1 2 1 3 4	1 2 1	2 -	1
cr dr er fr ho hp io ip jm jm	2 4 5 1 2	$ \begin{array}{c} 3 \\ 1 \\ 2 \\ 1 \\ 3 \\ 4 \\ 1 \end{array} $	1 2 1 3	2 -	1
cr dr er fr ho hp io ip jm jm jn km	2 4 5 1	$ \begin{array}{c} 3 \\ 1 \\ 2 \\ 1 \\ 3 \\ 4 \\ 1 \\ 1 \\ 1 \end{array} $	1 2 1	2 -	1

35 derivs.

384

1

[693

TABLE No. 99 (continued).

			12			
	0	2	4	6	8	10
	g^3	gr	b^2g^2	ago	abgj	ab^2o
	$^{\circ}g^{9}$	jo	b^2q	at	$\dots adg^2$	abgk.
	26	and the second	bgm	b^2r	adq	abs
			bj^2	bdo	ajm	ada
			dgj	bgn	b^4g	αeg^2
			g^2h	bjk	b^3m	aeq
			hq	dgk	$b^2 dj$	agp
			ko	ds	b^2gh	aho
			$\dots m^2$	egj	bcg^2	ajn
				g^2i	bcq	akn
				hr	$. bd^2g$	b^3n
				iq	beo	$. b^2 d$
				jp	bhm	b ² ej
				mn	$ bk^2$	$ b^2 g d$
					cgm	ber
					cj^2	bde
					$\dots d^2m$	bdy
					dhj	bhr
					$\ldots egk$	bin
					es	bjl
					$\dots gh^2$	cdo
					in	cgn
					kp	cjk
					lo	$\dots d^{2n}$
					$\dots n^2$	der
					1	dgi
						dh
						dij
						ehj
						fgj
						ghi
at	9	9	1 1			
ds	3	$\frac{2}{3}$	$\frac{1}{2}$	1	1 1 1 1	
68 fa		0	4	3	2	1
fs		2	1	0	4	1
hr ir		4	$\frac{1}{2}$	1		
	1		4	1		
jo	1		1			
jp		1	1			
ko		1 3	2	1		
kp		9	2	1		
lo		5	4	3	2	1
lp		9	4	0	-	

26 derivs.

C. X.

385

TABLE No. 99 (continue	ued).	
------------------------	-------	--

Deg.			13		
Ord.		1	3	5	7
	Section 1	$g^2 j$	bgo	ag^3	agr
	arte	jq	bt	agq	ajo
	reits -	v	g^2k	an	b ³ 0
	149		gs	b^2gj	b^2gk
	· Pratie		jr	bdg^2	b^2s
			kq	bdq	bdr
	PAR S		mo	bjm	beg^2
	8			dgm	beq
				$\dots dj^2$	bgp
	and			ghj	bho
	and the			kr	bjn
	955			no	bkm
	eym				cgo
	1 10				ct ·
	adds				$\dots d^2 o$
	the second				$\ldots dgn$
	. Area				djk
	and the second				egm
					$\dots ej^2$
					g^2l
					ghk
	-				gij
					hs
	0				lq
	10 M				mp
	bt	1			
	ct			1	1 - 1
	hs	3	2	1	
	- is		3	2	1
	jr	1			
	kr		1		
	lr				1
	mo	1			
	mp		2	1	
	no		1		
	np	4	3	2	1
STATISTICS		and the second second		Carl Carl Carl	Chief and shares and

19 derivs.

386

TABLE No. 99 (continued).

	1.400		14				15	
	0	2	4	6	8	1	3	5
		bg^3 bgq bu g^2m gj^2 mq \cdots o^2	bgr bjo dgo dt g ² n gjk js mr nq	$ag^{2}j$ ajq av $b^{3}g^{2}$ $b^{3}q$ $b^{3}g^{2}$ $b^{3}g^{2}$ $b^{3}g^{2}$ $b^{3}g^{2}$ $b^{3}g^{2}$ bdgj $bg^{2}h$ bhq bm^{2} cg^{3} cgq cu $d^{2}g^{2}$ d^{2}	$abgo$ abt $ag^{2}k$ ags ajr akq amo $b^{3}r$ $b^{2}do$ $b^{2}gn$ $b^{2}jk$ $bdgk$ $bdgk$ $begj$ $bg^{2}i$ bhr biq bhr biq bjp bmn cgr cjo $d^{2}r$ deg^{2} deg^{2} deg^{2} deg deg dgp dkm ejm gin gin gin gin gin gin	$\begin{array}{c c} g^{2o} \\ gt \\ oq \end{array}$	$\frac{bg^{3}j}{bjq}$ $\frac{bg^{3}}{dgq}$ $\frac{dg^{3}}{dgq}$ d	$\begin{array}{c} b^2 g a \\ b^2 t \\ bg^2 k \\ bgs \\ bjr \\ bkq \\ bmo \\ djo \\ eg^3 \\ egq \\ eu \\ g^2 p \\ gho \\ gjn \\ gkm \\ ht \\ j^2 k \\ ms \\ pq \end{array}$ $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$
dt et ft			1	1	1			
js ks ls mr nr	3 2	$\begin{array}{c} 1\\ 2\\ 1\\ 2\end{array}$	$1 \\ 3 \\ 1$	2	1			
$\begin{array}{c} op\\ pp\end{array}$		4	1	2				

17 derivs.

12 derivs.

49-2

[693

TABLE No. 99 (continued).

				16		
	0	2	4	6	8	Col. 8 concl.
		g ² r gjo jt gr	b^2g^3 b^2gq b^2u bg^2m bgj^2 bmq bo^2 dg^2j djq dv g^3h ghq gm^2 hu j^2m kt os r^2	ag²o agt aoq b²gr b²jo bdgo bdt bg²n bgjk bjs bmr bnq dg²k dgs dgs dg? ev g³i ev g³i ghr giq gip iu j²n jkm	$\begin{array}{c} . \ abg^2j\\ abjq\\ abv\\ . \ adg^3\\ adgq\\ . \ addq\\ . \ adu\\ agjm\\ . \ adv\\ agjm\\ . \ adv\\ agjm\\ . \ adv\\ agjm\\ . \ adv\\ agjm\\ . \ bd^2q\\ b^3gm\\ b^4q\\ b^3gm\\ b^4q\\ b^3gm\\ b^2f^2\\ b^2dgj\\ b^2dgj\\ b^2dgj\\ b^2dgj\\ b^2g^2h\\ b^2hq\\ . \ b^2hq\\ . \ b^2hq\\ . \ b^2m^2\\ bcg^3\\ bcgq\\ bcu\\ . \ bd^2g^2\\ . \ bd^2q^2\\ . \ bd^2q^2\\ . \ bd^2q^2\\ . \ bd^2q\\ . \ bd^2q^2\\ . \ bd^2q^2\\ . \ bd^2q\\ . \ bd^2q^2\\ . \ bd^2q\\ . \ bd^2q^2\\ . \ bd^2q^2\\ . \ bd^2q^2\\ . \ bd^2q^2\\ . \ bd^2q\\ . \ bd^2q^2\\ . \ bd^2q\\ . \ bd^2q^2\\ . \ d^2d^2q^2\\ . \ d^2q^2\\ . \ d^2q^2$	$\begin{array}{c} \dots ekq\\ \dots emo\\ \dots g^2h^2\\ \dots gir\\ \dots gkp\\ \dots glo\\ \dots gn^2\\ \dots h^2q\\ \dots hko\\ \dots hm^2\\ \dots ijo\\ \dots jkn\\ \dots k^2m\\ \dots k^2m\\ \dots lt\\ \dots p8\end{array}$
dv ev fv	1	1	1		1	
jt kt lt op os	1	1	1	1		
pp ps		1 4 3	2	$\frac{2}{1}$		

