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Abstract. We give a proximal bundle method for constrained convex optimization. It requires
only evaluating the problem functions and their subgradients with an unknown accuracy €. Em-
ploying a combination of the classic method of centers’ improvement function with an exact penalty
function, it does not need a feasible starting point. It asymptotically finds points with at least

e-optimal objective values that are e-feasible, When applied to the solution of linear programming
probleins via column generation, it allows for e-accurate solutions of column generation subproblems.
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1. Introduction. We are concerned with the solution of the following convex
programming problem:

(1.1) Foi=inf{ f(u) : Mu) <0, ueC},
where C' is a “simple” closed convex set (typically a polyhedron) in the Euclidean
space R™ with inner product (-,-) and norm |- |, f and A are convex real-valued

functions, and there exists a Slater point
(1.2) %€ C suchthat h(a) <0

Further, we assume that for fixed (and possibly unknown) accuracy tolerances €5, €5 >
0, for each u € C we can find epprozimate values f., h, and approzimate subgradients
gy, gi; that produce the approzimate linearizations of f and h:

(1.3a) Fulyi=furgf-—w) S F() with fulw) = fu > f(u) ~ ¢,

(1.3b) Pu() 1= hy + (gi,- —u) S h(:) with hy(u) = hy > hu) — en.

Thus f, € [f(w) — €5, f(u)] estimates f(u), and g} € O, f(u); ie., g7 is a member of
B, f(w) i={g: F() 2 flu) — s + (g, —u)},

the ¢;-subdifferential of f at u. Similar relations hold for f replaced by A.

This paper modifies the phase 1-phase 2 method of centers of [Kiw85, section 5.7
and extends it to approximate linearizations. We first discuss the ezact case of
¢; = € = 0. For an infeasible starting point, in phase 1 this method reduces the
constraint violation while keeping the objective increase as small as possible; this
is reasonable especially if the starting point is close to a solution. Once a feasible
point is found, in phase 2 the method reduces the objective while maintaining fea-
sibility. Both phases employ the same improvement function, and each iterate solves
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a subproblem with f and h approximated via accumulated linearizations, stabilized
by a quadratic term centered at the best point found so far. For phase 1, the anal-
ysis of [Kiw85, section 5.7 established optimality of all cluster points of the iterates
without discussing their existence. A nontrivial sufficient condition for their existence
was recently given in [SaS05, Prop. 4.3(ii)] for a modified variant. We show that
this condition may be expected to hold only if problem (1.1) has a Lagrange multi-
plier i < 1 (cf. Remark 3.13(ii)). We extend this condition to z > 1 by replacing
the current objective value in the improvement function with the value of an exact
penalty function for penalty parameters ¢ > i — 1. In effect, our results {cf. Theo-
vems 3.8, 3.9, and 3.12) extend the main convergence results of [Kiw85, Thm. 5.7.4]
and [SaS05, Thms. 4.4-4.5]. It is crucial for large-scale implementations that our
results hold for various aggregation schemes that control the size of each quadratic
programming (QP) subproblem, including the schemes of [Kiw85, section 5.7] and
[SaS05] (see Remark 4.1).

Our combination of improvement and penalty functions with suitable penalty
parameter updates seems to be necessary for our extension to inexact evaluations
(otherwise, the method could jam at phase 1 when the standard improvement function
cannot be reduced by more than max{eg,es} for the tolerances ef, €, of (1.3); see
Remark 3.5). Our method generates iterates in the set C, having f-values of at most
fo + €5 and h-values of at most ¢, asymptotically (cf. Theorems 3.8-3.10), without
any additional boundedness assumptions (such as boundedness of the feasible set, or
the sufficient conditions discussed above). In a sense, this is the strongest convergence
result one could hope for. Gur algorithmic constructions and analysis combine the
inexact linearization framework of [Kiw06a] (in a simplified version that highlights its
crucial ingredients; cf. [Kiw06b}) with fairly intricate properties of improvement and
penalty functions which have not been used so far in bundle methods.

As for other bundle methods, we note that the exact penalty function meth-
ods of [Kiw87, Kiw91] require additionally that the set C be bounded and may
converge slowly when their penalty parameter estimates are too high. The level
methods of [LNN95] (also see [Kiw95, Fab00, BTNO5|) need boundedness of the set
C as well. Similar boundedness assumptions are employed in the filter methods of
[F1L99, KRSS07]. Except for [F4b00], all these methods work with exact lineariza-
tions. The conic bundle variant of [KiL06] employs inexact linearizations and does
not need artificial merit functions, but it requires the knowledge of a Slater point and
f being “simple” (e.g., linear or quadratic). We show elsewhere how to handle inexact
linearizations in an exact penalty method [Kiw07b] and a filter method [Kiw07a], the
fatter being based on the present paper.

Our work was partly motivated by possible applications in column generation ap-
proaches to integer programming problems [LiiD05], which lead to linear programming
(LP) problems with huge numbers of columns. When the dual LP problems can be for-
mulated as (1.1) (cf. [BLM*07, LuD05, Savg7}), our approach allows for e,-accurate
solutions of column generation subproblems as well as for recovering approximate
solutions to the primal problems. (See [Kiw05, KiL06] for related developments and
numerical results.)

The paper is organized as follows. In section 2, after reviewing basic properties of
penalty and improvement functions, we present our bundle method. Its convergence
is analyzed in section 3. Several modifications are given in section 4. Applications to
column generation for LP problems are studied in section 5.
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2. The proximal bundle method of centers.

2.1. Lagrange multipliers and exact penalties. We first recall some basic
duality results for problem (1.1) (cf. [Ber99, sections 5.1 and 5.3)).

Consider the Lagrangian L{(-;p) := f(-) + ph(-) with ¢ € R, the dual function
q(p) = inf¢ L(:; p), and the dual problem g, := supg, ¢ of (1.1). Under our assump-
tions, fu = q.. If f, > —oo0, the dual optimal set M := Arg maxg, ¢ is nonempty and
contpact and consists of Lagrange multipliers p > 0 such that ¢(u) = fo; if fu = —o0,
M := 0. Thus, the quantity i := inf,cas p is the minémal Lagrange multiplier if
fo > ~00, i = 0o otherwise.

For a penalty parameter ¢ > 0, the ezact penalty function

(2.1) m(¢) = f()+ch(-)y with h()y = max{h(-),0}

satisfies infe w(-;¢) = fo > —oo iff ¢ > [i (cf. [Ber99, section 5.4.5]).

2.2. Improvement functions. We associate with problem (1.1) the improve-
ment functions defined for 7 € R by

(2.2) e(;7)i=max{f(:)—7,h(:})}, ec(;7):=e(;T)+ic(), E(7):=infec(;T),

where ic is the indicator function of C (ic(u) = 0if v € C, oo if u ¢ C). In our
context, 7 will be an asymptotic estimate of f, generated by our method, and to prove
that 7 < f., we shall need the main property of the function F given in part (vi) of
the lemma below.

LEMMA 2.1. (i) The function E defined by (2.2) is nonincreasing and convez.

(ii) If E is improper, then E(.) = f, = —oo for f. gwen by (1.1).

(iil) If £ is proper, then E is Lipschitzian with modulus 1.

(iv) If E is proper and f. = —oq, then E(.) = infc h € (—00,0).

(v} If fo > —o0, then E(1) > 0 for 7 < f,, E(f.) =0, and E(7) < 0 for
fu<T.

(vi) If E(1) > 0 for some 7 € R, then 7 < f..

Proof. (i) Monotonicity is obvious, and convexity follows from [Roc70, Thm. 5.7].

(ii) Since domE = R, we have E(-) = —oo by [Roc70, Thm. 7.2}, and then
fo=—oco by (1.1).

(iii) E is finite on dom E' = R, and e(-;7") < e(-;7) + |7 — 7’} for any 7 and 7’.

(iv) Since f. = —oco implies E(-} < 0, E() is constant and finite by [Roc70,
Cor. 8.6.2, ie.,, E(:) = @ € R. Then, on the one hand, o > infc h by (2.2). On
the other hand, for v € C and 7 > f(u) — h(u), the fact that e(u;7) < A(w) yields
a <infch <0 by (1.2).

(v) We have E(f.) < 0 by (1.1), and £(f.) > 0 (otherwise f(u) < f. and
h(u) < 0 for some u € C would contradict (1.1)); thus E(f,) = 0. By (1.2), for
7= f(a) — k() > f(&) > fi, e(@;7) = h{d) < 0 implies E(T} < 0; so by convexity
(consider the secant line £(7) := E(#)(7 — f.)/(7 — f.)), we have E(r) > O for 7 < f.,
E(r) <0 for T € (f,,7}, and E(r) <0 for 7 > ¥ by monotonicity.

(vi) E is proper by (ii), f. > —oo by (iv), and (v) yields the conclusion. o]

Let U := {u € C : h(u) < 0} and U, := Argminy f denote the feasible and
optimal sets of problem (1.1). We shall need the following extension of [Kiw85, Lem.
1.2.16).

