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Abstract We give a bundle method for constrained convex optimization. Instead
of using penalty functions, it shifts iterates towards feasibility, by way of a Slater
point, assumed to be known. Besides, the method accepts an oracle delivering
function and subgradient values with unknown accuracy. Our approach is moti-
vated by a number of applications in column generation, in which constraints are
positively homogeneous — so that 0 is a natural Slater point — and an exact ora-

cle may be time consuming. Finally, our convergence analysis employs arguments
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which have been little used so far in the bundle community. The method is illus-

trated on a number of cutting-stock problems.
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bundle methods - Approximate subgradients - Column generation - Cutting-stock
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1 Introduction
We consider the convex constrained minimization problem
inff(u), weC, h(u)<O0; ) (1.1)

here C is a “simple” closed convex set in the Euclidean space R" (typically a
polyhedron); f(-) is a “simple” convex real-valued function (typically linear, or
quadratic); h(-) is also a convex real-valued function!, but only known via an
oracle which delivers appropriate information at any given u € C.

The present paper relies upon the assumption that a Slater point
2 €C suchthat h(u®) <0 1.2)

exists and is available; motivating applications are given in §§3.2-3.3.
We are interested in algorithms of the cutting-plane type, whose building
bricks are linearizations of h(-), i.e., affine functions £(u) = ua — y minorizing

I(u). At the current iteration k of such an algorithm, the oracle has been called

! In this paper, we will systematically use notation such as f(-), h(-),... for functions, while

£+ h,... will be reserved to particular values of such functions.
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at a number of trial points u!, ..., uf in C, and has returned the corresponding
couples (1',a'), ..., (h,a¥) in R x R™. Normally, i/ = h(1/) and a/ € dh(u/)
denote the (exact) constraint value and a subgradient at /. In this paper, the ora-

cle is allowed to be noisy: we assume for all j
W =h(w)—n’ and af € d;h(w), withni >0, (1.3)

where the inaccuracies 1/ are unknown. The above notation introduces the 7-

subdifferential?
Oh(u) :={a:h(-) > h(u) =N+ (- —u)a}. (1.4)

As far as cutting planes are concerned, each (hf,a’) from the oracle defines the

linearization

w1 (u) = Wt (u—ul)a’, (L.5)
and the 1)/-subgradient inequality gives for all u € R™
h(u) = b)) = 1)+ (u—w)al =1/ +(u—uw)a =1 ). (1.6)

In this context, the general bundle methodology [14, §XV.3] maintains

— amodel /¥ (-) of h(-), which must satisfy

R (u) < h(u) forallueC, 1.7

— astability center 2,

— a stability parameter ¥ > 0,

2 For reasons to come in §3 below, u and a are considered as row and column vectors respec-

tively: a will be a column of an m x n constraint matrix A and « will be a multiplier vector.
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and the next reference point u**! is the optimal solution of
inff(u)+%;|u—ﬁk|2, nwecC, hu)<o. (1.8)

In fact, i(-) := Rk (-) is piecewise linear (so (1.8) is typically a quadratic pro-

gramming problem); as such, it can be written for some finite index set JX:
() = max {ua’ —y/ : j€ J*}, (1.9)

where each (y/,a/) lies in R x R™; we will call bundle the data {(yj,aj)}jejk
characterizing h(-). The affine functions in (1.9) are linearizations of h(-). They
can be those of (1.5), with j € {1 : k} and ¥/ := u/a/ — I/; note that (1.6) then
guarantees (1.7). However, §2.3 below will introduce “exogeneous” linearizations,

through the operation of aggregation.

Remark 1.1 We have introduced two ways for characterizing an affine function

such as 7/ (-):

—(1.9) is the natural way; it uses the constant term ¥/, which will be useful for the
applications in §3;

— (1.5) rather translates the origin to 1/, which is useful for the description and
analysis of the algorithm; we will see in §2.4 that translating the origin to 4 is

even more appropriate. ]
With the above notation, (1.8) can be more concretely written as
inf f(u) + gelu—2*?, weC, wal -y <0, jeJk. (1.10)

Lemma 1.2 Under assumption (1.2), (1.8) has a unique optimal solution s

given by

W =gk pkgk it gt = bR pkat v, (1.11)
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where
- bk € R™ is a subgradient of f at u**!,
- ik > 0 satisfies prik (ukt!) =0,
. @k € R is a subgradient of 7k at uktt,
. vk € R" lies in the normal cone Nc(uft1) 1o C at uf*!.
With the explicit expression (1.9), we have in (1.11)
ph=Y A and prak=y AMd, (1.12)
JjeJk jesk

where the nonnegative multipliers 21 satisfy A (u¥*'a/ — yf) = 0.

Proof Because of (1.7), the Slater assumption is transmitted to (1.8), which clearly
has a unique optimal solution. Then these statements are just the standard optimal-
ity conditions, see for example [34, Chap. 28]: a subgradient of the Lagrangian is
opposite to the stated normal cone. Such a subgradient can be written b+ 1‘,‘—“ +ua

for (1.8) or b+ 452 + 3 AJal for (1.10). [u]

This result reveals the crucial m-vectors g% and . Up to the approximation
h(-) ~ I?‘(-), 2 is a distinguished subgradient of the Lagrangian associated with
(1.1) and the update formula uktl = pk —t"g" of (1.11) resembles a subgradient
step with stepsizet", to minimize that Lagrangian. With respect to footnote 2, page
3, note that the subgradient g is a column; but #£gk should be viewed as a row.
The whole business of convergence will be to drive g to 0. As for a, it takes its
importance for aggregation (§2.3), and also for Lagrangian relaxation, or rather
column generation (§3.1).

The paper is organized as follows: §2 reviews the various points in the paper

which make its originality; §3 is devoted to our motivating application: column
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generation; §4 states the algorithm, whose convergence is analyzed in §5 and in-
terpreted in the primal space in §6; we conclude in §7 with numerical illustrations

on cutting-stock problems.