13 derivs.

www.rcin.org.pl

TABLE No. 99 (continued).

-

Deg.		17				18	5		1	9
Ord.	1	3	5		0	2	4	6	1	3
	g ³ j gjq gv ju	$\begin{array}{c} bg^2 o\\ bgt\\ boq\\ g^3 k\\ g^2 s\\ \cdot g h q\\ \cdot g h q\\ \cdot g m o\\ \cdot j^2 o\\ k u\\ \cdot m t\\ q s\end{array}$	$\begin{array}{c} bdgq\\ bdu\\ bgjm\\ \cdot\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		10	$\begin{array}{c} bg^4\\ bg^2q\\ bg^u\\ bq^2\\ g^3m\\ g^2j^2\\ gmq\\ \cdot go^2\\ j^2q\\ \cdot .jv\\ mu\\ \cdot .ot \end{array}$	$\begin{array}{c} bg^2r\\ \cdot \ bgjo\\ bjt\\ bqr\\ \cdot \ dg^2o\\ \cdot \ dgt\\ \cdot \ doq\\ g^3n\\ g^2jk\\ gjs\\ \cdot \ gmr\\ gnq\\ \cdot \ j^2r\\ jkq\\ \cdot \ jmo\end{array}$	$ag^{3}j$ agjq agjq aju $b^{3}g^{3}$ $b^{3}gq$ $b^{3}yq$ $b^{2}y^{2}m$ $b^{2}g^{2}m$ $b^{2}g_{j}^{2}$ $b^{2}mq$ $b^{2}o^{2}$ $bdg^{2}j$ bdyq bdv $bg^{3}h$	$\begin{array}{c} g^3 o \\ g^2 t \\ g q o \\ o u \\ q t \end{array}$	$\begin{array}{c} bg^3j\\ bgjq\\ bgv\\ bju\\ dg^4\\ dg^2q\\ \cdot \cdot djt\\ dq^2\\ g^2jm\\ \cdot \cdot gj^3\\ \cdot \cdot gor\\ jmq\\ \cdot \cdot jo^2\\ \cdot \cdot mv\\ \cdot \cdot rt\end{array}$
	hv iv mt 1	1	$\begin{array}{c} \dots dmq\\ \dots do^2\\ g^2hj\\ \dots gkr\\ \dots gkr\\ \dots gno\\ hjq\\ \dots hv\\ \dots jko\\ \dots jm^2\\ \dots nt\\ \dots rs\\ \end{array}$				kv nu	$\begin{array}{c} bghq\\ ..bgko\\ ..bgm^2\\ bhu\\ ..bf^2m\\ ..bkt\\ ..bos\\ ..br^2\\ cg^4\\ cg^2q\\ cg^2q\\ cq^2\\ ..d^2g^3\\ ..d^2gq\\ ..d^2u\\ \end{array}$	mv 1 nv rt 1	1
	nt rs 2	1						$dgjm$ dj^{3} dor $eg^{2}o$ egt eoq $g^{2}hm$ $g^{2}h^{2}$ ghj^{2} ghj^{2} ghj^{2} ghj^{2} ho^{2} jno $k^{2}q$ kmo		
				jv kv lv ot pt ss	1	1	1	$\frac{1}{1}$		

- And	20	NU FI	21	-	2:		24
0	2	4	The second	1	0	2	0
g^5	ыл	b^2g^4		g^4j	gw	bg ⁵ -	g^6
g^3q	g^3r	b^2g^2q		$g^2 j q$		$bg^{3}q$	g^4g
$g^2 u$	$g^2 jo$	b^2gu		g^2v		bg^2u	g^{3}
gq^2	gjt	b^2q^2		gju		bgq^2	g^2
qu	gqr	$bg^{3}m$		iq^2		bqu	gq
	joq	bg^2j^2		qv		g^4m	q^3
	00	bgmq				$g^{3}j^{2}$	u^2
	rrı	bgo2	10	1		g^2mq	
		bj^2q				$\cdot \cdot g^2 o^2$	tv 1
		bjv	3			gj^2q	
		bmu				gjv	
		bot				gmu	
		dg^3q		2		got	
		dgjq				j^2u	
		$\dots dgv$		And State		mq^2	
		dju				o^2q	
		g^4h				$\dots t^2$	
		g^2hq					
		$. g^2 ko$			<i>sv</i>	1	
		$\dots g^2 m^2$				1	
		ghu					
		$. gj^2m$					
		gkt					
		gos					
		$ gr^2$					
		hq^2	1963.				
		$\cdot \cdot j^4$			-		
		jor					
		koq				12.54	
		$\dots m^2 q$					
		$\dots mo^2$		2.23			
	and .	st	S. F. S. S. S.				
ov 1	Les .						
pv		1					
80	1			100 m 10			

TABLE No. 99 (concluded).

390

[693

384. The Canonical form (using the divided expressions, Table No. 98) is peculiarly convenient for the calculation of the derivatives. Some attention is required in regard to the numerical determination: it will be observed that A is given in the standard form $(A_0, A_1, A_2, A_3, A_4, A_5(x, y)^5$, while the other covariants are given in the denumerate forms $B = (B_0, B_1, B_2(x, y)^2$ &c.: these must be converted into the other form $B = (B_0, \frac{1}{2}B_1, B_2(x, y)^2, C = (C_0, \frac{1}{6}C_1, \frac{1}{15}C_2, \frac{1}{20}C_3, \frac{1}{15}C_4, \frac{1}{6}C_5, C_6(x, y)^6$, &c., the numerical coefficients being of course the reciprocals of the binomial coefficients. We thus have, for instance, the leading coefficients,

but

$$\begin{array}{c} \text{A.C. 01} \quad AC2 = A_0 \cdot \frac{1}{16}C_2 - 2 \cdot A_1 \cdot \frac{1}{6}C_1 + A_2 \cdot C_0, \\ \text{A.C. 01} \quad BC2 = B_0 \cdot \frac{1}{16}C_2 - 2 \cdot \frac{1}{2}B_1 \cdot \frac{1}{6}C_1 + B_0 \cdot C_0. \end{array}$$