LEMMA 2.2. Letu € C,¢2>0, 7:= (@6 (¢f (2.1)). Then the following are
equivalent:

(a) @ € Us (i.e., @ solves problem (1.1));
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(b) BE(7) = ec(©; T) (i.e., @ minimizes e(-;T) over C);

(c) 0 € Dec(@;7) (ie., 0 € OP(i), where Y(-) := ec(-;7))-

Proof. First, (a) implies 7 = f(a) = f., e(u 7) =0, F(7¥) = 0 by Lemma 2.1(v),
and hence (b). Since (b) means @ € Argminec(-; 7), (b) and (c) are equivalent. Next,
note that

of(u) it f(@)—7 > h(a),
(2.3) Bec(u; 7) = Bic(h) + ¢ co{df(T)Udh(u)} if f(u)—T = h(a),
oh(a) if  f(@) - 7 < h(@).

Finally, (c) implies h(@) < 0 (otherwise h(u) > 0 > f(@) — 7 and 0 € fec(a;7) =
Oh() + dic (i) would give ming h = h(ii) > 0, contradicting (1.2)); so the facts that
7 = f(@) and £(T) = e(&;7) = 0 yield ¥ = f. by Lemma 2.1(v), and hence (a). B

Lemma 2.2 suggests the following algorithmic scheme: Given the current iterate
4 € C and the target 7 := 7(; é) for a penalty parameter é > 0, find an approximate
niinimizer u of ec(-; 7), replace i by u, and repeat. Note that if ec(u; 7) < ec(i;7),
then u is better than @: either f(u) < f(d) and w € U if &4 € U, or h(u) < A(a) if
i ¢ U. To progress towards the optimal set Uy, it helps if ec(4;7) < ec(i; 7) for any
optimal @ € U,; the sufficient condition given below employs the minimal multiplier
fi of section 2.1.

LEMMA 2.3. Let ne U, 4 € C, >0, 7:=n(;¢). Then e(d;7) = h(d)y, and
e(ii; 1) < e(@; 7) off f(%) < n(@;é+1). In particular, f(n) < w(4; é+1) if 62 p—1.
Proof. First, 7 = f(@) and e(d; 7) = 0 if h(t) < 0, e(@;7) = h(a) if A(d) > 0.

Next,
(@ 7) ~ e(@; 7) = max{ f(a) — w{& -+ 1), h(z) — k(@) )

is nonpositive iff f. = f(@) < w(&;é + 1); the latter holds if 6+ 1 > [ (see section
21). O

2.3. An overview of the method. Our method generates a sequence of trial
points {u}g2 1 C C for evaluatmg the approximate values f¥ := fu, b5 = R,
subgradlents gf = ng, g,l = g,l , and linearizations fi 1= fyx, Ry 1= hyx of f and h
at u*, respectively, such that

(2.4a) fely = fE+gf - =¥y S F() with  fo(u®) = fi 2 f(uF) ~ep,
(2.4b) he() = hE 4 (gf, —uF) S h() with h(u®) = hE > h(uF) — e,

as stipulated in (1.3). At iteration k, the polyhedral cutting-plane models of f and h

(2.5a) () _malyff]()<f(.) with ke Jf C{l,...,k},
(2.5b) hy () == maxh;() () with ke JEc {1, kY,
I€Jy

which stem from the accumulated linearizations, yield the relaxed version of problem

(1.1)
(2.6) 5= inf{fk(u) cw€ HnC) with Hy o= {u: hg(u) < 0},
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in which Hy is an outer approximation of A := {u : h(u) < 0}. The current proz
(or stability) center 5 = ¥ e C for some k(l) < k has the values ff’f = ff(l) and
hE = pEO,

u uo
2.7) e F(@*) =, F@5)] and B € [h(i¥) — e, h(@5)].
As in (2.2) and Lemma 2.2, our improvement function for subproblem (2.6) is given
by
(2.8) () = max{fi(-) — 7, he ()} with 7 := f5 + ce[hf]y
for some penalty coefficient ¢x > 0 and []4 = max{-,0}. We solve a proximal version
of the relaxed improvement problem Ej := inf éké with é(’} 1= & +i¢ by finding the
trial point

(29) W+ argmin { r() = &() +ic() + ]~k ),

where ¢ > 0 is a stepsize that controls the size of [u*+1 — 4%, For deciding whether
u**1is better than ii*, we use approximate values of the improvement function e(; 7).
Thus, e(i*;7,) is approximated by [h§]+, and e(@*; 7)) — éx(uFt1) by the predicted
decrease

(2.10) v = [RE]y — e (b ).

When f¥ < fi(&%) or h5 < Ry (@*) due to inexact evaluations, v may be nonpositive;
il necessary, we increase tx, as well as c¢ in (2.8) if 2% > 0, and recompute u*t!
to decrease éx(u*+!) until vy > |[uft! — @%|%/2t, (as motivated below). Of course,
e(uF 1 7. is approximated by max{ fit! — 7, A%+1}. A descent step to 4F+1 1= A t1
occurs if max{f¥t! — 7, hEH1} < [RE], — suy for a fixed & € (0,1). Otherwise, a
null step %1 ;= 4* improves the next models fiy1, Ary1 with the new linearizations
frgr and Ryeyq (cf. (2.5)).

2.4. Aggregate linearizations and an optimality estimate. Extending the
approach of [Kiw06a|, we now use optimality conditions for subproblem (2.9) to derive
aggregate linearizations (i.e., affine minorants) of the problem functions at u**! as
well as an optimality estimate (see (2.22) below) related to Lemma 2.1(vi).

Lemma 2.4. (i) There exist subgradients p‘j, p;‘;, pé and a multiplier vy, such
that

(2.11) Py € 0fu(u*), pf € Ohu(utY), pt € Dic(utH),
(2.12) v + (L - v)ph + p6 = — (WM =~ %) fty,
(2.13)

v € [0 1), velee(u ) = (w4 7] = 0 (1 - v B () - R (ut )] = 0.
(ii) These subgradients determine the following aggregate linearizations:
(2.14) Fel) o= Belu™ )y + (o, — oY) < fi() < 7).
(2.15) Bk () o= R (w4 (k- —u* ) < he() < B(,
(2.16) () = ict ) + (g, —u) <ic(),

(2.17) () = vl fel) = el + (1 — v k() +75() < 66() S ec(7)-
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(iil) For the aggregate subgradient and the aggregate linearization error given by
(2.18) p* = ukp'f‘ + (1 —w)pf +pE = (65 =¥/t and e = (84 — E6(a5)

and the optimality measure

(2.19) Vi 1= max{[p*|, ex + (p*,05)},

we have

(220) e () = e+ (- - ),

(2.21) [hfle — e + (0, — %) = €5() S &E() < ec(im),
(2.22) ec(uim) > e&(u) > [RE i, —Ve(Q ) for all w,

Proof. (i) Use the optimality condition 0 € 8¢, (x**1) for (2.9) and the form (2.8)
of &.

(ii} The first inequalities in {2.14)-(2.15) stem from (2.11} and the final ones from
(2.5). Similaxly, (2.11) gives (2.16) with éc(u*+1) = 0. Then (2.17) follows from the
facts that v € [0,1] (cf. (2.13)) ylelds vi(fe — 1) + (1 — vi)he < éy, by using fk < fi
and hy < Ay in (2.8) and that eC = éx + ic < ec(;7x) by using fk < fand hy <h
in (2.2).

(iii) For (2.20), use (2.12)-(2.13) and the definitions in (2.14)-(2.18); since &,
is affine, its expression in (2.21) follows from (2.18). Finally, since by the Cauchy—
Schwarz inequality,

—(0*,u) + e + (0, @) < IpF(ful + e + (P, @) < max{lp), ex + (5, 85) 11 + u))
n (2.21), we obtain (2.22) from the definition of V; in (2.19). O

Observe that ¥, is an optimality measure at phase 2: if ¥, = 0 in (2.22), then
E(r) > 0gives & < 7, < f, by Lemma 2.1(vi); similar relations hold asymptotically.

2.5. Ensuring sufficient predicted decrease. In view of the optimality esti-
mate (2.22), we would like V), to vanish asymptotically. Hence it is crucial to bound
Vi via the predicted decrease vy, since normally bundling and descent steps drive vy
to 0. The necessary bounds are given below.

LEMMA 2.5. (i) In the notation of (2.18), the predicted decrease vy of (2.10)

satisfies

(2.23) v = "2 + e

(i) We have vy > —ex & ti|pF|Y2 > —er & v > te|p|/2 = [uF T — a¥| /2.
(ili) For the maximal evaluation error €, := max{ey, ey}, we have
(224) ~€r < €max-

(iv) The optimality measure of (2.19) satisfies Vi < max{|p*|, ex }(1+|%*|). More-
over,

(2.25) v, > max{trfp*|¥/2, ex]} if e > e,
(2.26) Vi < max{(2ve/te) % v b (L +|85]) i v = e,

(2.27) Vi < (2€man/te)? (14 |%)) if o < —e
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Proof. (i) We have (p*,u**! — @¥) = —t,|p*|? by (2.18), whereas by (2.20),
E(uhHh) = e (M) = E(a0) + (W - @)

50 v 1= [hE]y ~ Ek(uF*l) = ey + £4[p*|? by (2.18). Note that vy > .

(i1) This follows from (2.23) and the first part of (2.18).

