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Abstract 

We consider so-called generic combinatorial optimization problem, 
where the set of feasible solutions is some family of subsets of a finite 
ground set with specified positive initial weights of elements, and the 
objective function represents the total weight of elements of a feasible 
solution. We assume that the weights of all elements may be perturbed 
simultaneously and independently up to a given percentage of their 
initial values. A feasible solution, which minimizes then the worst-case 
relative regret, is called a robust solution. The maximum percentage 
level of perturbations, for which an initially optima! solution remains 
robust, is called the robustness radius of this solution. In this paper we 
study the robustness aspect of initially optima! solutions and provide 
!ower bounds for their robustness radii. 

Keywords: Robustness and sensitivity analysis; Combinatorial opti­
mization; Accuracy function; Robustness radius 
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1 Introduction 

Robust optimization (see e.g. Kouvelis and Yu, 1997) deals usually with an 
optimization problem in which the set of feasible solutions is known precisely, 
but parameters defining the objective function may be uncertain. All possi­
ble realizations of these parameters compose the set of so-called scenarios. It 
is required to find a feasible solution - called a robust solution - which is rea­
sonably close, in terms of the objective function value, to the optima! one for 
all possible scenarios. There are various measures of such a 'closeness', lead­
ing to various robust optimization models. For example, in minmax relative 
regret optimization (see e.g. Averbakh, 2005; Kouvelis and Yu, 1997) one 
seeks a feasible solution which minimizes the worst-case relative regret, taken 
as the maximum percentage deviation from the optimality of the considered 
solution over the set of all scenarios. 

This paper deals with minmax relative regret optimization model, but 
instead of a single set of scenarios we are faced with a family of such sets 
depending on a parameter ó E (O, 1). Namely, we consider the generic com­
binatorial optimization problem, sometimes called the subset-type problem, 
defined for a finite ground set with given positive initial weights of elements. 
The set of feasible solutions is same fixed family of subsets of the ground set 
and the objective function, which we want to minimize, represents the tata! 
weight of elements of a feasible solution. To define the set of scenarios for 
a fixed value of ó, we assume that the weights of elements may be simul­
taneously and independently perturbed (increased or decreased) by at most 
5 · 100% of their initial values. In this case, the so-called accuracy function of 
a feasible solution, considered in the sensitivity analysis context in (Libura, 
1999), provides the worst-case relative regret for this solution for any 5 in the 
interval (O, 1). Thus, a feasible solution is robust for a particular value of 5, 
if the corresponding value of the accuracy function at this point is minimum 
among all the feasible solutions. 

In contrast to standard robust optimization approach, aur focus in this 
paper is not a problem of finding a robust solution for a given set of scenar­
ios ( corresponding to same 5), but rather a question of the robustness of a 
solution been optima! for the initial weights. In particular, we are interested 
in the largest value of 5, for which this solution remains robust. Such a value 
of ó is called the robustness radius of the considered solution. Main results 
of this paper concern same !ower bounds for this radius. 

The paper is organized as follows: In Section 2, we formally describe 
the considered robustness model and provide the definition of the accuracy 
function. In Section 3, we define the regret function as a point-wise minimum 
of the accuracy functions of all feasible solutions, and then we introduce the 
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robustness radius of an optima! solution. In Section 4, we provide !ower 
bounds for the robustness radius in two essentially different cases: If there is 
a single optima! solution, then we present a !ower bound for its robustness 
radius using derived properties of the accuracy function. In case of multiple 
optima! solutions, first we characterize these optima! solutions, which may be 
robust in the neighborhood of c5 = O, and then we provide analogous bounds 
for their robustness radii. Section 5 contains some concluding remarks. 

2 The accuracy function 

Let E = { e1 , . .. , en} be a finite ground set and !et c( e) > O denotes the weight 
of element e E E. Consider a family :F ~ 2E \ {0} of nonempty subsets of E, 
called the feasible solutions, and !et for X~ E and c = (c(ei), . .. , c(e„))T, 

w(c,X) = _Lc(e) 
eEX 

denotes the weight of subset X. 