10

Moreover, as regards the covariants AA2, AA4, &c., we take what are properly the half-values,

l.c. of
$$AA2 = A_0A_2 - A_1^2$$
 (instead of $A_0A_2 - 2A_1A_1 + A_2A_0$),

, ,
$$AA4 = A_0A_4 - 4A_1A_3 + 3A_2^2$$
 (instead of $A_0A_4 - 4A_1A_3 + 6A_2A_2 - 4A_3A_1 - A_4A_0$),

&c.,

and similarly

l.c. of
$$BB2 = B_0B_2 - (\frac{1}{2}B_1)^2$$
,
,, ,, $CC2 = C_0 \cdot \frac{1}{15}C_2 - (\frac{1}{6}C_1)^2$,
&c.

Any one of these leading coefficients, for instance *l.c.* of AC2, is equal to the corresponding covariant derivative, multiplied, it may be, by a power of a: the index of this power being at once found by comparing the deg-orders, these in fact differing by a multiple of 1.5 the deg-order of a. Thus

$$aa2, A_0A_2 - A_1^2,$$
 deg-orders are 2.6, 2.6: or $aa2 = A_0A_2 - A_1^2,$

aa4, $A_0A_4 - 4A_1A_3 + 3A_2^2$, deg-orders are 2.2, 4.12: or $aa4 = \frac{1}{a^2}(A_0A_4 - 4A_1A_3 + 3A_2^2)$; we have in fact

 $A_0A_2 - A_1^2 = 1 \cdot c - 0^2 = c$

$$A_{a}A_{4} - 4A_{1}A_{3} + 3A_{2}^{2} = 1 \cdot (a^{2}b - 3c^{2}) - 4 \cdot 0 \cdot f + 3 \cdot c^{2}, = a^{2}b$$
: and $aa4 = b$.

: and aa2 = c,

As another instance, and for the purpose of showing how the calculation is actually effected, consider the derivative ch2, which is to be calculated from the leading coefficient of CH2, $= C_0 \cdot \frac{1}{6}H_2 - 2 \cdot \frac{1}{6}C_1 \cdot \frac{1}{4}H_1 + \frac{1}{15}C_2 \cdot H_0$: this is

$$= c \left(\frac{1}{6} a^2 g - 2abd - ch \right) - 2 \cdot \frac{1}{2} f \left(\frac{1}{2} be - l \right) + \left(\frac{1}{2} a^2 b - c^2 \right) h$$

www.rcin.org.pl

= column next written down; but this column contains congregate terms which have to be replaced by their segregate values (see Table No. 96, deg-order 8.16); and we thus obtain

	a^3j	a^2b^3	$a^{2}bh$	a^2cg	abcd	b^2c^2	$c^{2}h$
$\frac{1}{5}a^2bh$	NO VIE-	10 - 44 10 - 10	$+\frac{1}{5}$	Caldida Data		(K 94) () = ()	14 4 45 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$+\frac{1}{6}a^2cg$				$+\frac{1}{6}$	ringing pr		190 No.
-2abcd					- 2		entres.
$-\frac{1}{2}bef$			$-\frac{1}{2}$		+ 3	+ 2	
$-2c^2h$					a m P 1		- 2
+fl	13	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	- 1	- 2	+ 2
. ~ =	$\frac{1}{3}$	$-\frac{1}{3}$	$+\frac{1}{30}$	$-\frac{1}{6}$	0	0	0

viz. the terms other than those divisible by a^2 all disappear: we may either abbreviate the calculation by omitting them *ab initio*, or retain them for the sake of the verification afforded by their disappearance. The factor a^2 divides out, and the final result is

$$ch2 = \frac{1}{3}aj - \frac{1}{3}b^3 + \frac{11}{30}bh - \frac{1}{6}cg,$$

which is the proper segregate expression of the derivative ch2: of course, we have deg-order CH2 = 8.16, deg-order ch2 = 6.6, and the difference is 2.10, the double of 1.5, so that the factor a^2 is as it ought to be.

TABLE No. 100 (The Derivatives up to the Sixth Order).

Degree 2.

 $\frac{2 \cdot 2}{aa4} | \frac{b}{+1}$

 $\begin{array}{c|c} 2.6 & c \\ \hline \\ \hline \\ aa2 & +1 \end{array}$

Degree 3.

3.1	$3.3 \mid d$	3.5 e	3.7 ab	$3.9 \mid f$
ac 5 0	$\begin{array}{c c} 3 \cdot 3 & d \\ \hline ab \ 2 & -3 \\ ac \ 4 & +\frac{12}{5} \end{array}$	$ab 1 + \frac{1}{2}$	$ac 2 + \frac{1}{5}$	$ac1$ + $\frac{1}{2}$
A - Anna A	$ac 4 + \frac{12}{5}$	$ac 3 + \frac{1}{20}$		

Degree 4.

4.0	g	4.2		4.4	b^2 h	4.6	i
ae 5 -	- 2	ad 3	0	ad 2	$-\frac{1}{3}$ + $\frac{1}{3}$	ad 1	$+\frac{1}{3}$
<i>bb</i> 2 -	$-\frac{1}{4}$	ae 4	0	ae 3	$-\frac{4}{5}$ $-\frac{6}{5}$	ae 2	$+ \frac{6}{5}$
cc 6 -	$-\frac{1}{40}$			af 5	$+ \frac{62}{63} - \frac{83}{63}$	af 4	$+\frac{13}{63}$
				bc 2	$+\frac{1}{5} - \frac{1}{2}$	<i>bc</i> 1	$+\frac{1}{2}$
			115.201	cc 4	$+\frac{3}{25} - \frac{1}{10}$		

TABLE No. 100 (continued).

4.8	ad bc	4.10 ae	4.12	a^2b c^2
ae 1	$-\frac{6}{5}-2$	af 2 + 1	af 1	$+\frac{2}{9}-2$
	$+\frac{59}{42}-\frac{5}{6}$	115		
cc 2	$+\frac{1}{4}$ $-\frac{1}{20}$	- The -		

Degree 5.