(iii) By the definitions of €5 and € in (2.17)-(2.18), we may express —e; as
follows:

—ex = vilfu(0%) = 7] + (1 — va)he(8%) + 75 (2%) — (A4,

where vx € [0,1] by (2.13), fi(@*) < F(@*) < FE + €5, i (0¥) < R(AF) < hE + €5, and
7 (6F) < ic(a®) = 0 by (2.14)-(2.16) and (2.7), and 7x > fX by (2.8). Therefore, we
have

—e < vgep+ (1 — v )h(a5) — (1 - uk)[hz]Jr < wkes 4 (1 — v)en < €max-

(iv) Since Vi < max{Jp*|,ex}(1 + |2*]) by (2.19) and the Cauchy-Schwarz in-
equality, the bounds follow from the equivalences in statement (ii), using vx > €x and
(2.24). u]

The bound (2.27) will imply that if 7. > f. (so that E(7x) < 0 by Lemma 2.1(vi),
and hence V; cannot vanish in (2.22) as t; increases), then both vy > —ex and the
bound (2.26) must hold for t; large enough.

2.6. Linearization selection. For choosing the sets J}‘“ and JF+!, note that
(2.4)-(2.5) and (2.11) yield the existence of multipliers af for the pieces f;, j € J¥,
and ﬂJ’-‘ for the pieces hy, 7 € Jff, such that

(2:282) (pf,1)= > of(VF, 1) of 20, of [fe(w"*!) - f;(u*)] =0, 5 € J},
jEJ;

(2280)  (pf 1) = Y BE(Vhy 1) 85 > 0, AF[hu(u™h) — ky(u T h)]) =0, j € JE
JeJdf

Denote the indices of linearizations f; and &; that are “strongly” active at uk+l by
(2.29) Jp={jeJf o £0} and JF={jeJi: 8 +£0}

These linearizations embody all the information contained in the aggregates f; and hy
(which are actually their convex combinations; cf. (2.14)-(2.15) and (2.28)). To save
storage and work per iteration, we may drop the remaining linearizations. (Alternative
strategies based on aggregation instead of selection are discussed in section 4.2.)

2.7. The method. We now have the necessary ingredients to state our method
in detail.

ALGORITHM 2.6.

Step 0 (initialization). Select u! € C, a descent parameter « € (0,1), an infeasi-
bility contraction bound wy € (0,1), a stepsize bound tmin > 0, a stepsize £ > tmin, and
a penalty coefficient ¢; > 0. Set ¢! :=u!, f} := fl = fu1, g} = g}‘l, hL:=hl:=h,,
b = g (cb (2.4)), J} o= JL = {1}, it =0, k= k(0) :=1, and £ == 0 (k(i) — 1 will
denote the iteration of the {th descent step).
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Step 1 (trial point finding). For &, given by (2.8), find w*+! (cf. (2.9)) and
multipliers af, BJ’-“ such that (2.28) holds. Set vy, by (2.10), p* 1= (@* — u**1)/ty, and
€ = Up — tk|p"']2.

Step 2 (stopping criterion). If ¥4 = 0 (cf. (2.19)) and A5 < 0, stop (f§ < f.).

Step 3 (phase 1 stepsize correction). If A% < 0 or €nax = 0 or v, > £rhE, go to
Step 4. Set ty := 10ty, i¥ 1= k. If cp > 0, set cx := 2c; otherwise, pick ¢ > 0. Go
back to Step 1.

Step 4 (stepsize correction). If vy > —e, go to Step 5. Set 5 := 10ty if =k
If h% > 0, set ¢y := 2¢x if ¢x > 0; otherwise, ¢ > 0 pick Go back to Step 1.

Step 5 (descent test). Evaluate fiyi1 and heyy (cf. (2.4)). If the descent test
holds,

2.30 max{ ¥t~ RETY) < [RE], — Koy,
u w +

sev @Rt = yRtl pEEL oo gl pREL o Rl o 0 and k(L + 1) = b+ 1
and increase [ by 1 (descent step); else set GF1 = a¥, fE+1 .= fk pf+1 .= pk and
iF+ = 3% (null step). . .

Step 6 (bundle selection). For the active sets J§ and J§ given by (2.29), choose

(2.31) JPP o Jfufk+1} and JEt' D JFU{k+1}).

Step 7 (stepsize updating). If k(1) = k + 1 (i.e., after a descent step), select
try1 >ty and gy > 0; otherwise, set cpy1 := ¢ and either set ¢4y := &, or choose
et € [bominy 2] i 5T = 0.

Step 8 (loop). Increase k by 1 and go to Step 1.

Several comments on the method are in order.

Remark 2.7. (i) When the set C is polyhedral, Step 1 may use the QP method
of [Kiw94), which can efficiently solve sequences of related subproblems (2.9).

(ii) Step 2 may also use the test inf &% > 0 and #% < 0 (see Lemma 3.1(i) below).

(iii) Step 3 is needed in phase 1 (for h% > 0) when inaccuracies occur (emax > 0);
it increases ty and 7y (via ¢;) to obtain vy > fckhﬁ, so that eventually a descent step
(cf. (2.30)) will reduce the constraint violation significantly: A5+ < (1 — rrp)hE.

(iv) In the case of exact evaluations (€max = 0), Step 4 is redundant, since vy, >
e > 0 (cf. (2.23)-(2.24)). When inexactness is discovered via vy < —e, tx is increased
to produce descent or confirm that %* is almost optimal. Namely, when @* is bounded
in (2.27), increasing ¢x drives V) to 0, so that f¥ < 7, < f, asymptotically. Whenever
t) is increased at Steps 3 or 4, the stepsize indicator i¥ 3 0 prevents Step 7 from
decreasing ;. after null steps until the next descent step occurs (cf. Step 5). Otherwise,
decreasing ¢, at Step 7 aims at collecting more local information about f and h at
null steps.

(v) When €pax := max{ey, €4} = 0, our method employs the exact function values

(2.32) f§=f(a*), hE=h(@"), m=n(@%c) > f(&"), and [hf]y =e(@¥i7)
(cf. (2.7), (2.1), (2.8), and Lemma 2.3), and the aggregate inequality (2.21) means that
(2.33) p* €8, ec(@®;m) with ¢ >0.

Thus, if Vi, = 0 in (2.19), then |p*| = ¢; = 0 implies that 0 € dec(@*; 1) and hence
that @* € U, by Lemma 2.2; in particular, in this case we have h% = h(a*) < 0.
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(vi) At Step 5, we have vx > 0 (using (2.26) and Vi > 0 at Step 2 if % < 0;
otherwise vy > Khhﬁ > 0 by Step 3 if €max > 0, Vi > 0 by item (v) if €max = 0).
When a descent step occurs, the descent test (2.30) with the target 7 given by (2.8)
implies that

(2.34a) hé“ < hk - kyy if hE > 0,
(2.34D) FEU < b ko and A <0 ifRE <0

Thus at phase 1 (i.e., when h% > 0), we have reduction in the constraint violation,
whereas at phase 2 the objective value is decreased while preserving (approximate)
feasibility. In the exact case (cf. (2.32)), the descent test (2.30) becomes

max { f(u**1) — F(@¥) — cxh(@%)4, (s} < h(@4), — Kok,

coinciding with the tests used in (Kiw85, section 5.7) and {KRSS07, SaS05] with ¢, = 0.
(vii) An active-set method for solving (2.9) (cf. [Kiw94}) will produce |j}‘|+|j,’:[ <
m+ 1 (cf. (2.29)). Hence Step 6 can keep |J)‘f+1| + [JE+Y] < for any given bound
m>m+ 3.
(viii) Step 7 may use the techniques of [Kiw90, LeS97] for updating ¢ (or the
proximity weight 1/tx) with obvious modifications. For updates of c, see section 4.4.

3. Convergence. Our analysis splits into several cases.

3.1. The case of an infinite cycle due to oracle errors. We first show that,
in phase 2, the loop between Steps 1 and 4 is infinite iff 0 < inf é‘é < &%), in which
case ©¥ is approzimately optimal: f(@*) < fu + €; and h(@¥) < en.

LEMMA 3.1. Assuming that hﬁ <0, recall that By := infé’(‘; with éé = éx +ic.
Then we have the following statements:

(i) If Ex 20, then f(i*) —¢; < fE < fu and h(@*) < .

(ii} Step 2 terminates, i.e., Vi := max{|p*],ex + (¥, 4%)} = 0, of 0 < Ey, =
ék('ﬁ )
(iii) If the loop between Steps 1 and 4 is infinite, then By >0 and Vi — 0.

(iv) If Ey, > 0 at Step 1 and Step 2 does not terminate (i.e., By < &(4%); of
(ii)), then an infinite loop between Steps 4 and 1 occurs.

Proof. (i) We have E(r) > Ey and v = fF (cf. (2.2), (2.8), (2.14)-(2.15)); so
fE < f. by Lemma 2.1(vi), whereas f(2*) < f¥ + ¢; and R(#*) < hE + ey by (2.7).

(ii) “=": Since [p¥| = 0 > €, (2.18) and (2.21) yield "+ = a*, &&(a*) < k()
and 0 < &&(@*), whereas by (2.20), &5(if) = &(urt!) = &(d%). “«<: Since
e&(8*) = min &%, using ¢ (@) = min éf; < ¢ (w"+!) < Gi(@*) in (2.9) gives ubt! =
¥, thus &5 (a*) = &k (¢*) by (2.20), and (2.18) yields p* =0 and €, = —&& (%) < 0.

(iii) At Step 4 during the loop the facts that Vi < (26max/tx)/2(1 + |45]) (cf.
(2.27)) and tx 1 co as the loop continues give Vi — 0; so é5(-) > 0 by (2.22).