The generic combinatorial optimization problem 

v(c) = min{w(c,X): XE :F} (1) 

seeks for a feasible solution of minimum weight. 
Various discrete optimization problems, like the traveling salesman prob­

lem, the minimum spanning tree problem, the shortest path problem, the 
linear 0-1 programming problem, can be stated in this generał form. In the 
following we assume that the set of feasible solutions :F is fixed, but the 
vector of weights c may be perturbed or is given with errors. Namely, we 
assume that c E C(c0 , b), where for c0 E !Rn, c0 > O, and c5 E [O, 1), 

C(c0 ,b) = {d E !Rn : /c0 -d/ :S c0 • c5}. 

Thus, there is some initial vector of weights c0 > O, and for a given value of 
the parameter c5 E [O, 1) the maximum perturbation of any weight does not 
exceed c5 • 100% of its initial value. 

Consider a feasible solution X E :F. The quality of this solution for 
a given c E C(c0 , b) can be measured by its relative error (relative regret) 
c:(c, X) , where 

( X) = w(c,X)-v(c) 
c: ~ v(c) · (2) 
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Observe that for any c E C(c0 , 5) and for arbitrary X E F, E(c, X) 2: O. 
Moreover, E(c, X) = O if and only if X is an optima! solution in problem (1). 

For a given feasible solution XE F and 5 E [O, 1) the accuracy Junction 
a(X, 5) considered in (Libura, 1999) gives the maximum value of the relative 
error c(c, X) over the set C(c0 , 5), i.e., 

a(X,5) = max{c:(c,X): c E C(c0 ,ó)}. (3) 

It is shown in (Libura, 1999) that for an arbitrary feasible solution X, 
a(X, 5) is a nondecreasing and convex function of 5. Also generał formulae 
for calculating its value for 5 E [O, 1) are given in (Libura, 1999, 2000). 
In (Libura and Nikulin, 2004, 2006) some extensions and properties of the 
accuracy function for multicriteria combinatorial optimization problems are 
studied. 

The accuracy function has a finite number of breakpoints in the interval 
[O, 1). If X 0 is an optima! solution in problem (1) for c = c0 , then obviously 
a(X0 ,0) = O, but when 5 grows, then a(X0 ,5) may become positive, which 
means that X 0 is not longer an optima! solution in (1) for some c E C(c0 , 5). 
From the practical point of view it is of special interest to know the first 
breakpoint of the accuracy function, corresponding to the largest value of 
5 for which a(X0 , 5) = O. This value is called the accuracy radius of the 
solution X 0 and is formally defined as follows: 

r0 (X 0 ) = sup{ 5 E [O, 1) : a(X0 , 5) = O}. ( 4) 

The accuracy radius of X 0 gives thus the maximum percentage perturbation 
of any weight which do not destroy the optimality of X 0 • In (Libura, 2000) 
a generał formula for calculating the exact value of the accuracy radius is 
given, and an approach to determine some !ower bounds for this value is 
described. 

Example 1 
Consider an undirected graph G = (V, E), where V = { 1, 2, 3, 4, 5} and 

E= {{l,2},{l,3},{l,4},{2,4},{3,4},{3,5},{4,5}}. 
Let F be a family of subsets of E corresponding to all spanning trees in 

G, and Jet c0 = (14, 11 , 14, 15, 13, 18, 17)! be a vector of the initial weights of 
edges in G. Then the combinatorial optimization problem (1) for c = c0 is 
just the minimum spanning tree problem in the weighted graph G. A subset 
of edges X 0 = { {l, 2}, {l, 3}, {3, 4}, { 4, 5}} is an optima! solution for this 
problem. The graph G and the minimum spanning tree X 0 are shown in 
Figure 1. 
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Figure 1: Graph G and its minimum spanning tree indicated with bold lines. 