5.1	j	5.3	k	5.5	ag bd	5.7	be	l
				100			- Conne	
ah 4	+ 2	ah 3	$+\frac{1}{2}$	ah 2	$+\frac{1}{6}-2$	ah 1	- 2	- 4
ai 5	$-\frac{4}{3}$	ai 4	$+\frac{1}{3}$	ai 3	+0 -2	ai 2	0	$+\frac{1}{3}$
bd2	$-\frac{1}{3}$	bd1	$-\frac{1}{6}$	be 1	$-\frac{1}{2}+\frac{24}{5}$	<i>bf</i> 2	$-\frac{7}{36}$	+ 1
ce 5	$-\frac{8}{5}$	<i>be</i> 2	$-\frac{3}{5}$	cd2	$0 - \frac{2}{15}$	cd 1	0	$+\frac{1}{6}$
		$cd\ 3$	$+\frac{3}{20}$	ce 3	$-\frac{1}{20}$ $-\frac{48}{5}$	ce 2	$\frac{1}{5}$	$-\frac{2}{5}$
		ce 4	$+\frac{2}{25}$	df5	$-\frac{1}{72}+\frac{8}{63}$	df 4	$-\frac{1}{90}$	$+\frac{43}{315}$
		cf 6	$-\frac{19}{42}$					
5.9	$ ab^2$	ah c	d I	5.11	ai ce	5.13	$ a^2d $	abc
						0.10		
ai 1	$-\frac{1}{3}$ +	$+\frac{1}{3}+$	3	df 2	$+\frac{1}{45}+\frac{1}{180}$	df 1	$+\frac{1}{2}$	- 5/8
bf 1	$+\frac{2}{9}$ -	$-\frac{1}{2}$ +	3			in a shine		
ce 1	0 -	$-\frac{1}{2}$ +	95					
df 3	$+\frac{2}{15}$ -	$-\frac{11}{120}$ -	$\frac{439}{420}$					

Degree 6.

6.0	6.2	bg m	6.4	n	6.6	aj	b^3	bh	cg
ci 6 0	ak 3	0 - 4	aj 1	- 1	a 1	$-\frac{2}{3}$	+ 2	- 3	+ 1
	al 5	$0 + \frac{20}{7}$	ak 2	$+\frac{1}{3}$	al 3	$-\frac{16}{35}$	$+ \frac{2}{7}$	$-\frac{5}{7}$	$+ \frac{3}{7}$
	bh2	$-\frac{1}{3}$ - 2	al 4	$-\frac{1}{35}$	bi 1	$-\frac{1}{3}$	$+ \frac{5}{6}$	$-\frac{1}{2}$	0
	ch4	$\frac{1}{10} - \frac{2}{5}$	bh1	$+\frac{1}{2}$	$ch \ 2$	$+\frac{1}{3}$	$-\frac{1}{3}$	$+ \frac{11}{36}$	$-\frac{1}{6}$
	ci 5	$0 + \frac{2}{3}$	bi 2	$+\frac{1}{3}$	ci 3	$-\frac{1}{6}$	$-\frac{1}{30}$	$+ \frac{11}{3}$	$+\frac{7}{60}$
Haller - et .	$dd \ 2$	$0 + \frac{1}{9}$	ch 3	$+\frac{3}{10}$	de 1	$-\frac{2}{15}$	$+\frac{2}{15}$	$+ \frac{1}{15}$	$-\frac{1}{5}$
	de 3	$0 - \frac{4}{5}$	ci 4	$+\frac{1}{15}$	df3	$+\frac{59}{378}$	$-\frac{143}{378}$	$+ \frac{425}{756}$	$-\frac{139}{756}$
	ee 4	-1 $-\frac{48}{25}$	de 2	$-\frac{1}{3}$	ee 2	$-\frac{4}{25}$	$+ \frac{4}{25}$	$-\frac{38}{25}$	$+ \frac{9}{25}$
	ff8	$-\frac{5}{324}$ $-\frac{68}{567}$	ef 5	$-\frac{64}{63}$	ef 4	$+ \frac{236}{315}$	$-\frac{4}{105}$	$+ \frac{10}{63}$	$-\frac{71}{105}$
W Law Mar		and the second second			ff6	$-\frac{1529}{7938}$	$+\frac{2873}{7938}$	$+\frac{3533}{15876}$	$-\frac{5591}{31752}$
C. X.									50

c. x.

TABLE No. 100 (concluded).

6.8	ak	bi	1	6.10	a^2g	abd	b^2c	ch
al 2	$-\frac{4}{21}$	$+\frac{1}{21}$		al 1	0	- 37	- 1	+ 1
ch 1	$+ \frac{1}{6}$	$+ \frac{1}{3}$		ci 1	0	$-\frac{1}{2}$	$+ \frac{1}{6}$	
ci2	$+\frac{1}{9}$	$+\frac{4}{45}$		df 1	0	$-\frac{1}{9}$	$+ \frac{1}{3}$	$-\frac{1}{3}$
df 2	$-\frac{11}{108}$	$-\frac{1}{54}$		ef 2	$+\frac{1}{36}$	$+ \frac{7}{5}$	$-\frac{19}{45}$	$-\frac{4}{5}$
ef 3	$+\frac{32}{315}$	$+\frac{64}{315}$	1.	ff4	$+\frac{1}{432}$	$-\frac{53}{756}$	$+\frac{89}{756}$	$-\frac{8}{6}$
6.12	abe	al ci	1	6.14	a^2b^2	a^2h a	ucd be	2
ef 1	$\frac{2}{9}$ -	$\frac{2}{5} - \frac{6}{5}$		ff2	$-\frac{4}{81}$	$+\frac{1}{36}+$	5 -	2 9

which is complete to the sixth degree. I had calculated the derivatives up to the tenth degree, but the results were not in the segregate form.

On the form of the Numerical Generating Functions: the N.G.F. of a Sextic. Art. Nos. 385, 386.

385. It is to be remarked that the R.G.F. is derived not from the fraction in its least terms, which is algebraically the most simple form of the N.G.F., but from a form which contains common factors in the numerator and denominator: thus for the quadric, the cubic, and the quartic, writing down the two forms (identical in the case of the quadric) these are-

=

Quadric

N.G.F. =
$$\frac{1}{1 - ax^2 \cdot 1 - a^2}$$
.