(iv) We have éx(uf+!y > infek > 0. Thus vp = —éx(u*+l) < 0 (cf (2.10))
and v = ty|pF|? + e (cf. (2.23)) yield ex < —tk|p*|? at Step 4 with p* # 0 (since
max{|p*|, ex + (0¥, 45)} =: Vi > 0 at Step 2). Hence ex < —%|p¥|?; so vk < —¢; and
Step 4 loops back to Step 1, after which Step 2 cannot terminate due to (ii). a

In view of Lemma 3.1, from now on we assume (unless stated otherwise) that the
algorithm neither terminates nor cycles infinitely between Steps 1 and 4 at phase 2
(otherwise @* is approximately optimal). For phase 1, our analysis will imply that any
loop between Steps 1 and 3 or 4 is finite. We shall show that the algorithm generates
points that are approximately optimal asymptotically by establishing upper bounds
on the values f¥ and hk.
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3.2. Bounding the objective values. We first bound ff via V.

LEMMA 3.2 Let K C N satisfy Vi =5 0. Then Timpex 75 < Tmgex 7 < fo.

Proof Pick K’ C K such that 7 ELSN limpex 7r. Since f£ < 7 by (2.8),
we need only show that 7 < f, when ¥ > —o0o. Note that ¥ < 00, since otherwise for
7p > f(ii) — h(&), the fact that e(d;7x) = A{@) < 0 (cf. (2.2), (1.2)) and the bound
(2.22) would yield the following contradiction:

0> h() = ec (i 7) = —Vill + 1)) 25 0.

Thus 7 is finite. Since ec(u;-) is continuous, letting k X soin (2.22) gives ec(+;7) >
0. Therefore, we have E(F) > @, and hence 7 < f, by Lemma 2.1(vi}. o

The upper bound of Lemma 3.2 is complemented below with a lower bound (which
is highly useful for the “dual” applications in sections 4.3 and 5).

Lemma 3.3, If Timy hﬁ < 0, then for the minimal multiplier i := inf,eprp of
problem (1.1) (cf. section 2.1), we have
(B1) b e 2 lmy (@) 2 fo - fien ond Tmeh(@") <en

Proof. For all k, 4% € C and (cf. section 2.1) L(i*; i) := f(4*) + gh(d*) > f.,
with 0 < @ < 00 if fu > ~o00, i = 0o otherwise. Moreover, f(i*) < f¥ 4 ¢, and
h(*y < h% + €, by (2.7). The conclusion follows. u}

3.3. The case of finitely many descent steps. We now consider the case
where only finitely many descent steps occur. After the last descent step, only null
steps occur and {tx} becomes eventually monotone, since once Steps 3 or 4 increase
ti, Step 7 cannot decrease ti; thus the limit to := limy ty, exists. After showing that
teo = 00 may occur only at phase 2 in Lemma 3.4, we deal with the cases of ¢, = 00
in Lemma 3.6 and ty, < co in Lemma 3.7. B

LEMMA 3.4. Suppose there exists k such that hk > 0 and only null steps occur
for all k > k. Then Steps 3 and 4 can increase ty, only a finite number of times.

Proof. For contradiction, suppose that ¢, — co. Since 7% — oo (because ¢x — 00;
cf. Steps 3 and 4 and (2.8)), we may assume that 7, > 7 := f(@) — h(%) for the Slater
point 7 of (1.2) and for all k > k; then, using the minorants fe<fand hy <h (cf.
(2.4)) in the definitions (2.8) and (2.2} yields

(3.2) &p(t) < max{fp(t) — %, he(d)} < e(&;7) = h(d) <0 with € C.
At Step 1, (2.9) gives the proximal projection property for the level set of &% := &y +ic:
(3.3) w* ! = argmin{dju — 457 6§ (u) < eh (M)},
whereas before Step 3 increases t, vx < myh% yields & (uFt) > (1 —kp)hk > 0 by
(2.10); so for k > k, (3.2) and (3.3) with ©* = 0¥ give |u*+! — a¥| < r = |4 — 4,
and hence |pF| < r/t, by (2.18). Therefore, if Step 3 increases t;, at infinitely many
iterations, indexed by K, say, then tx — oo yields p* A, 0; thus, from (2.21), (2.20),
the fact that |ub*! — @*| < », and the Cauchy-Schwarz inequality, we get

0> h() > 65(0) > 25(8) = e (Ut + (p*, 4 — uF Yy > (pF, o — Wb Ty By g
a contradiction. Similarly, if Step 4 is entered with vg < —¢ for infinitely many
iterations indexed by K, say, then tx — oo and (2.27) give V} —£<> 0, and we obtain

0> h(d) > 5(a) > —Vi(1 + [a)) 5 0
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from (3.2) and (2.22), another contradiction. The conclusion follows. 0

FRemark 3.5. To illustrate the need for increasing cx at Steps 3 and 4, suppose
momentarily that ¢, = 0 for all k. Consider the following example. Let m = 1,
flu) == u, A{u) := 1 —w, C := R. Suppose that u! := 0, f ;= f, by := A — 0.5;
so that h} = 0.5 for e, = 0.5. For k = 1, v < 1/4; so if k, € (1/2,1), then a loop
between Steps 3 and 1 occurs. Next, for x5, € (0,1/2], suppose frr1 = fand hgyy = £
at Step 5; then a null step occurs, and at Step 1 for & = 2, &, = max{f, h} is exact,
minéy = 1/2 = h, and v <0, so that a loop between Steps 3 and 1 occurs. Even if
Step 3 were oniitted, a loop between Steps 4 and 1 would occur.

The case where the stepsize i keeps growing at a fixed prox center is quite simple.

LEMMA 3.6. Suppose there exists k such that only null steps occur for all k > k,
and tog = limgty = co. Let I i= {k >k : tiyy > ty}. Then Vi =50, and hE <0.

Proof. We have hﬁ < 0 (otherwise Lemma 3.4 would imply to, < 00, a contradic-
tion). For k € K, before ¢, is increased at Step 4 on the last loop to Step 1, we have
Vi < (2€max/te) Y21 + JiF]) by (2.27); S0 tx — co gives Vi 25 0. O

The case where the stepsize #; does not grow at a fixed prox center is analyzed
as in [Kiw06a]. After showing that the optimal value ¢i(u**1) of subproblem (2.9) is
nondecreasing and bounded above, u**! is bounded, and u*+? —4**! — 0, we invoke
the descent test (2.30) to get vx — 0; the rest follows from the bounds (2.25)-(2.26).

LEMMA 3.7. Suppose that there exists k such that for all k > k, only null steps
occur, and Steps 3 and 4 do not increase ti,. Then Vi, — 0, and h% <0.

Proof. Fix k > k. We show that the aggregate 25 minorizes the next model é'g’l:

(3.4) E() S () = e () +ic ().

Consider the selected model fi := max;e ji fj of fi := ma jeJk fj3 then fe < fr
Using (2.29) in the expression {2.28a) of p'} gives fk(uk“) = fu(u**1) and p’j‘- €
8fu(u*+1) (cf. [HUL93, Ex. VL3.4]). Thus fi < fi by (2.14); so the choice of J& C
Jj’f+1 implies that fx < fi < feyr. Similazly, for hy = max;¢ jx hj, (2.28b) yields
i < b < hiyy. Then using the definition (2.17) of ek with € 10,1} (cf. (2.13)),
the minorization % < ic of (2.16), and the fact that 7441 = 7% (by (2.8) and Steps 3
and 4) gives the required bound

&6 < vklfrq1 — 7] F (1 — vidhesr +ic < max{ fig1 — Tepr, her } +ic = et

(Note that this bound needs only the minorizations fi < fiii+ic and by < hyyy +ic;

this will be important when selection is replaced by aggregation in section 4.2.)
Next, consider the following partial linearization of the objective ¢y of {2.9):

(3.5) () = 8E() + gy - —a

We have g5 (uft1) = ec(u**1) by (2.20) and Vi (u**1) = 0 from V& = p* =

(% — w**1) /by (cf. (2.20), (2.18)); hence gi(u**') = ¢i(u**') by (2.9), and by

Taylor’s expansion

(3.6) Pr() = ¢e(uHh) + 51| —uM R
To bound ¢, (*) from above, notice that (3.5), (2.18), and (2.24) imply that

Ful) = (0) = W]y — ex < [E)4 + Euma.
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Then by (3.6),
(3.7) G(uA ) + g fuh T — P = Gu(a¥) < [BE), + emone

Now using the facts that wF¥! = ¢* and tyyy < & and the mgdel minorization
property (3.4) in the definitions (3.5) of ¢ and (2.9) of ¢x41 gives ¢p < ¢y1. Hence
by (3.6),

(38) ¢k(uk+l) 4 2_:;'uk+2 _ uk+1|‘2 . ék(uk+2) < ¢k+1(“k+2)-

Thus the nondecreasing sequence {zﬁk(uk“)}kz,;, being bounded above by (3.7) with
4% = 4% for k > k, must have a limit, say ¢ < [h%]4 + emax. Moreover, since the
stepsizes satisfy tp < t; for & > k, we deduce from the bounds (3.7)—(3.8) that

(3.9) $u(w ) T oo, wFE w0,

and the sequence {u**!} is bounded. Then the sequence {gjﬁ“} is bounded as well,
since g¥ € O, f(u*) by (2.4), whereas the mapping &, f is locally bounded [HUL93,
section XI.4.1]; similarly, the sequence {gf*'} is bounded, since gf € 8, h(u¥) by
(2.4).
For vy, 1= [hE]; ~ éx(uF*1) and the following linearization of e(-;7y) at u*¥?,
ferr() —me Of fEFL o > AR

)

(3.10) exr1() = { hesn

otherwise,

the descent test (2.30) reads exy1(u*T1) < [A%]4 — Kuy or equivalently

(3.11) & o= e (W) — (WY < (1 - K)o

We now show that this approximation error €, ~ 0. First, note that the linearization
gradients g5+! := Ve, 1 are bounded, since [gi+!] < max{lgf™!}, [gF*!]} by (24).