2 Main ideas in the paper

We first proceed to outline the algorithm studied in this paper, by describing its
current k™ iteration. In this informal description, we will often drop the index k to

alleviate notation; then the superscript “+” will stand for k+ 1.

2.1 Maintaining the stability center

The role of /i := i is to control a suitable balance between objective and constraint
values. Our variant uses the Slater point (1.2) to take care of feasibility of each i;
as a result, the management of the stability center may disregard h-values and
needs to check f-values only.
More precisely, having called the oracle at the new iterate u™, we construct the
interpolated point
1 if 1 <0,

—n0
ikt 0

i =0 R =10 with = 2.1

otherwise .

Note here that B € [0,1]. The algorithm uses the (strictly negative) answer 10 from

the oracle, but a® need not be used. The next result is illustrated by Fig. 2.1.

Lemma 2.1 h(i#) < ii* := (1 - B*)n® + fEn*+! < max {n° n*+'}.
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h(ut)

h(u)

Fig. 2.1 Interpolation guarantees A(ii) < (1 —/3“)7]'J +pBn*t.

Proof By convexity of /i(-),

hit) < (1= B)R(u) + Bh(ut)
= (=) +n°)+ B¢t +1%)
= KO+ B(t = K0)+ (1= P)n’+Bn*,
where we have used (1.3). Inspection of (2.1) shows that h° +B(ht—h0) <0in

either case, so the result follows. ]

Thus, possible infeasibility of i is controlled in the same way as the oracle’s
inaccuracy. In particular, if is feasible in the case of an exact o;'acle.

Now let us assume for the moment that # is feasible in (1.8) — this is the case
with an exact oracle. Then the predicted decrease v := f(ii) — f(u™) is positive
(the case v =0, i.e., u* = @, is uninteresting; and §2.2 below will explain how to
enforce positivity of v in the noisy case). As a result, the following strategy makes
sense:

— Improve the current stability center if f(if) is “definitely smaller” than f(#).
More precisely, fix a coefficient 1 €]0, 1[ and set 4+ := it if f() — f(i) > kv;
this is a descent step.

— If such is not the case, make a null step: i+ := .
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— In either case, update i(-) and 7 and proceed to the next iteration.

The above interpolation idea is reminiscent of versions of the cutting-plane
algorithm which also use points like 10 and i7; see [38] and the references therein.
In these versions, however, the oracle is called at #, while our variant disregards
it for the oracle, which is called at u™* only. However, §3.2 below will show that
both appraches become closer in an important special case.

Except for the two recent filter methods [9,15], the existing bundle methods
for constrained optimization require a merit function, for example an exact penalty
(f(u) + wmax{0, (1)}, as in SQP) or an “F-distance” (max { f (u) — f(2),h(u)},
as in the method of centers). The earliest feasible-point methods of [32] and [18,
Ch. 5] converge slowly, because their method-of-centers subproblems prevent ap-
proaching the constraint boundary fast. No feasible starting point is needed by
the phase I/phase II methods of [18, Ch. 5.7], but they can also be quite slow, as
confirmed for the recent variant of [35]. The penalty function methods of [19,20]
tend to perform better; still, they require additionally that C be bounded, and may
converge slowly when their penalty parameter estimates are too high. Finally, the
level method of [29] (also see [24] and [2]) has good efficiency estimates when the
set C is bounded, even if a Slater point does not exist; not suprisingly, therefore, it

cannot benefit from the knowledge of a Slater point.

2.2 Coping with the noise

Suppose ¢ := t¥ = 4-eo in (1.8): there is no stabilizing term and (1.8) becomes

a relaxation of (1.1), thanks to (1.7). If, in addition, we take J* = {1:k}, we
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obtain the pure cutting-plane algorithm? [5,16] used for standard column genera-
tion, see §3 below. This algorithm is little affected by inaccuracies: it just requires
the oracle to provide linearizations satisfying (1.6). Accumulating linearizations
eventually drives it to 0; insofar as /™ is close to h(ut) (depending on the noise
in the oracle), a small 4+ implies that u* is approximately feasible, and therefore
approximately optimal for (1.1).

This observation indicates that the noise can disturb our bundle algorithm only
via the stabilizing term in (1.8). In fact, the new stability center it is constructed
50 as to be feasible in the current problem (1.8) (see Fig. 2.1). Nevertheless, h(i1)
may be positive and the property (1.6) need not guarantee it to stay feasible in all
subsequent problems (1.8). When the stability center is not feasible, the predicted
decrease may be negative: the algorithm is so much fooled that it seeks points
worse than the stability center.

Our previous remark immediately suggests the cure, already proposed in [26]:
just increase ¢ in (1.8) in order to lessen the influence of the stabilizing term; do

this until

— either v gives a safe descent test,
_ort is deemed large enough so that the whole algorithm can stop, just as the pure

cutting-plane method would do.

Remark 2.2 We will see (end of §4) that more accurate answers from the oracle
are required only at descent steps: large errors h(ul) =/ at null steps do not

deteriorate the final answer of the algorithm. ]

3 When t = oo, (1.8) may have no solution; we skip this difficulty here.
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To give a safe descent test, v should be “substantially” positive. Technically, it
is convenient to require a decrease of the whole objective function in (1.8) from #

to u™: descent is tested only when
f@)— fut)—Lut—aP >0 ie v Lt —al; (2.2)

otherwise 7 is simply increased and (1.8) is solved again, with the same it and ﬁ(-).

Remark 2.3 (Bounding the objective) Let us mention here that no feasible i need
ever be produced when the oracle is noisy; it may not be straightforward to bound
from above the optimal value f* of (1.1).

It is known that f(u)+wmax {0,h(x)} > f* for any u € Cif 7 is large enough
(larger than an optimal multiplier pt*). Yet, such bounds assume some information
about pt* — and are corrupted by noise anyway.