Cubic

N.G.F. =
$$\frac{1 - ax + a^2x^2}{1 - a^4 \cdot 1 - ax^3 \cdot 1 - ax}$$

Quartic

N.G.F. =
$$\frac{1 - ax^2 + a^2x^4}{1 - a^2 \cdot 1 - a^3 \cdot 1 - ax^4 \cdot 1 - ax^2}$$

$$=\frac{1-a^6x^6}{1-a^4\cdot 1-ax^3\cdot 1-a^2x^2\cdot 1-a^3x^3}.$$

$$=\frac{1-a^6x^{12}}{1-a^2\cdot 1-a^3\cdot 1-ax^4\cdot 1-a^2x^4\cdot 1-a^3x^6}.$$

$$1 - ax^2 + a^2x^4$$

For the quintic the two forms are, N.G.F. =

(1			$- a^{6}$		8	$+ a^{12} x^{0}$
+ (- 1		$+ a^{4}$	$+2a^{6}$			$(-a^{12})ax^{1}$
+ ($\circ + a^2$			$-a^{8}$. Ann	$(+ a^{10}) x^2$
+ (- 1	i de la come	$+ a^{4}$	$+ a^{6}$	$+ a^{8}$	$-a^{10}$	$(-a^{12})ax^3$
+ (+ 1	$+ a^{2}$	$-a^{4}$	$-a^{6}$	$-a^{8}$		$+ a^{12}) a^2 x^4$
+ ($-a^{2}$	$+ a^{4}$	12.9		- a ¹⁰) a^3x^5
+ (+ 1			$-2a^{6}$	$-a^{8}$		$+ a^{12} a^2 x^6$
+ (- 1	1.14-7	- 14 - 7	$+ a^{6}$			$(-a^{12}) a^3 x^7$

divided by

$$1 - a^4 \cdot 1 - a^6 \cdot 1 - a^8 \cdot 1 - ax^5 \cdot 1 - ax^3 \cdot 1 - ax;$$

and

- ht	1								
(1			1 Star		-			a giran	$+ a^{18} x^{0}$
(a^4	$+ a^{6}$		+ a ¹⁰	+ a ¹²) ax
(a^4	$+ a^{6}$	$+ a^{8}$	$+ a^{10}$		+ a ¹⁴		$(-a^{18}) a^2 x^2$
(1	$+a^2$	$+a^4$	1 -	$+ a^{8}$) a^3x^3
(1	$+ a^{2}$	$+ a^{4}$	$+ a^{6}$		$+ a^{10}$		$-a^{14}$) $a^{4}x^{4}$
(1		$+a^4$	$+ a^{6}$. And .	·	$-a^{16}$) a^3x^5
(a^2			The second		$-a^{12}$	$-a^{14}$) a^2x^6
(a4		$-a^8$		- a ¹²	$-a^{14}$.	$-a^{16}$	$(-a^{18}) ax^7$
(Nor en	. juha	P. Can-	$-a^{10}$	$-a^{12}$.	$-a^{14}$	$-a^{16}$	$(-a^{18}) a^2 x^8$
(-	$-a^4$		$-a^{8}$	$-a^{10}$	$-a^{12}$	$-a^{14}$	- Martin S) $a^{3}x^{9}$
($-a^6$	$-a^{8}$		$- a^{12}$	$-a^{14}$) a^4x^{10}
(-1									$(-a^{18}) a^5 x^{11}$

divided by

 $1 - a^4 \cdot 1 - a^8 \cdot 1 - a^{12} \cdot 1 - ax^5 \cdot 1 - a^2x^2 \cdot 1 - a^2x^6$:

this last being in fact equivalent to that used for the determination of the R.G.F. 50-2

386. For the sextic the forms are, N.G.F. =

-	(1	+a		$-a^{3}$	$-a^4$	- a ⁵		+ a7	$(+ a^8) x^0$
	(-1	- a	$+ a^{2}$	$+2a^{3}$	$+ 2a^{4}$	$+ a^{5}$		$-a^7$	$(-a^8) ax^2$
	·(- 1	-	$+ a^{2}$	$+ a^{3}$	$+ a^4$	$+ a^{5}$	E. May	- a ⁷	$(-a^8) ax^4$
	(1	+ a	3.3.4	$-a^{3}$	- a ⁴	- a ⁵	$-a^6$		$+ a^8) a^2 x^6$
	(1	+ a		$-a^{3}$	$-2a^{4}$	$-2a^{5}$	$-a^6$	$+ a^{7}$	$(+ a^8) a^2 x^8$
	.(-1	- a		$+ a^{3}$	$+ a^4$	$+ a^{5}$	- 1 JUS	$-a^{7}$	$(-a^8) a^3 x^{10}$

divided by

$$1 + a \cdot 1 - a^2 \cdot 1 - a^3 \cdot 1 - a^4 \cdot 1 - a^5 \cdot 1 - ax^6 \cdot 1 - ax^4 \cdot 1 - ax^2$$

and

(1			-	·			- 0			$+ a^{15}$) x^{0}
+ (1	$+a^{2}$	$+a^{4}+a^{5}$	+	- a ⁷	$+ a^{9}$) a^3x^2
+ ($+a^{2} + a^{3}$	$3 + a^4 + a^5$	$+a^{6}+$	$-a^{7} + a^{8}$	$+a^{9}$	$+a^{1}$) a^2x^4
+(1)+a	+ 2a3	$+a^{5}$	$+a^6$	$+ a^{8}$				$-a^{13}$) $a^{3}x^{6}$
$+(+a)^{.5}$	$+a^{2.5}$	+ a 4.5				$-a^{10.5}$	- a	12.5	- a	14.5) $a^{2.5}x^8$
+ ($+a^2$		-	- a ⁷	$-a^9$	- a ¹⁰	$-2a^{12}$		$-a^{14}$	$(-a^{15}) a^2 x^{10}$
+ ($-a^4$	$\left -a^{6}\right $ -	$a^7 - a^8$	$-a^9$	$-a^{10}$ $-a^{11}$	$-a^{12}$	$-a^{13}$	18 ·}·) a^3x^{12}
+ (No.		$-a^6$	$-a^8$		$-a^{10}$ $-a^{11}$		$-a^{13}$		$(-a^{15})a^2x^{14}$
+ (- 1								5 6 9 9	th	$-a^{15}$) a^5x^{16}

divided by

 $1 - a^2 \cdot 1 - a^4 \cdot 1 - a^6 \cdot 1 - a^{10} \cdot 1 - ax^6 \cdot 1 - a^2x^4 \cdot 1 - a^2x^8$

where observe that in the middle term, although for symmetry $a^{\cdot 5} (= \sqrt{a})$ has been introduced into the expression, the coefficient is really rational, viz. the term is

$$(a^3 + a^5 + a^7 - a^{13} - a^{15} - a^{17}) x^8$$
.

The second form or one equivalent to it is due to Sylvester: I do not know whether he divided out the common factors so as to obtain the first form. I assume that it would be possible from this second form to obtain a R.G.F., and thence to establish for the 26 covariants of the sextic a theory such as has been given for the 23 covariants of the quintic: but I have not entered upon this question.

www.rcin.org.pl

TABLE No. 93 bis (The covariant S, adopted form = -(D, M)).

In this Table, a, b, c, d, e, f denote, as in the tables of former memoirs, the coefficients of the quintic form $(a, b, c, d, e, f i x, y)^5$.