Further, the minorizations fry; < fryq and ey < by dueto k+1¢€ J}”’l nJrt!
{cf. (2.5)) yield exy1 < &ryy by (2.8), since Txyy = 7. Using the liuearity of ex41,

the lzound ert1 < éxy1, the Cauchy-Schwarz inequality, and (2.9) with &% = i for
k > k, we estimate
€ 1= €k+1(uk+l) — ék(uk'H)

— ek+1(uk+2) ‘ ék(‘uk+1) 4 <g£c+1’uk+l _ uk+2>
< ék+1(uk+2) _ ék(uk+1) + lg,’:+1H“k+l _ uk+2|

(3.12) Grpr(05T?) — (W) + Ap 4 [gE T[T — k2

il

where Ap 1= lub*t — aF[%/2¢, — Jub+2 — 0F|%/2t,,. We have Ay — 0, since ty, <
i1 <t (cf. Step 7), Jubtt — GF|? is bounded, w*t? —w*+! — 0 by (3.9), and

'uk+2 _ ﬂl_cli) — Iuk-H . ﬁE,2 + 2(uk+2 S A L ﬂi-> + Iuk+2 _ uk+1|2‘

Hence, using (3.9) and the boundedness of {g5*t1} in (3.12) yields limy & < 0. On
the other hand, for k > %, the descent test written as (3.11) fails: (1 — k)up < &,
where & < 1 and v, > 0; it follows that é. — 0 and vy — 0.
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Since v — 0, tx > b, and @* = @ for k > k, we have Vj, — 0 by (2.26), ex — 0,
and |p*| — 0 by (2.25). It remains to prove that hﬁ < 0. If €uax > 0, but hﬁ > 0, then
the facts that v, — 0 with v, > kph% (cf. Step 3), &, > 0, and hE = hE for k > k give
in the limit hg < 0, a contradiction. Finally, for €ma, = 0, recalling Remark 2.7(v)
and using ex, [p*| — 0 in (2.21) yields ec(iF; ) < ec(-;7¢). In other words, we have
0 € dec(i*;77); so 4% € U, by Lemma 2.2, and thus hf = h(aF) < 0. o

We may now finish the case of infinitely many consecutive null steps.

THEOREM 3.8. Suppose there exists k such that only null steps occur for all
k>k Let K= {k>k:tpp >t} if tx & 00, K := {k:k >k} otherwise. Then
Vi X 0, fl'; < f. and h" < 0. Moreover, the bounds of (3.1) hold.

Proaf Steps 3, 4, 5, “and 7 ensure that {tx} is monotone for large k£ (see above
Lemma 3.4). We have V, 250 and hﬁ < 0 from either Lemma 3.6 if to, = o0 or
Lemma 3.7 if to, < 0o. Then f!j < f« by Lemma 3.2 (since 7, = f‘ff = flff for k > fc).
The final assertion stems from Lemma 3.3. o

It may be interesting to observe that w* — @ if to, < oo (since |ubt1—4%| = t;[p*|
by (2.18), and p* — 0 in the proof of Lemma 3.7). In contrast, we may have f,, = oo
and [u¥| = oo (consider m =1, f(u) :=¢", h{u) = -1, C =R, u! := 0, f! 1= —
g} = 1, and exact evaluations for k > 2).

3.4. The case of infinitely many descent steps. We first analyze the case
of infinitely many descent steps in phase 2. B

THEOREM 3.9. Suppose infinitely many descent steps occur, and h% < 0 for some
k. Let f&© :=limy, f¥ and K := {k > k: Ff*! < f£}. Then either f° = f. = —
or —o0 < f&* < f. and limy g Vi = 0. Moreover, the bounds of (3.1) hold. In
particular, if {@*} is bounded, then f$° > —oo and Vi X5 0.

Proof. For k > k, we have h < 0, 7. = f¥ (cf. (2.8)), and fE*! < fF, since by
(2.34b}, a descent step yields hﬁ“ < 0 and fé“ fE < —kKyy, <0, so that | K] =
First, suppose that f2° > —oo.

We have 0 < aux < f¥ — fEVVif k € K, fE*1 = ¥ otherwise; so Yorek KUk <
FE~ F%° < 00 gives v 3 0 and hence e, ti|p*[? = 0 by (2.25), as well as 1751 - 0,
using tx > tmin. Now, for the descent iterations k € I(, we have 4*t! — 4% = —t)p*
by (2.18) and therefore

[@5H12 —jab? =t {anlp® | ~ 2(0%,2%) )

Sum up and use the facts that 25! = 4% if k ¢ K and ke th 2 Liex tmin = 00
to get

hm{tk}p [2—20pp", ")} >0

(since otherwise |u |2+ —o0, which is impossible). Combining this with ¢, |p*|? o
gives lim,.c - (p*, 4*) < 0. Since also ey, [p¥| X, 0, we have limye i Vi = 0 by (2.19).
Then using Ii_mke,( Vi =0 and 7 = f° in Lemma 3.2 shows that f$° < f,.

For the case of fZ°® = —o0 and the assertion on (3.1), invoke Lemma 3.3.
For the final assertion, if {#*} € is bounded, then infy f( Ky > —oco (f is closed
on C) implies that f$° > —oo by (3.1); so we have e, |p*] 2 0as above Hence the

fact that Vi < max{[p*|, ex}(1 + |@*|) by Lemma 2.5(iv) gives Vi ) a]
We now deal with the case of infinitely many descent steps at phase 1 for €, > 0.
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THEOREM 3.10. Suppose infinitely many descent steps occur, hs > 0 for all k,

and €max > 0. Let I = {k: hz“ < hf{}. Then we have the following statements:
(i) h% | O (this relies upon the property that vy > Kk, h% at Step 5).

(i) limpe e Vi = 05 also 3y e v < 00, and limge g max{ex, |p*[} = 0.

(i) Let K' C N be such that Vi 5 0. Then limres f¥ < mper 7 < fu.

(iv) If {&*} is bounded, then limpex Vi =0, and we may take K’ = K in (iii).

(v) The bounds of (3.1) hold, and lim, 7& > f. — €5 — j€p.

(vi) Assertions (ii)—(iv) above hold also if €gax = 0.

Proof. We have hit! —hE < — kv < 0 at descent steps by (2.34a); thus {K| = oo.

(i) We have 0 < wux < A% — hE*1if k€ K, hEPY = RE otherwise; so 3 rer KUk <
h gives limge s v = 0. Hence the fact that vy > K/lhﬁ (cf. Step 3) yields hz 10.

(it) Use 3 xc g Uk < 00, and then vy o (from the proof of (i}) as in the proof
of Theorem 3.9 to get lim;¢ s Vi = 0, limges €x = 0, and limye g 1p*] = 0.

(iii) This follows from Lemma 3.2.

(iv) Invoke Lemma 2.5(iv) and the fact that limkej max{e, [p*|} = 0 by (ii).

(v) This follows from (i}, Lemma 3.3, and the fact that 7, > fé‘ for all k.

(vi) This statement is immediate from the preceding arguments and the rules of
Step 3. u}

It is instructive to examine the assumptions of the preceding results.

Remark 3.11. (i) Inspection of the preceding proofs reveals that Theorems 3.8—
3.10 require only convexity and finiteness of f and h on C and local boundedness of
the approximate snbgradient mappings g§ of f and gi of h on C. In particular, it
suffices to assume that f and h are finite convex on a neighborhood of C.

(ii} Using the evaluation errors e’} = f(u¥) - £¥ and €f := h(u¥) — hE, our results
are sharpened as follows; cf. [Kiw06b, section 4.2). In general, f(&*) = f& + 6’;(1) and
h(iky = hE 4 5;‘;([), where k([) — 1 denotes the iteration number of the lth descent
step. Hence ¢; and ¢, in the bounds of (3.1) for Theorems 3.8-3.10 may be replaced
by the asymptotic errors €7° and €;°, where ¢¢° equals the final e‘;m if only finitely
many descent steps occur, Timy e’}m otherwise, and € is defined analogously.

(iii) Concerning Theorem 3.10(iv), note that the sequence {i*} is bounded if the
feasible set U is bounded. Indeed, h(@¥) < hE + €, (cf. (2.7)) with h% < h} implies
that {@*} lies in the set {u € C : h(u) < h} +€,}, which is bounded, since such is U.

Finally, we analyze infinitely many descent steps in the exact case of emax = 0.

THEOREM 3.12. Suppose that infinitely many descent steps occur and €yax = 0.
Let K := {k(l) ~ 1}§2, index the descent iterations (cf Step 5), and let k := inf{k :
h(@*) < 0} (so that phase 2 starts at iteration k = k iff k < 00). Then we have the
following statements:

() If k < oo, then f(@&*) = f., T = fu, M(@*) 4 = 0, and each cluster point of
{#*} (if any) lies in the optimal set U.; moreover, limgepe Vi =04f fo > —o0.

(i) Jf infy f(2*) > —00 or k = 0o, then Tpep ve < 00, € X0, and p* S 0.