In Figure 2, the accuracy function a(X0 , 8) of the solution X 0 is shown 
for 8 E [O, 0.5] . From this picture one can read that the solution X 0 remains 
optima! if the maximum percentage perturbation of any weight does not 
exceed approximately 2.8% of its initial value. This level of perturbations 
corresponds to the accuracy radius of X 0 , which is equal to 1/35. 

For larger values of 8 the solution X 0 may become suboptimal and - for 
example - for 8 = 0.3, i.e., when the maximum perturbations of weights are 
equal 30% of their initial values, the maximum relative error of X 0 reaches 
60%. 
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Figure 2: The accuracy function of the optima! spanning tree X 0 • 
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3 The regret function and robustness radius 

In the framework of robust optimization the set C(c0 ,o) for a given fixed 
value of o is interpreted as a set of possible scenarios. Then the accuracy 
function a(X, o) provides the value of so-called worst-case relative regret of 
the solution X over the set of all possible scenarios. In minmax relative 
regret optimization (see e.g. Averbakh, 2005; Kouvelis and Yu, 1997) one 
wants to find such a feasible solution, that the worst-case relative regret for 
it is minimum among the feasible solutions of problem (1). Therefore, we 
will consider the following function of o E [O, 1): 

z(o) = mina(X,o) . 
XE:F 

(5) 

We will call this function the minimum relative regret Junction or - for short 
- the regret Junction for problem (1). A feasible solution X will be called a 
robust solution for a given o E [O, 1) if and only if a(X, o) = z(o). 

It is obvious that if a(X, o) = O for same o E [O, 1), then the solution X 
is a robust solution for this value of o. Thus, if X 0 is an optima! solution for 
o= O, then it remains robust for any o :S r 0 (X 0 ). But it may be robust also 
for larger values of o (see an example below). On the other hand, a feasible 
solution which is non-optima! for o = O may become a robust solution for 
larger values of perturbations. 

If X 0 is an optima! solution in problem (1) for c = c0 , then the maximum 
value of o, for which X 0 remains robust, is called the robustness radius of 
X 0 and is denoted by rr(X 0 ). Formally: 

rr(X0 ) = sup{o E [O, 1): a(X 0 , o)= z(o)}. (6) 

Thus, rr(X 0 ) determines maximum percentage perturbations of the initial 
weights, for which the solution X 0 stili guarantees minimum value of the 
worst-case relative regret among all the feasible solutions. The robustness 
radius of an initially optima! solution may be therefore regarded as same 
measure of quality of this solution from the robustness point of view. If, in 
particular, there are multiple optima! solutions in problem (1) for c = c0 , then 
a solution with the largest robustness radius may be considered as preferable 
one. 

Example 1 (continued) 
In Figure 4, the regret function for the minimum spanning tree problem 

in graph G from Figure 1 is shown. According to (5), this function is a 
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Figure 4: The regret function for the minimum spanning tree problem. 
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point-wise minimum of the accuracy functions for all spanning trees in graph 
G. Although there are 21 different spanning trees in G, in this case the 
regret function is determined by the following three spanning trees: X 0 = 
{{l,2},{l,3},{3,4},{4,5}}, X'= {{l,2},{l,3},{2,4},{4,5}} and X"= 
{ {l, 2}, {2, 4}, {3, 5}, { 4, 5} }; all other feasible solutions may be neglected in 
(5). The corresponding accuracy functions for the feasible solutions X 0 , X' 
and X" are shown in Figure 3. 

From Figure 4 one can see that the solution X 0 remains robust behind its 
accuracy radius. Indeed, the robustness radius of this solution is determined 
by the value of /j = b' = rr(X0 ), for which the accuracy functions of X 0 and 
X' coincide. In our example b' is equal approximately 0.23. This means that 
the solution X 0 remains robust if the maximum percentage perturbation of 
any edge weight does not exceed approximately 23% of its nominał value. 