	0	The state of the second second	and the second second second		A CONTRACTOR
S = ($a^{3}b^{0}c^{3}f^{3} - 2$	$a^{3}b^{0}c^{2}df^{3} - 3$	$a^{3}b^{0}cd^{2}f^{3} + 3$	$a^{3}b^{0}d^{3}f^{3} + 2$	$\int x, y)^3$
	$c^2 def^2 + 15$	$c^2 e^2 f^2 + 3$	$cde^{2}f^{2} - 6$	$d^2e^2f^2 - 6$	X., 9/
	$c^2 e^3 f - 9$	$cd^2ef^2 + 24$	ce^4f + 3	$de^4f + 6$	
	$cd^{3}f^{2} - 9$	$cde^3f - 42$	$d^3 e f^2 - 3$	$e^{6} - 2$	
	$cd^2e^2f - 6$	$ce^5 + 18$	$d^2 e^3 f + 6$	$a^{2}b \ cd^{2}f^{3} - 15$	
	cde^4 + 9	$d^4f^2 - 18$	$de^5 - 3$	$cde^{2}f^{2} + 30$	Part and the
	$d^4ef + 9$	$d^3e^2f + 33$	$a^2b^2d^2f^3 - 3$	$ce^4f - 15$	
	$d^3e^3 - 7$	$d^2e^4 - 15$	$de^2 f^2 + 6$	$d^3 e f^2 + 15$	
	$a^2b^2c^2f^3 + 6$	$a^{2}b^{2}cdf^{3} + 6$	$e^4f - 3$	$d^2 e^3 f - 30$	
	$cdef^2 - 30$	$ce^2f^2 - 6$	$,, b c^2 df^3 - 24$	$de^5 + 15$	1.180.177
	$ce^{3}f + 18$	$d^2 e f^2 - 24$	$c^2 e^2 f^2 + 24$	$, b^{0}c^{3}df^{3} + 9$	142321
	$d^3f^2 + 9$	$de^{3}f + 42$	$cd^2ef^2 + 78$	$c^{3}e^{2}f^{2} - 9$	
	$d^2e^2f + 6$	$e^5 - 18$	$cde^3f - 108$	$c^2 d^2 e f^2 - 21$	
				$c^{2}de^{3}f + 15$	
	$de^4 - 9$				
	$b c^3 e f^2 - 15$	$c^2 def^2 - 78$	$d^4f^2 - 24$	$c^2 e^5 + 6$	Maria I.
	$c^2 d^2 f^2 + 21$	$c^2 e^3 f + 69$	$d^3e^2f + 24$	$cd^{4}f^{2} + 3$	
20	$c^2 de^2 f - 6$	$cd^{3}f^{2} + 93$	$b^{0}c^{4}f^{3} + 18$	$cd^{3}e^{2}f + 21$	
State - State	$c^2 e^4 + 18$	$cd^2e^2f - 51$	$c^{3}def^{2} - 93$	$cd^{2}e^{4} - 24$	
	$cd^{3}ef + 30$	$cde^{4} - 33$	$c^3 e^3 f + 21$	$d^{5}ef - 9$	
	$cd^2e^3 - 51$	$d^4 ef - 57$	$c^2 d^3 f^2 + 36$	$d^4e^3 + 9$	and such
100121	$d^5f - 36$	$d^3e^3 + 54$	$c^2 d^2 e^2 f + 123$	$a b^3 d^2 f^3 + 9$	
	$d^4e^2 + 39$	$, b^{0}c^{4}ef^{2} + 24$	$c^2 de^4 - 51$	$de^2 f^2 - 18$	1.244.27
	$b^{0}c^{4}df^{2} - 3$	$c^{3}d^{2}f^{2} - 36$	$cd^4ef - 111$	$e^4f + 9$	
			$cd^{3}e^{3} + 39$	$, b^2 c^2 df^3 + 6$	1 Carto
	$c^4 e^2 f + 45$			$c^2 e^2 f^2 - 6$	111
	$c^{3}d^{2}ef - 84$	$c^3 e^4 - 54$	$d^6f + 27$	$C^{-}C^{-}$ - 0	
	$c^{3}de^{3} - 63$	$c^2 d^3 e f + 24$	$d^5e^2 - 9$	$cd^2 ef^2 + 6$	
	$c^2 d^4 f + 45$	$c^2 d^2 e^3 + 129$	$a b^3 c df^3 + 42$	$cde^{3}f - 24$	
	$c^2 d^3 e^2 + 150$	$cd^{5}f + 9$	$ce^2f^2 - 42$	ce^5 + 18	14 R. 30
	$cd^{5}e - 117$	$cd^4e^2 - 114$	$d^2 e f^2 - 69$	$d^4f^2 - 45$	
	$d^7 + 27$	$d^6e + 27$	$de^{3}f + 96$	$d^3e^2f + 96$	
	$a^{1}b^{4}cf^{3} - 6$	$a^{1}b^{4}df^{3} - 3$	$e^5 - 27$	d^2e^4 – 51	
	$def^2 + 15$	$e^2f^2 + 3$	$,, b^2 c^3 f^3 - 33$	$,, b c^4 f^3 - 9$	
	$e^3f - 9$	$,, b^3 c^2 f^3 - 6$	$c^{2}def^{2} + 51$	$c^{3}def^{2}-30$	1. 1. 1. 1. 1.
		$cdef^2 + 108$	$c^2 e^3 f + 48$	$c^3 e^3 f + 66$	
			$cd^{3}f^{2} + 9$	$c^2 d^3 f^2 + 84$	
	$cd^2f^2 - 15$		$cd^{2}e^{2}f - 147$	$c^2 d^2 e^2 f - 36$	1.7.1.1.1.
A. 34. 61.	cde^2f + 24	$d^3f^2 - 21$		$c^2 de^4 - 102$	
4 1. 2	$ce^4 - 45$	$d^2 e^2 f - 48$	$cde^4 + 39$		
	$d^3 ef - 66$	de^4 + 63	$d^4ef + 78$	$cd^4ef - 174$	
1011	$d^2e^3 + 72$	$, b^2 c^3 e f^2 - 24$	$d^3e^3 - 45$	$- cd^3e^3 + 210$	3.1
	$,, b^2 c^3 df^2 - 21$	$c^2 d^2 f - 123$	$,, b c^4 e f^2 + 57$	$d^6f + 63$	
	$c^3 e^2 f - 96$	$c^2 de^2 f + 147$	$c^{3}d^{2}f^{2} - 24$	$d^5e^2 - 72$	
	$c^2 d^2 e f + 36$	$c^2 e^4 + 66$	$c^{3}de^{2}f - 78$	$b^{0}c^{5}ef^{2} + 36$	1. 1. 1. 1. 1.
	$c^2 de^3 + 213$	$cd^3ef + 78$	$c^3 e^4 - 60$	$c^4 d^2 f^2 - 45$	Constant .
	$c^{-}de^{-} + 213$ $cd^{4}f + 120$	$cd^2e^3 - 186$	$c^2 d^3 ef + 36$	$c^4 de^2 f - 120$	1.1.2
			$c^2 d^2 e^3 + 108$	$c^4 e^4 - 6$	12 million
	$cd^{3}e^{2} - 303$	$d^{5}f + 51$ $d^{4}e^{2} - 9$	$cd^{5}f - 24$	$c^{3}d^{3}ef + 204$	Correct in
	$d^5e + 51$	$d^4e^2 - 9$	(- 2 1	0000 1 201	
		1		and the second se	art of the St

(continued on next page.)