(iii) If the sequence {a*} is bounded, then all its cluster points lie in the optimal
set U, and we have f(i*) = f, > —oco, 7 = f., h(@F)1 = 0, and Vi X0

(iv) If {#*} has a cluster point i, then @ € U., h(@¥)y — 0, and lim, 7 >
lim, f(@*) > f. > —o0; moreover, if K' C K is such that @* X, i, then Vj N 0.

(v) The sequence {i¥} has a cluster point if the set U, is nonempty and bounded.

(vi) The sequence {@*} is bounded if such is the set U := {u € C: h(u) < 0}.
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(vil) Suppose that @ € U, and there exists an iteration index k' such that
{3.13) f(@) < W(ﬂk;Ck +1) forallk > k' ke K.

In particular, (3.13) holds if & "€ U for some k', or e, 2 i—1 forall k> kK ke K.

Further, suppose limpey ti < 0o. Then the sequence {u"} converges to a point in U,.
(viil) Suppose that {2*} is bounded, but we have only Lrex th = 0o instead of

infres tr > tmin. Then {G*} has a cluster point in U,. Moreover, assertion (vii) still

holds.
Proof. First, recalling the “exact” relations (2.32)—(2.33), note that e; > 0 and

(3.14)  ec(me) > ec(@¥m) + (pF,- —8%) — e with ec(@¥;7m) = h(i*)4.

By Remark 2.7(vi), the descent test (2.30) ensures that 0 < A(G**1) < h(4*) for all
kif k= oo, f. < f(a**+1) < f(4F), and h(d*) < O for all & > k otherwise.
(i) Use f&° = limy f(4*) = limg 74 in Theorem 3.9 and the closedness of C, f, h.
(ii) Use the proof of Theorem 3.9 if k < oo or Theorem 3.10(vi) otherwise.
(iit) First, suppose that k = oo; i.e., consider phase 1 with A(@F) > 0 for all .
Let @ be a cluster point of {u"} Then @ € C, since {@*} C C and C is closed.

Pick K’ C I such that ¢ %% & Then f(a*) 2 £(@), h(e*) &5 n@@) > 0 (£, b
are continuous on C). Since €, [p*| Ko by (ii}, Lemma 2.5(iv) yields Vi 0.
Let 7 be any cluster point of {7%}geser. Pick K C K’ such that 7 K 7 We have
7 > f(a) (rs > f(4*)) and T < oo; otherwise for large k € K", 7. > f(&) — k(%)
would give e(d; 7x) = h(4) < 0 by (2.2) and (1.2), and by (3.14) with e, [p*| 0,

0> h(t) = ec(i; ) > h(a*) ¢ + (¥, 4 — 0¥) — e X, h(d)y >0,

a contradiction. Since e is continuous on C x R, letting k X o in (3.14) gives
ec(;T) > ec(;7), ie., 0 € Qec(i; 7). Since h(@) > 0 and 7 > f(), 0 € fec(i;7) in
(2.3) implies 7 = f(@) and h(2Z) = 0 (otherwise for he 1= h + i¢, 0 € Bhe () would
give ming h > 0, contradicting (1.2)). Hence, @ € U, by Lemima 2.2 (using ¥ = m(%; &)
for any & > 0) and f(i) = f,. Since k(@) = 0 and {h(@*)} is nonincreasing, we obtain
that h(@*) — 0.

By considering any convergent subsequences, we deduce that Vj %, 0 and that
f. is the unique clustel point of {7 }rex and {f(@*)}rer. Hence, lim; )~y =
limg f(@50°Y = £, Since f(&*®) < 1 < Tgy-1 for k(1) < k < k(I +1) by
Steps 3, 4, and 7, we obtain lim; (4 ") = limg 71, = f,.

Finally, for the remaining case of k < 0o, use the monotonicity of {7x = f(4*)},55
and the relations 7 = f(@), A(Z) < 0 in the second to last paragraph to get 0 €
Oec(a; 7) and @ € U, from Lemma 2.2; the rest follows as before.

(iv) Use the proof of (iii), getting lim,, f(2*) > f. from Lemma 3.3.

(V) If & < oo, the set {u € C : f(u) < f{aF), h(x) < 0} is bounded (such is
U,) and contains {@¥ h>k- Suppose that kE = oco. By Theorem 3.10(vi), there is
K’ C K such that limpe g f(4*) < f.. Hence, for infinitely many k, ¢* lies in the set
{u€C: flu) < fu+1,h{u) < h(ul);}, which is bounded (such is U,). Therefore,
{&*} has a cluster point.

{vi) The set {v € C: h{u) < h(u');} is bounded (such is U) and contains {4*}.

{vii) If k < oo, then for k >k, & € U implies f(@) = f. < f(@*) = n(@*; ¢ + 1);
together with Lemma 2.3, this vahdates our claim below (3.13). Let k € K, k£ > k'
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Since (3.13) implies ec:(@; 7) < ec(@*; 7%) by Lemma 2.3, (3.14) yields (p*, @ — i*) <
er. Then, using the facts that 4°+t1 — 4% = —t,p* by (2.18) and vk = tx[p*|? + ex by
(2.23), we get

st —af? = ok — af? 4+ 2(akt — ok, gk - @)+ [aktt - kR
< |i* - )% 4 2t + 22jp"|° = [0 ~ @f* + 2y,

Therefore, since limpex te < 00, 3 pcx vk < 00 by (if), and [@#*+! — g|? = |a* — af?
if k ¢ K, we deduce from [Pol83, Lem. 2.2.2] that the sequence {|&* — [} converges.
Thus the sequence {@*} is bounded, and using (iii) we may choose @ € U, as a cluster
point of {@*}, in which case the sequence {|i* — @[} must converge to zero, ie.,
* = .

(viil) Argue as for (i) to get 3., o4 Uk < 00. Since v = ti|p*|? + € (cf. (2.23))
and € > 0, we have lim, . lp"]z =0 (using ZkeK tr = 00) and limge g ex = 0. Thus,
there is K C K such that e, [p*| = 0. Let @ be a cluster point of {@*}eeg- To see
that @ € U,, replace K by K in the proof of (iii). Hence, this point % may be used in
the final part of the proof of (vii}). u]

Remark 3.13. (i) The condition €yax = 0 in Theorem 3.12 means that the
linearizations are exact and Step 3 is inactive. If we drop this condition in Step 3,
so that Step 3 ensures vy > m,hz when h‘; > 0 in the exact case as well, then for
€max = 0, both Theorems 3.12 and 3.10 hold with ¢; = €, = 0 in the bounds of (3.1).

(i) Condition (3.13) was used in [SaS05, Prop. 4.3(ii)] with ¢ = 0. Since in this
case, fo = infem(, e + 1) iff i <1 (cf. section 2.1}, we conclude that at phase 1
(k = 00) condition (3.13) with ¢z = 0 may be expected to hold only if & < 1. (Also
see section 4.4.)

4. Modifications. In this section we consider several useful modifications.

4.1, Alternative descent tests. As in [Kiw06a, section 4.3}, at Steps 4 and 5
we may replace the predicted decrease vx = t,|p*|? + €, (cf. (2.23)) by the smaller
quantity wy := t,}p¥|%/2 + €x. Then Lemma 2.5(ii) is replaced by the fact that

we > —e 4= LPFYA > —er = we > tlpt|Y4.

Hence, wy > —ep at Step 5 implies wy < vy < 3wk and vg > —¢x for the bounds
{(2.25)—(2.26), whereas for Step 4, the bound (2.27) is replaced by the fact that

Vi < (Qemax/te) 21+ [65]) If wg < —ex.

The preceding results extend easily (in the proof of Lemma 3.7, exq1 (u*t1) > [hE], —
kwy, implies ex1(u¥*+1) > [hE]L — sox, whereas in the proofs of Theorems 3.9 and
3.10(i), we have 3", e Uk < 33wk < 00). We add that [SaS05, Alg. 3.1] uses

wy, instead of vg.
As in [Kiw85, p. 227], we may replace the descent test (2.30) by the two-part test
(4.1a) REFE < Bk — gy if h >0,

(4.1b) FEU<FE ko and REPY <o if Rk <o

Since (2.30) implies (4.1), the latter test may produce faster convergence. In par-
ticular, at phase 2 (k% < 0) the additional requirement h%*! < —xu; of (2.30) may
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hinder the progress of {it*} towards the boundary of the feasible set. The preceding
convergence results are not affected (since if (4.1} fails at a null step, then so does
(2.30), whereas the requirements of (4.1) suffice for descent steps).

In connection with (4.1b), we add that if h} < 0, ie., the starting point is ap-
proximately feasible, then the objective linearizations need not be defined at infeasible
points. Specifically, if 25! > 0 in (4.1b), then a null step must occur; so we may skip
evaluating f¥+! and choose J}'“ o} j}‘ at Step 6 (without requiring J}‘“ 3 k+1).
In the proof of Lemma 3.7, using v = —&,(u**!) (cf. (2.10)) and replacing (3.10) by

Y — fEgf pRHL
(4.2} ert1(0) 1= { feril) ~fg i .S o
ke () otherwise,

we see that (4.1b) can be expressed as ey (u*+!) < —kuy or equivalently by (3.11);
this suffices for the proof. Similarly, if h%+t! < 0, then we may skip finding the
subgradient g,’f“ and choose JET1 5 JF at Step 6 (omitting Ay in (2.8) if Jf = 8).