For b > b' the solution X' becomes a robust solution and it remains 
robust till b = b" i'::j 0.43. For larger level of perturbations, again, we have a 
new robust solution: this time X". • 

Computational complexity results in robust optimization (see e.g. Aver­
bakh, 2005; Kouvelis and Yu, 1997) suggest that calculating the exact value 
of the robustness radius may be a difficult task. Therefore in the next section 
we give some simple bounds for the accuracy function of an arbitrary feasible 
solution and derive corresponding bounds for the regret function and for the 
robustness radius of an optima! solution. 

4 Bounds for the regret function and for the 
robustness radius 

In (Libura, 1999) it is shown, that for X E F and b E [O, 1) the accuracy 
function of X is expressed by the following formula: 

(X b) = w(c0 , X) - w(c0 , Y) + /j w(c0 , X® Y) 
a ' ~:; (1 - b) w(c0 , Y) ' (7) 

where X® Y = (X U Y) \ (X n Y). It will be convenient to rewrite (7) in 
the following equivalent form: 

a(X, ó) = max (1 + b)w(c0
, X) - (1 - b)w(c0 , Y) - 2 /j w(c0 , X n Y) (S) 

YEF (1 - b) w(c0 , Y) 

Lemma 1 gives an upper bound for the accuracy function of an arbitrary 
feasible solution in problem (1). 
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Lemma 1 For XE F and 8 E [O, 1), 

28 1 + 8 
a(X, 8) ~ 1 _ 8 + 1 _ 8 · a(X, O). 

Proof For arbitrary X, Y EF we have w(c0 , X n Y) 2'. O and 

w(c0 , X)~ w(c0 , Y) + w(c0 , X) - v(c0 ). 

(9) 

Thus, after replacing in (8) w(c0 , X) with w(c0 , Y) + w(c0 , X) - v(c0 ) and 
removing a nonnegative component 28 w(c0 , X n Y), we obtain: 

a(X, 8) ~ { (1 + 8)w(c0 , Y) - (1 - 8)w(c0 , Y) 
max 
YEF (1 - 8)w(c0 , Y) 

+ 1 + 8 . w(c0
, X) - v(c0 )} 

1 - 8 w(c0 , Y) 

28 1+8 w(c0 ,X)-v(c0 ) -- + -- •max------
1 - 8 1-8 YEF w(c0 ,Y) 

28 1 + 8 
1 - 8 + 1 - 8 . a(X, O). • 

If X 0 is an optima! solution in (1) for c = c0 , then a(X0 , O)= O, and from 
(9) we have immediately: 

Corollary 1 lf X 0 is an optima/ solution in (l) for c = c0 , then for any 
8 E [O, 1), 

a(Xo,8) ~ l ~ 8. (10) 

Corollary 1 provides an upper bound for the maximum relative error of 
an arbitrary optima! solution of problem (1) under the assumption that per­
centage perturbations of weights do not exceed 8-100%. The same bound has 
been obtained earlier in (Oguz, 2000) in the framework of so-called tolerance 
approach (see Wendell, 2005) for linear programs. 

Observe also that now, directly from the definition of the regret function 
and from the inequality (10) , we have the following fact: 

Corollary 2 For 8 E [O, 1), 

28 
z(8) ~ 1-8· 
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It is easy to see that the bound (11) is tight for any ó E [O, 1). Indeed, it 
is enough to consider the problem ( 1) where E = { e1 , e2 }, F = { { e1}, { e2}} 

and c = c0 = (1, 1)1 . Then z(b) = min{ a( { e1}, ó), a( { e2}, ó)}. Moreover, 
w(c0 , { e1}) = w(c0 , { e2 }) = 1 and w(c0 , {eI} ® { e2 }) = 2. Thus, from (5) 
and (7) it follows that in this case z( ó) = /!,6 for any ó E [O, 1). 