(continued from last page.)

Son 22			
$a^{1}b c^{5}f^{2} + 9$	$a^{1}b \ c^{4}df^{2} + 111$	$a \ b \ cd^4e^2 \ - \ 6$	$a \ b^{0}c^{3}d^{2}e^{3} + 120$
$c^4 def + 174$	$c^4 e^2 f - 78$	$\frac{d^3e}{d^3e} = 9$	$c^2 d^5 f - 66$
$c^4e^3 - 36$	$c^{3}d^{2}ef - 36$	$b^{0}c^{5}df^{2} - 9$	$c^2 d^4 e^2 - 240$
$c^{3}d^{3}f - 204$	$c^{3}de^{3} - 54$	$c^{5}e^{2}f - 51$	$cd^{6}e + 144$
			$ca^{3}e^{2} + 144$
$c^3 d^2 e^2 - 174$	$c^2 d^4 f - 96$	$c^4 d^2 e f + 96$	$d^8 - 27$
$c^2 d^4 e + 330$	$c^2 d^3 e^2 + 150$	$c^4 de^3 + 111$	$a^{0}b^{4}cdf^{3} - 9$
$cd^{6} - 99$	$cd^{5}e + 30$	$c^{3}d^{4}f - 27$	$ce^2f^2 + 9$
$,, b^{0}c^{6}ef - 63$	$d^7 - 27$	$c^3 d^3 e^2 - 234$	$d^2 e f^2 - 18$
$c^{5}d^{2}f + 66$	$,, b^0 c^6 f^2 - 27$	$c^2 d^5 e + 141$	$de^{3}f + 45$
$c^{5}de^{2} + 99$	$c^{5}def + 24$	$cd^7 - 27$	$e^5 - 27$
$c^4 d^3 e - 147$	$c^5 e^3 + 54$	$a^{0}b^{5}df^{3} - 18$	$,, b^3 c^3 f^3 + 7$
$c^3 d^5 + 45$	$c^4 d^3 f + 27$	$e^2 f^2 + 18$	$c^2 def^2 + 51$
$a^{0}b^{6}f^{3} + 2$	$c^4 d^2 e^2 - 93$	$,, b^4 c^2 f^3 + 15$	$c^2 e^3 f - 72$
$b^{5}cef^{2} - 15$	$c^{3}d^{4}e + 6$	$cdef^{2} + 33$	$cd^3f^2 + 63$
$d^2f^2 - 6$	$c^2 d^6 + 9$	$ce^3f - 63$	$cd^2e^2f - 213$
$de^2f - 18$	$a^{0}b^{5}cf^{3} + 3$	70 00 - 1	$cde^4 + 171$
	7 00 00	$d_{f}^{3f^{2}} + 54 \\ d^{2}e^{2}f - 66$	
	$def^2 - 30$		$d^4 ef + 36$
	$e^{3}f + 27$	$de^4 + 27$	$d^3e^3 - 43$
$c^2 e^2 f + 51$	$, b^4 c d^2 f^2 + 51$	$b^{3}c^{3}ef^{2} - 54$	$, b^2 c^4 e f^2 - 39$
$cd^2 ef + 102$	$cde^{2}f - 39$	$c^2 d^2 f^2 - 129$	$c^3 d^2 f^2 - 150$
$cde^{3} - 171$	$ce^4 - 27$	$c^2 de^2 f + 186$	$c^{3}de^{2}f + 303$
$d^4f + 6$	$d^3 ef + 60$	$c^2 e^4 + 45$	$c^3e^4 - 18$
$d^{3}e^{2}$ + 18	$d^2e^3 - 45$	$cd^{3}ef + 51$	$c^2 d^3 ef + 174$
$, b^3 c^4 f^2 - 9$	$, b^3 c^3 df^2 - 39$	$cd^2e^3 - 96$	$c^2 d^2 e^3 - 345$
$c^{3}def - 210$	$c^3 e^2 f + 45$	$d^{5}f - 54$	$cd^{5}f - 99$
c^3e^3 + 43	$c^2 d^2 e f - 108$	$d^{4}e^{2} + 48$	$cd^4e^2 + 192$
$c^2 d^3 f - 120$	$c^2 de^3 + 96$	$,, b^2 c^4 df^2 + 114$	$d^6e - 18$
$c^2 d^2 e^2 + 345$	$cd^{4}f - 111$	$c^4 e^2 f + 9$	$,, b c^{5} df^{2} + 117$
$cd^4e - 87$	$cd^{3}e^{2} + 147$	$c^{3}d^{2}ef - 150$	$c^5 e^2 f - 51$
$d^6 - 2$	$d^5e - 30$	$c^{3}de^{3} - 147$	$c^4 d^2 ef - 330$
$b^{2}c^{5}ef + 72$	$b^{2}c^{5}f^{2} + 9$		$c^4 de^3 + 87$
$c_{-4}^{4}d^{2}f + 240$		$c^2 d^4 f + 93$	
		$c^2 d^3 e^2 + 150$	$c^{3}d^{4}f + 147$
	$c^4 e^3 - 48$	$cd^{5}e - 87$	$c^{3}d^{3}e^{2} + 186$
$c^{3}d^{3}e - 186$	$c^{3}d^{3}f + 234$	$d^7 + 18$	$c^2 d^5 e - 201$
$c^2 d^5 + 96$	$c^3 d^2 e^2 - 150$	$, b c^{6} f^{2} - 27$	$cd^7 + 45$
$b c^{6} df - 144$	$c^2 d^4 e - 108$	$c^{5}def - 30$	$b^{0}c^{7}f^{2} - 27$
$c^6 e^2 + 18$	$cd^{6} + 57$	$c^5e^3 + 30$	$c^{6}def + 99$
$c^{5}d^{2}e + 201$	$,, b c^{6} ef + 9$	$c^4 d^3 f - 6$	$c^6 e^3 + 2$
$c^4 d^4 - 87$	$c^{5}d^{2}f - 141$	$c^4 d^2 e^2 + 108$	$c^{5}d^{3}f - 45$
$, b^{0}c^{8}f + 27$	$c^5 de^2 + 87$	$c^{3}d^{4}e - 96$	$- c^5 d^2 e^2 - 96$
$c^7 de - 45$	$c^4 d^3 e + 96$	$c^2 d^6 + 21$	$c^4 d^4 e + 87$
$c^6 d^3 + 20$	$c^3 d^5 - 51$	$, b^{0}c^{7}ef + 27$	$c^{3}d^{6} - 20$
	$, b^{0}c^{7}df + 27$	$c^{6}d^{2}f - 9$	
	$c^7 e^2 - 18$	$c^{6}de^{2} - 57$	
ALL TANK CONTRACTOR	$c^{6}d^{2}e - 21$	$c^{5}d^{3}e + 51$	
	$c^{5}d^{4} + 12$	$c^4 d^5 - 12$	
	C W T 12	0.00 - 12	
and the second		CONTRACTOR OF THE OWNER	