4.2. Linearization aggregation. To trade off storage and work per iteration
for speed of convergence, one may replace selection with aggregation, so that only
7 > 4 subgradients are stored. To this end, we note that the preceding results
remain valid if, for each k, ka and hpy; are closed convex functions such that
0 € O¢x(u**') implies (2.11)-(2.13) for k increased by 1, and

(4-3a) max{f(u), frr1(0)} € fupr(u) < f(u) forallueC,
(4.3b) rms‘)({l_l;,.(u)y Py (u)} < hrp1(w) < A(w) forallue C.

(This extends some ideas of {CoL93).) The max terms above are needed only after
null steps in the proof of Lemma 3.7, fi is not needed if v, = 0, and hy is not needed
if vx = 1. The aggregate linearizations may be treated like the oracle linearizations.
Indeed, letting f_; == f;, h_y = h; for j = 1,...,k, to ensure that f; < Frs1
and g < hyyq, we may work with Jf'“,J]fJrl C {—k,~k+1,...,k+1}in (2.31),
replacing the set f}‘ or j,f by {—k} when j} or j,’: is “too large.”

To illustrate, consider the following scheme with minimal aggregation. First,
suppose [J£| + |[JE| = m. If {J4[ + |JF| < m - 2, remove from J§ or J§ two indices
in JE\JE or JENJETELTE + | =m0, set JE = JE, JF = T )] > 2,
remove two indices from j,’f and set J,’f = j,': U {—k}; otherwise, remove two indices
from J¥ and set J¥ i= JEU {—k}. If {J¥[+ | JF] = m, remove four indices from J% or
J¥, and set JE = J}U {=k}, JE := JE U {~k}. Next, suppose 1JE]+ [JF| =m~1. IF
| 7K +]JF{ = 72 —1, proceed as in the second case above. 1f|j}‘]+|j,’:l < m—2, remove
from J¥ or J§ one index in J§\ J¥ or JE\ JE. At this stage, | JE| +|J5{ < 7 — 2; s0
set Jf"*l = JFu{k+1}, JEY = JF U {k + 1}. This scheme employs aggregation
only where needed; for m > m + 3, it reduces to selection (cf. Remark 2.7(vii)).

In practice, without storing the points «/ for j > 1, we may use the representations

£O) = L) (V= 08) and () = hy(¥) + (Vhy, - — %),
since after a descent step, we can update the linearization values
(4.4a) F@) = £(8%) + (V@M —ab) for j e TP,

(4.4b) B (AR %) = Dy (0) + (Vhy, @511 — a8y for j e JEHL
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Let us now consider total aggregation, in which only 7/ > 2 linearizations need be
stored. Define e; by (3.10) with k = 0 and 75 := 7;. Let J} := {1}. For k > 1, having
linearizations e;(-) < e(;7) for 7 € J¥, replace & in (2.8) by the “overall” model

(4.5) éx(-) r=;7é3§ej(<)

of e(-;7x); thus we still have éx(-) < e(-;7x) without maintaining separate models
of f and . Then the optimality condition 0 € 8¢y (u**!) yields the existence of a
subgradient p¥ € 9é(uF*!) such that pf replaces vp§ + (1 — v*)pf in (2.12) and
(2.18). Consequently, using the aggregate linearization

(4.6) () = (U + (ph, = uFY) < &) Selii)
and replacing the definition (2.17) of the linearization éé and its expression (2.20) by
(4.7) EE() = @) + 26 () = & (u* ) + (o5, — )

yields (2.21)-(2.22) and Lemma 2.5 as before. With ey given by (3.10), for lin-
earization selection we may use multipliers 'yj’-‘ of the pieces e;, j € J¥, such that

(48) (@) =" ¥5(Ves, 1), vF >0, Af [e(wtt) — ey (wF )] =0, j e JF,
JEJE

to choose the set J¥+1 5 JEU (k + 1} with J* := {j € J* ;v # 0}, For aggregation
(cf. (4.3)}, after a null step the next model éx4; should satisfy

(4.9) max{&(u), exq1(1)} < &y (u) <e(y;n) forallueC,

and it suffices to choose J**1 o {—k, k 4 1} with e_y := &.. Note that (4.6) and
the minorization ex+1(-) < e(;7x) (cf. (3.10)) yield éxs1(-} < e(:; 7). To ensure that
e(-; ) is still minorized by each e;(-) = e;(#*) + (Ve;, — i) after a descent step,
since e('; 7k41) = e(:5 k) — (Tep1 — Tk )+ (cb (2.2)), we may update

(4.10) i (05+1) i= e (%) + (Ve;, 0t = 0F) — (mep) — i)

Similarly, when 7y increases to i, say, at Steps 3 or 4, the update e; (#*) = eJ(ﬂk)

7). + T provides the minorization e;(-) < e(-; 7).

Although total aggregation needs only 7 > 2 linearizations, whereas separate ag-
gregation described below (4.3) needs 7 > 4, in practice this difference is immaterial,
since larger values of m are required for faster convergence anyway. On the other
hand, total aggregation has a serious drawback: its update (4.10), being based on a
crude pessimistic estimate, tends to make the linearizations e; lower than necessary
when 7,41 # Tk. In contrast, separate aggregation is not sensitive to changes of 7.

Similar techniques can be applied to the composite model

4.11 éx(-) 1= max { max f;(-) — Tk, max h,; (), maxe;(-) p.
(11) 1 s { g £,0) <m0, s 0

For instance, (4.9) holds if J}‘“ k41, J5 3 k41, JE 35—k, but many other

choices are possible.
Remark 4.1. We add that [SaS05, Alg. 3.1] employs the model (4.11) with

(412)  Jp={jeJ*:fl-m 2k} and Jii={jeJ¥:fl-m <hl}
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for an additional “oracle” set J* C {1,...,k}; then J* and J* are reduced if necessary
so that 2|J¥| 4 |J¥| < m — 3 for a given m > 3, and J¥+1 .= JF U {k + 1}, JE+! =
JEU{~k}. First, this scheme is quite unusual: although |J*| “original” linearizations
of f and h are maintained (2|J*| in total), only half of them are selected via (4.12)
for the model (4.11), thus reducing the QP size from 2{J*|+ |J¥| to |J*| +[J¥). (This
selection is unnecessary in the sense that even for J}" = JF = J*, the model (4.11) still
satisfies €x(+) < e(-, 7%).) Second, its storage requirement of 7 > 3 places it between
total aggregation and separate aggregation. Third, this scheme employs the update
of (4.10) for j € J*.

4.3. Estimating Lagrange multipliers. Suppose that f. > —oo, so that the
dual optimal set A := Argmaxg, ¢ is nonempty (cf. section 2.1). For € > 0, the set
of €-optimal dual solutions is defined by

(4.13) Me={peRy:qp)>f.—¢€}
We now develop conditions under which the Lagrange multiplier estimates
(4.14) k= (1 —w) /v

converge to the set A/, for a suitable € > 0, where vy, is the multiplier of (2.12)—(2.13).
Since vy € [0,1] by (2.13), (2.14)—(2.19) yield the sharper version of (2.22):

(4.15) vi[F(u) = 1] + (1 —w)h(u) 2 [BE], = Vi(1+ ) forallueC.
If vy >0 (e.g., Vie < —h({a)/(1+ |&[)), then (4.14) with px € Ry and (4.15) give
(4.16) F(u) + prh{u) 2 1 — Vk(l + ]u[)/uk forallue C.

LEMMA 4.2. (i) Suppose that f, > —oco. Let I{' C N be such that V; K50 and

(4.17) lm 7 > fo —~ €5 — fep,
keK"

where Ji = inf,epp (of section 2.1). Then Timyeg: pi < co and Vi/uy Ko
Moreover, the sequence {pi}rex: converges to the set M; given by (4.13) for & :=
€f + fep.

(1) If fu > —o0, then a set K' satisfying the requirements of (i) ezists under the
assumptions of Theorems 3.8, 3.9, or 3.10 or those of Theoremn 3.12 if additionally
either inf{k : h(@*) < 0} < oo or |G*| 4 oo (e.g., the optimal set U, is nonempty
and bounded).

Proof. (i) By (4.17), Teo = limgep 7 > fo — & If we had limgcp vk = 0,
for u = 4, (4.15) would yield in the limit 0 > h(%) > 0, a contradiction. Hence,
limye g va > 0, so that Vi /uy 5 0 and Timpe s e < 00 by (4.14). Let poo be any
cluster point of {yx}sex; then pe € Ry. Passing to the limit in (4.16) bounds the
Lagrangian values as follows:

L{u; proo) :== f(u) + poo(u) 2 700 forallu e C.

Hence, q{pioe) > 7oo 2 fo — € implies poo € Me by (4.13). Since po was an arbitrary
cluster point of {px}rer: C Ry U {oo} and limgeg+ pr < 00, the conclusion follows.

(it) In Theorem 3.8, 7, = f.fj for all k > k (and we may take ' = K). In
Theorem 3.9, 7. ~ f&° &€ [f. — € — jien, fo] and limye i Vi = 0. For the rest,
see Theorems 3.10(ii,v) and 3.12(i,iv,v), noting that |i*| 4 oo iff {@*} has a cluster
point. o
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4.4. Updating the penalty coefficient in the exact case. We first show
liow to choose the penalty coefficient ¢, by using the Lagrange multiplier estimate p
of (4.14) to ensure the “convergence” condition (3.13) of Theorem 3.12(vii).