However, assume that the oracle is also able to answer upper bounds, say i/ >
I(uf). They can be inserted in the above exact penalty function, but better bounds
can be obtained. In fact, introduce analogously to (2.1) the upper interpolated
point

1 ifht <0,

A=+ Bt —u®) with f:= _jo
=——= otherwise
Rt —h0

and assume 70 < 0. Then € [0, 1] and h(ii) < O by convexity, as in Lemma 2.1.

This construction can be useful in applications, see Remark 3.5 below. ]

Our algorithmic constructions and analysis of inaccuracies in the oracle extend
to the constrained case the inexact linearization framework of [26,27]; for earlier

related developments, see [13,17,22,33,37].
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2.3 Managing the constraint model: the aggregate linearization

The management of /i(-) should guarantee convergence in spite of possible non-
smoothness of A(-). To this aim the standard idea, which is used in the pure
cutting-plane algorithm, is to accumulate information coming from the oracle (the
“bundling” process): with the new linearization i+ (u) := h* + (u —u*)at - re-
call notation (1.5) — one sets fi* (-) := max {(-), A" (")}, i.e., J* :=JU{+}. This
results in storing all the (y/,a/) in (1.10), which may become inconvenient or
impossible when the iteration index k grows; the question is therefore: Which
linearizations should /i*(-) be made from? To answer it, (1.7) should be kept in
mind.

Naturally, the new couple (i*,a*) must appear in the new model: J* D {+}.

As for information accumulation, it uses the set
Fi={je:utd —y =hu")} 2.3)
of active linearizations at u*. From standard convex analysis (see [14, § V1.4.4 or

Ex. VL3.4] for example), the subdifferential of ii(+) at u* is the convex hull of the

corresponding slopes:

dh(ut) = {Zaf'af: @ >0, Yol = 1}. 2.4)

i€l jef
By the definition of subgradient, the function £(u) := R(ut) + (u—ut)a sat-
isfies £(-) < k() if a € dh(u™). With reference to (1.9), this £(-) can be put in the

form £(u) = ua — vy and its constant term 7 is easy to compute:
Lemma 2.4 With a € dh(u™), the above function £(-) has

4 ¥ ;o
=y a forsome o> 0with Y o/ =1.  (2.5)

a jes al jel
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Proof Because utal —y/ = h(u™) = £(u*) =uta—yforall j€ J, we obtain for
any set ¢ of convex multipliers
ut (Z ocjaj) - ZOthi =h*)=Lw)=uta—y.
ief ief

This holds in particular for the oo making up a — see (2.4). [m]

Then the bundling process distinguishes three cases:
(i) A descent step is made. Then the descent property is strong enough to imply
convergence, even if J* is reduced to the singleton {+}.
(ii) The constraint is not active in (1.8); more precisely, it = 0. Again, we may
setJT = {+} without impairing convergence.
(iii) A null step is made and p > 0. Then Lemma 1.2 reveals the aggregate lin-

earization
wis B () = h5 () = R + (- ukthak, (2.6)

which satisfies i~ (-) < h(-). Indeed, i~ (-) somehow gathers the whole in-
formation contained in the current bundle, entailing the memorization effect
crucial for convergence; this is explained in [6, §4] for example.

Altogether we have max {h~ (1), " (1)} < h(u) for all u, which reveals a
piecewise linear function satisfying (1.7): it is a valid candidate for the next
model i (-). Taking this candidate as J*(-) corresponds to the “minimal”
set {—,+} for J*. A “maximal” J* would be {1 :k+1}, as in the pure
cutting-plane algorithm. We therefore see that the new index set just has to
satisfy

{~kk+1} I c {=kk+ 1)Ut @7
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No matter how J* is chosen as above, the result is a new model function

satisfying — recall the notation (2.6), (1.5):

max{A~* (), ¥ ()} < () < h(u), forallueC. (2.8)

We conclude this section with a few remarks:

— A consequence of (2.5) is that the {—}-linearization is useless if J *+ already
contains the whole of /. When m is not too large, a reasonable choice is J* =
JU{+}. An even more sensible choice reduces J to the set of those j such that
A/ > 0 in Lemma 1.2; this is linearization selection, in which each J¥ can be
forced to have at most m + 1 elements; see [18,27].

_ In case (iii), the software solving (1.10) usually provides the multiplier vector A
of (1.12), so d is readily available: just take ol := A /i in (2.5).

— Reducing J* to {+} in cases (i), (ii) is not recommended: the next iteration will
be (close to) steepest descent, well known for its numerical inefficiency. Even
when (u*) < 0 (in which case pt = 0), bundling is probably worthwhile.

— This latter point suggests that aggregation might be desirable even if p = 0.
For this, we can take any linearization of the form (2.6), where d is any convex

combination of active a/’s at u™.

2.4 Convergence analysis

For later use, we return in this section to the full k-notation. We start with ele-

mentary relations: the properties b* € 9 f(uk*1), & € dh(uk*!), vk € Ne(uk*!) in
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Lemma 1.2, and (1.7) give forallu € C

Fl) > FEAHY) + (- HpE, 2.9)
R(u) = h(u) > Ry + (u—ukH)ﬁ", (2.10)
0> (u—ukH)Vk. (2.11)

Multiply (2.10) by ¥ > 0, use complementarity slackness and sum up to obtain
YueC, fu)+ph(u) = f(u) + k) = FEY + (- gk (2.12)

In a bundle method, convergence of the “natural iterates” ut is not a relevant
property: the actual candidates to solving (1.1) are rather the stability centers. This

is why the optimality conditions of (1.8) or (1.10) are traditionally translated to i:

Theorem 2.5 With the notation of Lemma 1.2, set

gk .= f(ﬁ")—f(u“’l)—(l?k—uk+l)gk,

(2.13)
&% .= gk kgt
Then
gk > —ukn(ah). (2.14)
Besides, for all u feasible in (1.8) (e.g., feasible in (1.1)):
Flu) > f(@) -8+ (u—")g", (2.15)
or equivalently
Flu) = F(@*) — 8+ ugt. (2.16)