The following lemma provides a simple !ower bound for the accuracy 
function of any feasible solution X. 

Lemma 2 For XE F and ó E (O, 1), 

l+ó 
a(X, ó) 2': l _ ó · a(X, O). (12) 

Proof For a given feasible solution X and arbitrary Y E F we have from 
(8) the following inequality: 

(X ó) (1 + ó)w(c0 , X) - (1 - ó)w(c0 , Y) - 2ów(c0 , X n Y) 
a ' 2': (1 - ó)w(c0 , Y) · 

Taking Y = X 0 , where X 0 is an optima! solution in (1) for c = c0 , we have: 

a(X, ó) > (1 + ó)w(c0 , X) - (1 - ó)v(c0 ) - 2ów(c0 , X n X 0 ). 

- (1- ó)v(c0 ) 

Replacing w(c0 , X n X 0 ) with v(c0 ) = w(c0 , X 0 ) 2': w(c0 , X n X 0 ), we obtain: 

a(X,ó) 
(1 + ó)w(c0 ,X) - (1- ó)v(c0 ) - 2óv(c0 ) 

2': (1 - ó)v( c0 ) 

1 + ó w(c0 , X) - v(c0 ) 

1-ó· v(c0 ) 

l+ó 
1 _ ó · a(X, O). 

• 
Let n denotes the set of all optima! solutions in problem (1) for c = c0 , and 

let a be minimum non-zero value of the relative error for a feasible solution 
in (1), i.e., 

. w(c0 ,X)-v(c0 ) (l3) a= mm ------. 
XEJ'\fl v( c0 ) 

Observe that according to a standard convention, a= oo when F \ n = 0. 
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If we know the exact value of a ( or some positive !ower bo und for a), then 
the bounds for the accuracy function provided by Lemma 1 and Lemma 2 
allow to calculate a !ower bound for the robustness radius of an arbitrary 
optima! solution in (1). In the following we will distinguish two cases: a 
single and multiple optima! solutions. 

Assume first that X 0 is a single optima! solution in problem (1) for c = c0 • 

The following fact holds: 

Theorem 1 ff X 0 is a single optima/ solution in problem (1) for c = c0 , 

then 

rr(Xo) ~ { 2Ea if a< 1, 

otherwise. 
(14) 

Proof Consider the following two convex functions of ó on the interval [O, 1): 
f'(8) = /,!.r,, which - according to Lemma 1 - is an upper bound on a(X0 , 8) 
and /"(8) = i~: · a, which - according to Lemma 2 - is a !ower bound for 
the accuracy function a(Y, 8) of any feasible solution Y E :F \ { X 0 }. 

The solution X 0 is obviously robust for 8 = O and it remains robust for 
all such 8 E [O, 1) that f'(8) ::; /"(8). If a ~ 1, then this inequality holds 
for any 8 E [O, 1) which means that rr(X0 ) = 1. For a < 1 the inequality 
/'(8) ::; /"(8) is valid for ó::; 2~ 0 and this value provides a !ower bound on 
the robustness radius of X 0 • • 

Consider now the case of multiple optima! solutions in problem (1), i.e., 
assume that IOI = p, p > 1. Although all of the solutions belonging to O 
give the same optima! objective value for 8 = O, they may differ from the 
robustness point of view. It is obvious that any solution in O is robust for 
ó = O, but an interesting question arises, how to select an optima! solution 
which remains robust in some neighborhood of 8 = O. 

F\·om the formula (7) on the accuracy function it follows directly that for 
any X E O, IOI > 1, we have a(X, 8) = O for 8 = O, and a(X, 8) > O for 
8 > O. Moreover, the following lemma states that for some neighborhood 
of 8 = O the accuracy function of any solution belonging to O depends only 
on the solutions from this set, and does not depend on any feasible solution 
belonging to the set :F \ O. 