LEMMA 4.3. Under the assumptions of Theorem 3.12, suppose that [4*} £ co.
Moreover, suppose that for all large k, after a descent step, Step 7 chooses cryy >
max{fg, Ck } o gk < 00, Ckp1 2 cx otherwise. Then there exists k' such that condition
(3.13) holds for any i € U..

Proof. By Theorem 3.12(iv), the assumptions of Lemma 4.2(i) hold for some i’ C
K. e = e, =& = 0; thus, {ux}rex converges to Mo = M, and limgc g pix > 2 1=
inf,cps g implies g > i — 1 for all large k € K’. Hence, since {cx} is nondecreasing
for large k, we have ¢ > g — 1 for all large &, and the conclusion follows from
Theorem 3.12(vii}). u]

Remark 4.4. Variations on the strategy of Lemma 4.3 are possible. For instance,
if {@*} is bounded (e.g., U is bounded), Step 7 may choose cxy; > p after each
descent step when gy, < oo; this suffices for the proof of Lemma 4.3 with K’ = K by
Theorem 3.12(iii).

We shall exploit the following basic property of the exact penalty function (2.1).

LeMMA 4.5. If ¢ > i, then w(u;c) 2 fu + (¢ — @h(u)y forall ve C.

Proof. By (2.1), m(u;¢) = L(u; i) + (¢ — g)h(w) 4 + fa[h(u) 4 ~ h(u)] for each u € C|
where L{u; i) > q(t) = f, (cf. section 2.1), & > 0, and h(u); > h(u). D

For phase 1 in the exact case (when Step 3 is inactive), the main difficulty lies
in ensuring h(#*) | 0. Complementing Theorem 3.12, we now show that it suffices
if the penalty parameter c, majorizes strictly the minimal Lagrange multiplier i
asymptotically, and we give a specific update of ¢, based on a simple idea: increase
the penalty coefficient if the constraint violation is large relative to the optimality
measure {cf. (Kiw91]).

LEMMA 4.6. Under the assumptions of Theorem 3.12, suppose that h(i*) > 0
for all k. Then we have the following statements:

(i) There is K' C K such that Vi 25 0 and Tmeere £(i%) < Tmkes 7 < fu.

(ii) If coo := limy e > fi, then h(4%) | O.

(iii) Suppose that for oll large k, after a descent step, Step 7 chooses ¢y > 2ck
if (05T > Vi, cuy1 > ex otherwise, cryy > 0 when h(4*tY) > 0. If f. > —oo,
then h(*) 0.

(iv) If R(G*¥) 1 0, then lim, 7% > lim,, f(%*) > f., and f(G*) x fu in (i) above.

Proof. (i) This follows from Theorem 3.10(vi).

(ii) By (i) and Lemma 4.5, f, > lim,, 7 > fu + (coo — ) Lim,, A(4*) 4 with co, >
yields lim, h{&*)4 = 0. Hence, h(#*) | 0, using 0 < h(a5*1) < h(2*) by (2.34a).

(i) If coo = limgex < oo, then h(GF*Y) < Vi for all large k € K; so by (i),
Vi %S0 yields h(2¥) | 0. Otherwise, coo = 00 > i (from f, > —00), and (ii) applies.

(iv) Invoke Lemma 3.3 with € = ¢, = 0, and use the fact that 7. > f(4*). O

5. Column generation for LP problems. In this section we consider the
following primal-dual pair of LP probleins:

(5.1} min ¢ st AA2 b, A 20,
(5.2) nax ub st. uwAd<c ©w>0,

where c € R™, A € R™*", b € R™. We assume that ¢ > 0. Let A; denote column 1
of Afor i € I:= {1: n}. When the number of columns is hnge, problems (5.1)-(5.2)
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may be solved by column generation, provided that for each u > 0, one can solve
the column generation subproblem of finding 7, € Argmax;er(ud: — ¢;). We show
that this subproblem may be solved inexactly when our method is applied to the
dual problem (5.2) formulated as (1.1) and that approximate solutions to (5.1) can

be recovered at no extra cost.
To ease subsequent notation, let us rewrite the LP problems (5.1)—(5.2) as follows:

(5.3) max Yo(A) ;= —eh st P(A) = AN -b>0, AeRY,

(5.4) min f(u):=—ub st. ud <c, veRY.

We regard the dual problem (5.4) as (1.1) with C':= RT and the constraint function
(5.5) h() = max({4i, ) - e).

Since ¢ > 0, % := 0 may serve as the Slater point. For our method applied to (1.1), we
assume that f is evaluated exactly (i.e., € = 0 and fr = f), whereas the approximate
linearization condition (2.4b} boils down to finding an index i € I such that

(5.6) he() = (Ag, ) —e, with  he(ub) > Afuk) — e,

By duality, f, is the common optimal value of (5.3) and (5.4). In view of Lemma 4.2,
we assume that f. > —oo and let K’ C N be the set such that Vi <5 0 and (4.17)
holds; then vy, > 0 and px = (1 — v.)/v < oo for large k € K’'. We shall show
that the corresponding subsequence of the multipliers {,ukﬂf}ﬁjlk of (2.28b) solves
the primal problem (5.3) approximately; thus, below we consider only k& € K’ such

that vy, > 0. N
The multipliers {ykﬁ;‘}ﬁ% define an approaimate primal solution \* € R via

X:‘ = Z ﬂ)"' for each ¢ € I.

JEJFuiy=i

et 1:=(1,...,1) € R®. In this notation, using the form (5.6) of the linearizations h;
(2.28b) and the fact that prhi (w1 = pé (WF T (cf. (2.13)) vields the relations

(5.7) wepf = AN =185 A >0, (wttA - ik = b ().
We first derive useful expressions for the primal function values yp(A¥) and ¥(3F).
LEMMA 5.1. wg(;\k) =7+ ([hE)y — e — (%, 4%)) /v, PAF) = (pk — )/ ve
P A
Proof. Since p§ = Vf = —b (cf. (2.11), (5.4)), mpf; = AN by (5.7), and vy pee
1 ~ v by (4.14), the definitions of ¥(\) in (5.3) and of p* in (2.18) give

1%

i

v (AF) = v (AXF = b) = wipf + (1 — wa)ph = p* - pk,
f
where p¢ € digy (u¥T1) implies pf < 0 and (p§, u**!) = 0. Next, by (5.7) and (2.18),

veeAk + (1 - vg)ér(n "“) = (ukpkp;‘;,u"“)

= (1wl + Pk, ) = (BF — v, ),
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where uk(p‘},u""“) = U i (uF 1) = vé (W) + vy by (2.13). Hence,
—ukedF — peme = a(uFh) = (pF uf ) = g5 (0) = [RE], — (0%, ) — e,

where we have used (2.20)-(2.21). Dividing by v gives the required expression of
ho(AF) := —eM¥; for P(\F), see the first displayed equality above. 1]
In terms of the optimality measure Vj of (2.19), the bounds of Lemnma 5.1 imply

(5.8) A >0 with (M) >~ Vifue, (M) > —Vifup, i=1:m.
We now show that {/ik}kel(' converges to the set of €-optimal primal solutions
(5.9) Ari={ N e R} 1 do(A) > fu — 6, $() 20},

where € 1= fies, with I being the minimal Lagrange multiplier of (1.1); in our context,
we may as well take (a possibly larger) it := 1) for any primal solution A of (5.3).

THEOREM 5.2. Suppose that f. > —co. Let K' C N be such that Vj K50 and
(4.17) holds (see Lemma 4.2(ii) for sufficient conditions). Then we have the following
statements:

(i) The sequence {X}rere is bounded and all its cluster points lic in R

(it) Let A% be a cluster point of {\}rerr. Then 3 € A

(iii) da, (AF) == infaea, |3% — A 25 0.

Proof By Lemma 4.2, lTn—lkEK/ ke < oo and Vi /ug —K—> 0. Since limye e Tk 2> fu—€
by (4.17), (5.8) yields limyc g Yo(3) > fu — € and lim, ¢ jor minly 9;(A%) > 0.

(i) This follows from Timye s 13* = ke v pr < 00 (cl. (5.7)) and ¢ >0

(i1) We hiave A% > 0, /() > f. — & and ¥(A®) > 0 by continuity of o and .

(iit) Use (i), (ii), and the continuity of the distance function da,. 3]

Remark 5.3. (i) By Remark 3.11(ii), we may use € := jzef° for Theorem 5.2.

(i1) By Lemma 3.1(iii) and the proof of Theorem 5.2, if an infinite loop between
Steps 1 and 4 occurs, then Vi, — 0 yields d,\;(;\") — 0. Similarly, if Step 2 terminates
with Vi = 0, then A¥ € Az. In both cases, we may take & := ﬁfi(” by Remark 3.11(ii).

(iii) Given two tolerances €g, €0, > 0, the method may stop if h% < ep,

Po(A*) 2 f(@*) — ot and Yi(AF) 2 —eror, T=1:m.

Then yo(X) > fu — fi{en + €r) — €101 from f(@¥) > f. — fi(en + €r); so A¥ is an
approximate solution of (5.3). This stopping criterion will be met when Vi /vx < €o1.

We add that our numerical experiments (to be reported elsewhere) on the test
problems of [Kiw05, KiL06, SaS05) indicate that our method is quite sensitive to
constraint scaling; yet, with proper scaling, it can perform quite well.

Acknowledgments. I would like to thank the Associate Editor, the two anony-
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