Proof We use (2.12). First take u = i and arrange terms to obtain &> —ph(a) >
—ph(i). Then take u feasible in (1.8): h(1) < 0 and f(u) > Ft)+ (u—ut)s.
Straightforward manipulations then give (2.15) and (2.16). Note that the feasible

set of (1.8) contains the feasible set of (1.1) thanks to (1.7). ]
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Note that & may be negative if # is not feasible in (1.8). In connection with

§2.1 and §2.2, use (1.11) and (2.13): the predicted decrease is
W= f(ak) — Fukthy = 85 kg4 2 (2.17)

As explained in §2.2, it is “substantially” positive when (2.2) holds, which has

several equivalent expressions obtained by suitable manipulations based on (2.17):

1, M a o
vk>—27|u"+l—-ﬂk|2, oz -k, 8k>—§|gk|2. (2.18)

When this holds, the descent test is
(@5 = £ > ok (2.19)

with i given by (2.1) and k €]0, 1[.
Traditional convergence analyses of bundle methods consist in showing that 0
is a cluster point of the sequence {&¥, g} C R x R"; then (2.15) implies that f@*)

is “asymptotically good”. Here we use a slightly different argument, namely:

The sequence {(8*,4*)} has a cluster point (5,0), with § <0, (2.20)
i.e., liminfi_, . max {8%,|g*} = 0.
Remark 2.6 This argument goes back to [26] and has an interesting background
in convex analysis. Call ¢(-) the actual objective function of (1.1) (¢(u) = fu)
if u is feasible, +oo otherwise) and admit that every ik is feasible. Then write
(2.16) as ug* — ¢ (u) < 8% — ¢(a*) for all u € R™ and take the supremum over u:
#*(g%) < 8% — ¢(a*) where ¢*(-) is the convex conjugate of ¢(-). Finally take a
subsequence stipulated by (2.20): knowing that ¢*(-) is lower semicontinuous and

that ¢ (%) has a limit (¢ (2*) = f(it*) is monotone),

$*(0) < liminf *(8%) < limsup¢*(8*) < § —lim¢(a*) < —lim ().
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Remembering that —¢*(0) is the infimum of ¢(-), this establishes that ik is a
minimizing sequence for (1.1). .

With the traditional approach, the term #¥g¥ in (2.15) brings trouble if i is

unbounded. [m}

Thus, f-values of the stability centers are assessed by (2.15) or (2.16). Their h-
values are assessed by Lemma 2.1. Supposing that the latest descent step occurred
at iteration K (i.e., after the K + Lst oracle’s call), feasibility of /i depends on X,

i.e., on 7 and K+!; for example, h(i2) < n<*! if KKt <0,

3 Motivation: column generation

Consider the following primal-dual pair of LP problems (c is an n-row, b is an

m-column)

min cA, AA+b>=0, AeR], 3.1

max —ub, uA<c, u€eRY, (3.2)

where n is a huge number: then column generation is a method of choice. For

i € {1:n}, let A; denote column i of A. Setting C := R, f(u) :=ub and

h(u) == max (uA; —ci) (3.3)

i=ly.n

clearly puts (3.2) in the form (1.1).
The possibility of an inaccurate oracle is useful in this framework. In fact
(keeping Remark 2.2 in mind), the oracle in charge of solving (3.3) is allowed to

compute an arbitrary i = i/:
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Proposition 3.1 For given u/ € R™ and i/ € {1 : n}, set h/ := wA; —c; and

a :=Ayj. Then
nl=n)—h >0 and de anjh(uj).

Proof The property 1/ > 0 is obvious from the definition (3.3) of A(u/). Now

consider the definition of d;, Jh(u/) in (1.4): for all u
h) =1l + (u—w)a! =W + (u—w))A; = WAy —cy+(u— WAy
the last term is just uA;; — c;j, which is not larger than /(). u]

As for the availability of a Slater point, it is application dependent; note that
we may take #° = 0 in (1.2) if ¢ > 0. A particularly interesting situation will be

seen in §3.2 below.
In this section, we explain how our bundle method for the dual problem (3.2)

can solve the primal problem (3.1). Again we drop the index k whenever possible.

3.1 Primal recovery

We proceed to show that the multiplier vector A of Lemma 1.2 provides a good
candidate for solving (3.1), once properly embedded in R". In fact, the (y/,a?)’s
in (1.9) or (1.10) connote the (c;,A;)’s in (3.3) or (3.2). The AJ’s of (1.12) define
na as well as
py= Yy (34)
jel
then 1(7,4) connotes (cA,AA) in (3.1).

A primal-dual optimal pair for (3.1), (3.2) is a (/:l,ﬂ) € RY x RY satisfying

dA<c, AA+b>0, cA+ab<0, (3.5)
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where the last <-sign could just be replaced by = (weak duality). In the con-
struction of an optimal pair by our bundle method (remember from §2.4 that the
candidate to dual optimality is the stability center 1), the next result deals with the

second and third inequalities:

Lemma 3.2 With (3.4), (2.13) and the notation of Lemma 1.2, there holds

uj+ab=34. (3.6)

pa+b>g, X))

Proof By the definition of normal cone, v in (1.11) is in complementarity with

ut:0<ut L (—v) >0, hence

which gives (3.7) and u* (@) = u*§ — u*b. Besides, complementarity slackness
in (1.10) guarantees that uta/ = y/ if A/ > 0, hence u*(ua) = puf; this gives

uy=utg—uth. Since 5= (a—ut)b+u*g by (2.13), (3.6) follows. m]

The role of the convergence property (2.20) for primal recovery is now clear:
together with the constraint h(u) <0, it aims at satisfying the three inequalities
in (3.5). Assume for the moment that J C {1 : n}. Extending the AJ’s by zero
gives A € R”, which satisfies approximately the optimality conditions when the

algorithm is close to convergence. Actually, J can be slightly more general:

Theorem 3.3 Assume in (1.9) that the (y/,a)’s are linear combinations of the

(ciAy)’s in (3.1):

n i :
=Y o foreach j€J. (3.8)
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With A of Lemma 1.2, define 2 eR by

dir=Y Mol forie{l:n}. (3.9)

JjeJ
Then there holds
cA+ab=68, AL+b>3.
Proof Using successively the definition (3.9) of i, (3.8) and the definitions (1.12),

(3.4) of (7,4), we have

Ci no Ci L . (o} . ’y/ ’}7
S I 5 P ol Bl el R B
Al i=1 A; jel =1 A jeJ al a
The result is then just Lemma3.2. O

Naturally, & should be nonnegative to guarantee 2 > 0. In our framework, the
o’s actually form convex multipliers, coming into play when aggregating: in (2.7),
4 € dh(u") is a convex combination of the a/’s making up h(-) - see (2.4). The
above result is therefore useful to deal with a bundle with negative indices. This

will be seen more precisely in §6.