Lemma 3 ff XE O and 8 :S 2~ 0 , then 

28 ( . w(c0 ,XnY)) 
a(X,ó) = (1- 8) l - ~,m v(cD) . (15) 
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Proof For arbitrary X E :F and b E [O, 1) the formula (8) can be stated as 
follows: 

a(X, b) = max{a'(X, b), a"(X, ó)}, (16) 

where 

a'(X b) = max (1 + b)w(c0 , X) - (1 - b)w(c0 , Y) - 2 b w(c0 , X n Y) 
' YE!l (1 - b) w(c0 , Y) 

and 

"(X ') (1 + b)w(c0 , X) - (1 - b)w(c0 , Y) - 2 b w(c0 , X n Y) 
a , u = max ( ( ) . 

YEF\!1 1 - b) w c0 , Y 

If X E fl, then w(c0 , X) = v(c0 ), and for b E [O , 1) we have: 

'(X ') 2b ( . w(c0
, X n Y)) a ,u=-- 1-mm---- , 

1 - b YE!l v(c0 ) 

(17) 

and 
a"(X b) < 2b + ab - a . 

' - (1 - b)(l + a) 
(18) 

Indeed, substituting w(c0 , Y) = v(c0 ) for Y E fl, and observing that for any 
Y E :F \ fl, w(c0 , Y) 2':: (1 + a)v(c0 ), we obtain: 

a'(X, b) 
(1 + b)v(c0 ) - (1 - b)v(c0 ) - 2 b w(c0 , X n Y) 

max-----~-~~-----
Yen (1 - b) v(ca) 

_2_b _ (l _ min w(c0
, X n Y)) 

(1 - b) YE!l v(cO) 

and 

a"(X, b) 
(1 + b)v(c0 ) - (1 - b)w(c0 , Y) - 2 b w(c0 , X n Y) 

max---------------
YeF\n (1 - b) w(c0 , Y) 

(1 + b)v(c0 ) - 2 b w(c0 , X n Y) 
max -'---------'-----'---'---~-'----'- - 1 

YeF\!1 (1 - b) w(c0 , Y) 

::; max (1 + b)v(c0 ) _ 1 < (1 + b)v(c0 ) _ 1 
YeF\!1 (1 - b) w(c0 , Y) - (1 - b)(l + a)v(c0 ) 

(1 + b) - (1 - b)(l + a) 2b + ab - a 
(1 - b)(l + a) (1 - b)(l + a)' 

But a'(X, b) 2': O for any b E [O, 1) whereas a"(X, b') ::; O when b ::; 2~a. 

This implies that for XE fl and ó::; 2~a we have a(X, b') = a'(X, b), which 
proves (15). • 
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Lemma 3 allows to formulate a necessary condition for a solution from the 
set fl to be robust in the neighborhood of 8 = O. Directly from the definition 
of the regret function and from (15) we have the following corollary: 

Corollary 3 If an optima/ solution X 0 E fl remains robust in same neigh­
borhood of 8 = O, then the following condition must hold: 

minw(c0 ,X0 nY) = maxminw(c0 ,X nY). 
YEl1 XEl1 YEl1 

(19) 

Proof A solution X 0 E :Fis robust for a given 8 E [O, 1) if and only if 
a(X0 , 8) = z(8) = minxeF a(X, 8). When for X 0 E fl, /fl/ > 1, the condition 
(19) does not hold, i.e., minven w(c0 , X 0 nY) < maxxen minven w(c0 , XnY), 
then for 8 E (O, 2:al it follows from (15) that a(X 0 , 8) > minxen a(X, 8) 2: 
minxeF a(X, 8) and therefore X 0 is not a robust solution. 

• 
Let 

{ . w(c0 ,XnY) } 
flr= XEfl: mm () =b, 

YEl1 V c0 
(20) 

where 
b . w(c0 , X n Y) = max mm-----. 