I remark that I calculated the first two coefficients S_0 , S_1 , and deduced the other two S_2 from S_1 , and S_3 from S_0 , by reversing the order of the letters (or which is the same thing, interchanging a and f, b and e, c and d) and reversing also the signs of the numerical coefficients. This process for S_2 , S_3 is to a very great extent a verification of the values of S_0 , S_1 . For, as presently mentioned, the

398

terms of S_0 form subdivisions such that in each subdivision the sum of the numerical coefficients is = 0: in passing by the reversal process to the value of S_3 , the terms are distributed into an entirely new set of subdivisions, and then in each of these subdivisions the sum of the numerical coefficients is found to be = 0; and the like as regards S_1 and S_2 .

If in the expressions for S_0 , S_1 , S_2 , S_3 we first write d = e = f = 1, thus in effect combining the numerical coefficients for the terms which contain the same powers in a, b, c, we find

$$\begin{split} S_{0} &= a^{3} \left(-2 c^{3}+6 c^{2}-6 c+2\right) \\ &+ a^{2} \left\{b^{2} \left(6 c^{2}-12 c-6\right)+b \left(-15 c^{3}+33 c^{2}-21 c+3\right) \\ &+ b^{0} \left(42 c^{4}-147 c^{3}+195 c^{2}-117 c+27\right)\right\} \\ &+ a \left\{b^{4} \cdot 0+b^{3} \left(30 c^{2}-36 c+6\right)+b^{2} \left(-117 c^{3}+249 c^{2}-183 c+51\right) \\ &+ b \left(9 c^{5}+138 c^{4}-378 c^{3}+330 c^{2}-99 c\right)+b^{0} \left(-63 c^{6}+165 c^{5}-147 c^{4}+45 c^{3}\right)\right\} \\ &+ a^{0} \left\{b^{6} \cdot 2+b^{5} \left(-15 c+3\right)+b^{4} \left(75 c^{2}-69 c+24\right)+b^{3} \left(-9 c^{4}-167 c^{3}+225 c^{2}-87 c-2\right) \\ &+ b^{2} \left(72 c^{5}+48 c^{4}-186 c^{3}+96 c^{2}\right)+b \left(-126 c^{6}+201 c^{5}-87 c^{4}\right) \\ &+ b^{0} \left(27 c^{8}-45 c^{7}+20 c^{6}\right)\right\}; \end{split}$$

which for c = 1 becomes

$$=2b^6 - 12b^5 + 30b^4 - 40b^3 + 30b^2 - 12b + 2$$
, that is, $2(b-1)^6$,

and for b = 1 becomes = 0.

$$\begin{split} S_2 &= a^3 \left(0c^2 + 0c + 0\right) \\ &+ a^2 \left\{ b^2 \left(0c + 0\right) + b \left(3c^3 - 9c^2 + 9c - 3\right) + b^0 \left(24c^4 - 99c^3 + 153c^2 - 105c + 27\right) \right\} \\ &+ a \left\{ b^4 \cdot 0 + b^3 \left(-6c^2 + 12c - 6\right) + b^2 \left(-24c^3 + 90c^2 - 108c + 42\right) \right. \\ &+ b \left(33c^4 - 90c^3 + 54c^2 + 30c - 27\right) + b^0 \left(-27c^6 + 78c^5 - 66c^4 + 6c^3 + 9c^2\right) \right\} \\ &+ a^0 \left\{ b^5 \left(3c - 3\right) + b^4 \left(-15c + 15\right) + b^3 \left(6c^3 - 12c^2 + 36c - 30\right) \right. \\ &+ b^2 \left(9c^5 - 42c^4 + 84c^3 - 108c^2 + 57c\right) + b \left(9c^6 - 54c^5 + 96c^4 - 51c^3\right) \right. \\ &+ b^0 \left(9c^7 - 9c^6\right) \right\} : \end{split}$$

$$\begin{split} S_{3} &= a^{3} \left(0c+0\right) \\ &+ a^{2} \left\{b^{2} \cdot 0 + b \left(0c^{2}+0c+0\right) + b^{0} \left(18c^{4}-72c^{3}+108c^{2}-72c+18\right)\right\} \\ &+ a \left\{b^{3} \left(0c+0\right) + b^{2} \left(-33c^{3}+99c^{2}-99c+33\right) + b \left(57c^{4}-162c^{3}+144c^{2}-30c-4b^{2}\right) + b^{0} \left(-60c^{5}+207c^{4}-261c^{3}+141c^{2}-27c\right)\right\} \\ &+ a^{0} \left\{b^{5} \cdot 0 + b^{4} \left(15c^{2}-30c+15\right) + b^{3} \left(-54c^{3}+102c^{2}-42c-6\right)\right\} \end{split}$$

 $+b^{2}(123c^{4}-297c^{3}+243c^{2}-87c+18)+b(-27c^{5}+102c^{4}-96c^{3}+21c^{2})$ $+b^{0}(27c^{7}-66c^{6}+51c^{5}-12c^{4})$:

which for c = 1 becomes = 0.

www.rcin.org.pl

9)

[693

$$\begin{split} S_4 &= a^3 \cdot 0 \\ &+ a^2 \left\{ b \ (0c+0) + b^0 \left(0c^3 + 0c^2 + 0c + 0 \right) \right\} \\ &+ a \ \left\{ b^3 \cdot 0 \ + b^2 \left(0c^2 + 0c + 0 \right) + b \ (- \ 9c^4 + \ 36c^3 - 54c^2 + \ 36c - 9 \right) \\ &+ b^0 \left(36c^5 - 171c^4 + \ 324c^3 - \ 306c^2 + 144c - \ 27) \right\} \\ &+ a^0 \left\{ b^4 \ (0c+0) + b^3 \left(7c^3 - 21c^2 + \ 21c - 7 \right) + b^2 \left(- \ 39c^4 + \ 135c^3 - 171c^2 + \ 93c - 18 \right) \\ &+ b \ (66c^5 - \ 243c^4 + \ 333c^3 - \ 201c^2 + \ 45c) \\ &+ b^0 \left(- \ 27c^7 + 101c^6 - 141c^5 + \ 87c^4 - \ 20c^3 \right) \right\} : \end{split}$$

which for c = 1 becomes = 0.

. .

It follows that, for c = d = e = f = 1, the value of the covariant S is $= 2(b-1)^6 x^3$, which might be easily verified.