3.2 The positively homogeneous case

The main innovative feature of our method is the interpolation technique outlined
in §2.1; arguably, its efficiency relies heavily on the choice of the Slater point: for
example, would it not be a good idea to improve u’ whenever a strictly better fea-
sible point is found? Our technique, however, seems convenient in the particular
instances of (3.1), (3.2) where c is the vector of all ones in R". Then the constraint

in (1.1) has the form

h(u) =o(m)—1, where o(u):= nax uA;. (3.10)
=l
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Here come a few key observations:
(i) The above o (-) is a positively homogeneous function of u: o(Bu) = Bo(u)
forall B > 0.
(ii) An obvious Slater point is u® = 0, for which 1° := h(u®) = —1 is readily
available.
(iii) Assume it = h(ut) > 0in (2.1) and use positive homogeneity M’=n*t=0
and h(-) is affine with respect to B in Fig. 2.1, o(-) is linear):

o(it) = o(u®) +ﬁ(0‘(u+) —o() = U—(led(tﬁ') =1.

Thus, in the noiseless case, the candidate 17 for the next stability center lies
on the boundary of the feasible domain in (3.2).
(iv) Of course, it is (-) which is computed by the oracle, and this computation

can be inaccurate, as in the general case.

Property (iii) above is very convenient and assesses the choice of u® =0 as
the interpolation center: first, optimal solutions of (3.2) should be sought on the
boundary of its feasible domain; second, the stability centers are feasible (if the
oracle is exact), so each —iib is a lower bound for the primal optimal value. These

two features are a definite advantage of our approach, which is then really “conic”.

Remark 3.4 Note an interesting consequence of positive homogeneity: suppose
the oracle is called at a point Bu/, with 8 > 0. Then chances are that the oracle
will find the same index i/ (see Proposition 3.1) that would be obtained at ul:

calling (o‘é,af;) its answer, we will have

J Jj e = i
O'B—ﬁo‘ and ap=d.
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Setting 6(-) = h(+) + 1 for I given in (1.5) and using o/ = u/a’ gives

(')‘é(u) = 0'£ + (u —ﬁuj)a{] =pol+(u— Bul)al
=0/ +pol+u—w)al - puial
=6iu)+po/ —Bo! =6/ (u).
In other words: assuming that the oracle is reasonably deterministic, its answer at

ut or ii of (2.1) produces the same linearization (1.5). [m}

3.3 Combinatorial applications

Linear programs with a constant cost row may not be so frequent. However, (3.1)
may come from the Dantzig-Wolfe formulation of various combinatorial prob-
lems; A is then an integer vector, and the constraint A € N" is relaxed to A > 0;
see [42, §11.2]. The case c; = 1 occurs in the classical approach [12] of Gilmore
and Gomory to the cutting-stock problem; §7 below gives an illustration. Then
(3.10) is a knapsack problem, for which the possibility of an inexact oracle is
particularly welcome. The same situation occurs in some relaxations of the graph-
coloring problem [31], in which the oracle computes a maximum stable set. See
also [4].

When c is a general positive vector, positive homogeneity can of course be

recovered by modelling the constraint uA < c as

M) = max ("—A‘) ~1<0; G.11)

Ci i=l..n\ Cj

h(u) := max (

i=l,..,n

see [3,36]. This, however, implies that the oracle maximizing uA; accommodates

scaled columns of A.
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Remark 3.5 Dual feasible points are useful to produce primal lower bounds. From
this point of view, the ii’s from (2.1) are useful if the oracle is exact; actually,
f(it) = —iib is just Farley’s bound of [8], see also [1,7,30,39,40] (to realize this,
compare (3.11) with the equation preceding the theorem in [8]).

It a branch and bound algorithm is used to approximate A(i) in (3.11), upper
bounds 7 are available and convenient Farley-type bounds f(if) = —iib can still be

produced, via the interpolation mechanism mentioned in Remark 2.3. u]
More generally, Dantzig-Wolfe formulations of combinatorial problems are
min cA +do, AA+Ba+b>0, AeN' ae{0,1}’

(see [40]). Their associate auxiliary problems (to maximize the Lagrangian, see
[28]) are

l{l}lg (c—uA)A + 021;21 (d—uB)ot—bu.
They result in a dual problem of the form (1.1), but where the objective function

fu)=ub —02'221((1 —uB)a

is given through an oracle, just as the constraint A(-). Then (1.1) becomes a fully

nonsmooth constrained optimization problem, for which there are a number of

possibilities:

— It can be solved by standard versions of constrained bundle methods, as reviewed
in §2.1.

— An additional variable can be introduced, say v, and (1.1) can be formulated as
minimizing v, subject to the constraint max { f(u) — v, h(u)} < 0.

— Our present variant can be tailored to this situation.
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4 The inexact conic proximal bundle method

We now specify the algorithm outlined in §2. In our description, the model K of
(1.7) is abstract. It may have the particular form 7¥(-) = max ;¢ 7/ ("), J* being
managed as described in §2.3; but this level of detail is not necessary in our de-
scription. The management of the stepsize t* is also left vague. However we do
describe the management of the stability center i*, as specified in §2.1.