XEl1 YEl1 v(c0 ) 

(21) 

It is easy to see that b < 1 if /fl/ > l. 

Corollary 3 states that only these optima] solutions which belong to the 
set flr can be robust for 8 > O. In the following we provide a ]ower bound 
for the robustness radius of an arbitrary optima] solution belonging to flr. 
We will need the following fact: 

Lemma 4 If X E flr and 

a8 - 2abó - 2M + a 2: O, 

then 
28 

a(X, 8) = 1 _ 8 (1 - b). 

Proof If X E flr, then, according to (17) and (18), for 8 E [O, 1), 

a'(X,8)= 28 ,(1-b) 
1-u 

and 
"(X 8) < 28 + a8 - a 

a ' - (1 - 8)(1 + a)' 
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But if the inequality (22) holds, then 

2ó b 2ó + aó - a 
1 - ó (l - ) 2: (1 - b)(l +a)' 

which implies that a'(X, ó) 2: a"(X, ó) and consequently 

2ó 
a(X, ó) = max{a'(X, ó), a"(X, ó)} = a'(X, ó) = -, (1- b). 

1-u 

• 
Lemma 4 allows to find such a neighborhood of ó = O, depending on 

a and b, in which the exact value of the accuracy function of any solution 
X E Dr is given by (23). The following theorem uses this fact to provide a 
!ower bound for the robustness radius of arbitrary X E Dr. 

Theorem 2 ff XE Dr and a 2: l~b' then 

rr(X) 2 { 2(1~~)-a 
if a< l - b, 

otherwise. 

ff X E Dr and a < l~b' then 

{
min { 0 0 } rr(X) 2: 2(1:b)-a' 2b+2ab-a 

2b+2ab-a 

if a< l - b, 

otherwise. 

(24) 

(25) 

Proof Consider first the case, when a 2: 1~b- Then the inequality (22) holds 
for any ó E [O, 1). Indeed, we have aó-2abó-2bó+a 2: aó-2abó-2M+aó = 
2ó(a - ab - b) 2 O. 

The solution X E Dr remains robust for a given ó E [O, 1) if the value of 
its accuracy function a(X, ó) = /!_6 (1 - b) does not exceed the !ower bo und 
of the accuracy function for any solution Y E F \ n, which according to 
Lemma 2 is equal to i~t a. But this holds for arbitrary ó E [O, 1) if a 2 l -b, 
and for ó ~ Z(l-ab)-a if a < 1 - b, which proves (24). 

If a< l~b' then the inequality (22) holds for any ó ~ 2b+2:b-a < 1. Using 

the same arguments as before we obtain that min { 2(!-~)-a, 2b+2:b-a} and 

min { 1, 2b+;,.b_J = 2b+2:b-a provide !ower bounds for the robustness radius 
rr(X) for a < 1 - b and a 2 1 - b, respectively. 

• 
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5 Conclusions 

In this paper we consider the generic combinatorial optimization problem 
with inexact data. It is assumed that any coefficient in the objective function 
may differ from its nominał value by at most a given percentage 8-100% of this 
value. Thus, in the framework of so-called robust optimization with interval 
data, the parameter ,5 E [O, 1) determines a particular set of scenarios. 

We exploit our previous results concerning the accuracy function to de­
rive ]ower bounds for perturbations of the objective function coefficients, for 
which an optima] solution, obtained for nominał values of these coefficients, 
remains robust. 

To use directly these results one has to know the set of optima] solutions 
of the problem and at least same nontrivial ]ower bound for the relative error 
of any non-optima] solution. A straightforward approach to get such a data 
consists in generating a sequence of so-called k-best solutions until the first 
one non-optima] solution is obtained. Algorithms of this type are developed 
for various combinatorial optimization problems (see e.g. Hamacher and 
Queyranne, 1985; Katoh et al., 1981; van der Poort et al., 1999). 
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