The algorithm uses the Slater point u® of (1.2), a descent parameter k €]0, 1
and a lower bound #yyin > O for the stepsize; K(+) will mark descent iterations (at
iteration k, the last descent iteration was the K(k)th one) and the flag NA will
secure the noise-attenuation mechanism of §2.2 (during which a decrease of the

stepsize is untimely).

Algorithm 4.1 An initial point u! € C and an initial stepsize 1! > tnq are given.
STEP 0 (Initiation). Call the oracle at u' to obtain ' and a' of (1.3). Choose
a function £'(-) satisfying (1.7). Compute i®® by (2.1) and set a' = if%. Set
NA=0,K(1)=0,k=1.
STEP 1 (Trial point finding). Find 1t!, @, pk, g* as described by Lemma 1.2.
Compute V¢ of (2.17), & and &* of (2.13).
SUBSTEP 1’ (Stopping criterion). If * =0 and 5% <0, stop.
SUBSTEP 1” (Noise attenuation). If (2.18) does not hold, set X = 10t¢, NA = 1
and loop back to Step 1.
STEP 2 (Oracle call). Call the oracle at u**! to obtain 7*+! and a*+!. Compute
ik of (2.1).
STEP 3 (Step distribution). Perform the following operations, depending on the

descent test (2.19).
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Descent-step: If (2.19) holds, Null-step: If (2.19) does not hold,
set gkt =ik set pkt! = gk,
set K(k+1)=k NA=0. set K(k+1) = K(k).

. If NA = 1, set 15! =k,
Select 2 tmin -

If NA = 0, select 15t € [tyyin, 1¥].

STEP 4 (Model updating). Choose a function k() satisfying (2.8).

STEP 5 (Loop). Increase k by 1 and go to Step 1. [m}

A few comments on the method are in order.

(i) The initial ' may be the Slater point itself; in this case, 2! = i1 = u! = u0.

(ii) The simplest initial model is 4!(-) = k' (-). However, the algorithm may be
hot-started, with a nonempty initial bundle: J' in (1.9) will contain more
than one index. Being higher, the model R!(-) will thus be more accurate.

(iii) Similarly, multiple cuts may be used at each iteration: the oracle may answer
several values for  and a at a given u, each of which providing its lineariza-
tion A(+) satisfying (1.6). The main change in the algoritﬁm is notational; we
will not elaborate on this technique here.

(iv) Step 1 may use the QP method of [21] or [10], which can solve efficiently
sequences of subproblems (1.10) when C and f are polyhedral. The same
method can also handle a quadratic f.

(v) Section 5 below will establish that either f (%) — —oo or the convergence
property (2.20) holds. An additional stopping criterion could accordingly be

inserted in Substep 1: stop if f(#%) is deemed small enough.
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Along the same lines, tolerances may be inserted in Substep 1': one can
stop when |¢¢| < p and 8% < §, with p > 0and § > 0. Admitting that £(#") is
bounded from below, (2.20) will guarantee that the algorithm stops anyway.
Note that ﬁ is homogeneous to f-values; as for P (3.7) shows that it is a
constraint residual in (3.1).

(vi) Substep 1” may of course use extrapolation formulae more sophisticated
than just multiplying r¥ by 10. The only important thing is to drive * to +e
in case of an infinite loop within Step 1.

Step 3 may likewise use sophisticated updating formulae. Note that the
stepsize may not increase after a null step.

(vii) As mentioned in §2.3, the property 2¥t!(-) > h=*(-) in Step 4 is (always
recommended but) only necessary when a null step is made and wk>o.

1t should be clear that (2.20) is the desirable convergence property. With re-

lation to our comment (v) above, let the tolerances ﬁ and p stop the algorithm

at some iteration k, the last descent step having been performed at iteration K :=

K (k). Then (see Lemma 2.1) ik is feasible within £ < max{n°,n&+!}. As for

objective values, assume that (1.1) has an optimal solution at finite distance, say

|u*| < R. Using the Cauchy-Schwarz inequality in (2.16), £ < f(u*) +5+ Rp.

5 Convergence

Convergence of a bundle method is usually split into two cases: either there are
infinitely many descent steps, or the stability center stops. Here, the latter case
splits in turn into several subcases, due to possible loops within Step 1.

We first establish relations coming from the noise in the oracle.
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Lemma 5.1 Let k be such that (2.18) does not hold. Then, u° being the Slater

point (1.2),

— k() < F®) = F(@%) + 2—ikluo — ", (5.1)

k
— k() < 8 < —’E|g"12 and g < 2h(* “—k .2

Proof Setu = 0 in (2.12) and use “not (2.18)”:

PER(10) = pkRk(0) > FuftY) + (0 — uk 1) gk — ()
= f(*) - &+ (W0 — g — £(u°)
F@F)+ 518+ (0 =g~ ().

This gives*
N 1 " .
HR() > F() = 5l 8 = £,

which is (5.1). The first inequality in (5.2) comes easily from (2.14) and “not

(2.18)”; the second inequality is a consequence. u]

5.1 Infinite loop within Step 1

This section considers the case where k stops: the algorithm solves (1.8) repeat-
edly, without visiting Steps 2 to 5. Then the model o = Ik and the stability center
i = 0 are fixed, only ¢ = ¢* varies (increasingly). We therefore drop the mislead-
ing superscript k and use more appropriate notation L, &, ", etc. It is convenient

to introduce the pure cutting-plane problem

minf(x), u€C, h(u)<0. (5.3)

4 Just develop the square |v/78 + (u® —a)/v/f|* > 0.
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Indeed, (1.8) amounts to computing the Moreau-Yosida regularization at i ([14,
§ XV.4.1]) of the actual objective function in (5.3) (equal to f(u) if u feasible, +eo
otherwise).
Proposition 5.2 Suppose the loop within Step 1 is infinite at some iteration k — so
that t — oo} call f* the optimal value of the pure cutting-plane problem (5.3).
Then

(i) limsups, <0and g —0;

(ii) f* > —oo, h(i1) >0 and f(2) < J*;
(iii) f(uF) — f*; and if (5.3) has a nonempty set of optimal solutions, then ut

tends to the projection of fi onto that set.

Proof With the present notation, (5.1) reads

S0 —f@) | —al®
< —h(ud) —2th(u0)’

which is bounded from above since ¢ increases.

Then write (5.2): —h(1) < & < —5|8|? and |g|? < 2h(2)%; this implies
& <0 and g — 0. It follows that 5 <8+ |a] 8] (see (2.13)) cannot have a
positive cluster point; (i) is proved.

If 7 were feasible in (1.8), we could set u = 7 in (2.15), entailing the contra-
diction & > 0. Next, (2.16) shows with (i) that f(i2) < f(u) for all u feasible in
(1.8), hence in (5.3); in particular, (5.3) has a finite optimal value: this proves (ii).

Finally, fix u feasible in (5.3), hence in (1.8):
)+ l|u+ —a* < flu)+ —l—lu —a? (5.4)
ST 2t

and pass to the limit: {1;"} is a minimizing sequence for (5.3). Besides, set u in

(5.4) to an optimal solution of (5.3): u is feasible in (1.8), f(1;") > f(u) and we
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can write
%|u,+ - < %]u—ﬁlz;

this completes the proof of (iii). u]

It is known that the sequences {f(i;")} and {|u;” — 2|} are actually monotone;
see for example [23]. Because f* is not larger than the optimal value of (1.1), (ii)
shows that 2 has a very good f-value — but a blatantly bad /-value, although the
latter is assessed by Lemma 2.1. During a loop within Step 1, trial points ujt rely
upon the deceiving point i2; they may be driven toward uninteresting regions of
C, without even consulting the oracle to check. If f and C (and 1) are polyhedral,
u solves (5.3) for ¢ large enough: see [14, Prop.XV.4.2.5]. This case may be
discovered by a parametric QP method such as [23], which is thus useful to shorten

such potentially fruitless loops.

5.2 Finitely many descent steps

This section is devoted to the case where the stability center stops, say at iteration
% accordingly, we denote by 1 the stability center(s) i = @ for k > k.

First of all, a rather simple situation, similar to that of the previous section, is
when there are infinitely many loops within Step 1. Then NA = 1 forever, and tk
is never decreased in Step 3; in fact, ¥ — +-eo.

Proposition 5.3 Suppose there are only null steps after iteration k. Denote by X
the set of k > k for which at least one loop within Step I occurs. If 2 is an infinite

set, then (2.20) holds: indeed limke;gg”k =0 and limsupyc 5k <0.

Proof This is essentially Proposition 5.2(i): write (5.1), (5.2) for k € ¢ and let t*

tend to +oo for k € J¢ . [u]
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The other situation is when (2.18) holds for all k large enough. From then on,
t* may only decrease (or stay fixed forever). Besides, (2.17) implies & <k so

we clearly have
|84 < vk and r¥|gF2 < 2" if (2.18) holds . (5.5)
Introduce the Lagrangian associated with (1.8)
C3ur LK) == flu)+ ik ) + %ht —a?. (5.6)

We start with properties linking successive null steps, which are crucial for estab-
lishing convergence of bundle-type methods. They explain the importance of the
aggregate linearization (2.6).
Lemma 5.4 After a null step issued from ii, the Lagrangian (5.6) satisfies

(i) LX) + #]uk+1 — > < LK)

(i) L¥ (k1) + %E[uk"'z — uk+1 |2 L (uk+2); this relies upon the properties

A+ = i and 1+ <ok,
Proof Linearize the non-quadratic part of L* to obtain the quadratic function
—k . . 1
Courm Iu) = FOFH) + (u—uf)gh + ﬁhl —a%. 5.7
In view of (2.12), we do have T < L*over C.
Developing the square |u— uf*! +uk*+! — |2, direct calculations using (1.11)
give
- —k ke 1 X ke 1
Lk(u) . L"(u“‘l )+ ﬁl” — 2 = LAY+ %ht — k2, (5.8)

so that

‘ 1 &
LX)+ Wlu— W2 = IFw) < LH(u) forallueC
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and (i) follows by setting u = 4.

Now we claim that
Fl) = fF) + - uf*t1)gk  for all u such that ' (1) < 0. (5.9

If uk = 0, this is clear from (2.12), so assume p* > 0: then ik(u+!) = 0 (com-
plementarity slackness). The definitions (2.8) and (2.6) of A**(-) and = (-) then
give

0> FH () > A (u) = (u—ukth)ak.
Multiply by p* > 0 and sum up with (2.9), (2.11); our claim is proved.

Plug (5.9) into (5.7): for all u € C such that ¥+ (u) <0,
Zk(u) < flu)+ —I—k|u—ﬁ|2 < flu)+ —:—||u— a?,
2 2kt
because ¥+! < ¢*. Take in particular u = uft2: because #*+! = 7 and because of

complementarity slackness, the righthand side is L¥+! (14+2), which is therefore

bigger than Zk(u"'“); (ii) then follows from the expression (5.8) of Zk(zz"+2). u}

It is interesting to mention that the above result is really due to the strong
convexity of L*(-), which is minimized over C at uktl: see [14, Thm VL.6.1.2]. We
now turn to the situation where trouble due to a noisy oracle eventually ceases.
Proposition 5.5 Suppose that, after some iteration, only null steps occur and tk
never increases (no loop within Step 1 occurs). Suppose also that the oracle inac-
curacies n* are bounded from above.

Then %, g* tend to 0, as well as v*; and u* tends to ii.
Proof First we bound u*. Fix b° € df(u°) and plug the subgradient inequality
into (2.12) with u = u%:

f(u0) +”kh(u0) > f(uO) & (uk+l _ uO)b0+ (MO —uk+1)g‘kA



An Inexact Conic Bundle Variant Suited to Column Generation 31

Single out # and use (1.11):

0> pkn(u) > (10 —a—r*b0)g* + 4|8k 2 + (2 — u0)b°
> 28 + tinlg* > — M,
where we have set w := (10 — 2 —¢¥b°) /2 and M is a constant. This implies (see
footnote 4, page 26) —i¥h(u°) < [WF[2/tmin + M; because 1* does not increase, wk
is bounded and so is pf; say pk < fi.

Then Lemma 5.4(i) and (1.7) give
LF@YY < f(0) + pmax{(i),0}.

Because Lemma 5.4(ii) implies that the sequence {L¥(u*!)} is increasing, we
see that |u¥+! — ] is bounded: #f is bounded; and n* is also bounded by as-
sumption. Knowing that the 7-subdifferential of (1.3) is locally bounded ([14,

Prop.X1.4.1.2]),

the sequence {a*} is bounded . (5.10)

Besides, L¥(u**") has a finite limit, hence
the sequence {|uf*2 —uf*+!|} tends t0 0 . (5.11)

Now consider the linearization #*1(-) of (1.5). Note that h*+! > 0: otherwise
i#* of (2.1) would be equal to u**! and the descent test (2.19) would be passed, just
by the definition (2.17) of V. Note also that ¥+ (1£+2) < 0, hence F*+! (uk+2) <0

from (2.8). Then we have by the Cauchy-Schwarz inequality

0< K+ = ]'1k+l(ul:+l) = ,'lk+l(”k+2) + (uk-H — uk+2)ak+l

< |ubtt —ukt?) lak+Y],
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5o that 241 — 0 from (5.10), (5.11). In (2.1), B¥ — 1 s0 f3* > K for k large enough.
Start from “not (2.19)”: —kvk < f(i#X) — £(¥) and write
(1= Wk < f(#*) = FubH) fadd v = £(&) - f(u*)]
< (L=PR)F0) = (k1] [convexity of f between u and u*]
= (1= BHF ) = £(a) + 4.
f®) — f(@)

Take k so large that ¥ — k > 0 and obtain v¢ < T(l — B*); hence
—-K

vk —0.
To finish the proof, observe from (5.5) that g — 0 because t* > fmyin, and
also & — 0. So from (2.13), §* = &k + gk — 0. Finally observe from (2.18) that

[u**+! — @] tends to O just as v¥, since r* does not increase. u]

5.3 Case of infinitely many descent steps

The last situation is when the algorithm “looks like” an ordinary optimization
algorithm, consisting of a series of descent iterations.

Proposition 5.6 Suppose that the set 22 C N of descent iterations is infinite. Ei-

ther f(iX) — —oo or the convergence property (2.20) holds in the sense that
Jim. =0 and 1ikrwf8" <0.
Proof Assuming that the monotonic sequence { (%)} has a finite limit, let k| and
k, be two successive indices in JZ".
Because of (5.5), vk > 0 for k € J¢; besides, @*2 = 21! and the descent
test (2.19) gives kvk2 < f(ak2t!) — f(@41+!). Summing up: Tie . V¢ < +oo; the

subsequence {v" }.¢ therefore tends to 0; and remembering 5 > toin:

. k) k|2 s Ak .ok
=0 = 1 =0. 3
Jig gt =0, limg'=0. iy et=0 512
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k+1

—u9);

At the descent iteration k = ko, #Ft! = it* of (2.1), with [tk —u| < |uf
using (1.11), we then write
|akt! — 02— |ak —u0)? < |o* —rkgk — 02 — |k — 10
= k(e gk +2(u0 — k))g*.
Using again the fact that 2 = #*> = 24171, we sum these inequalities over J¢" to

obtain

—eo < 3 kgt 200 — ))8".
ket
If there existed & > 0 such that (g% +2(u0 — i¥))g* < —¢ for all k € ¢/, then we

would have Z;,,xt" < o0, which is impossible. Therefore, using (5.12),
P!

0 < limsup [t*|g*|* + 208 —20kgk) = 11m sup[ —2i*g4].
ket

Then plug (5.12) into (2.13): liminfie §* <0 and the proof is complete. [u]

5.4 Synthesis

The above study of the various possible cases clarifies the convergence properties
of the algorithm. The present section summarizes these properties; it also studies
boundedness of the multiplier 1, which is important in the primal-dual framework
of §3.

Recall from the rules of the algorithm that K (k) indexes the last descent iter-
ation prior to k; and an important number for feasibility is the asymptotic oracle
inaccuracy

%= = limsup ¥ . (5.13)

k—oo

First we fix the case of a bounded objective.

Proposition 5.7 Let the optimal objective value f* of (1.1) be finite. Then:
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(i) there exists 1* > 0 such that inf,ec f(u) + p*h(u) = f*;
(ii) with the notation (5.13), liminf f(2%) > f* — u*=, so that { f ()} is bound-

ed from below if ™ < +-eo.

Proof Statement (i) is just [34, Cor. 28.2.1]. To obtain (ii), use Lemma 2.1 and

write £* < f(@%) + u*h(a*) < f(@*) + p*n%® for all k; then pass to the limit.

Then convergence of the algorithm is as follows:

Theorem 5.8 Suppose that Algorithm 4.1 neither terminates nor loops infinitely
in Step 1 (so that k — o), and the oracle inaccuracies n* are bounded. Call f*
the optimal value of (1.1) and f* the limit of f(@"). Then:
(i) The convergence property (2.20) holds if f* > —oo;
(ii) In this case, let X be an index set such that limye ;- max{8*,|g*|} = 0. Then
the corresponding subsequence {u*} is bounded:
. f@)—f
limsup uk € —.
ket h ~h(u0)
(iii) In any case, = < f* and limsup h(2*) < = of (5.13).
Proof Propositions 5.3, 5.5 and 5.6 guarantee (i).

Now the first relation below is obtained by setting u = 1 in (2.12); the second

is direct from (2.13):

F) = fut) —ulg+utg > —ph()
flut)—utg = f(@)-8.

Sum up, divide by —/(u®) > 0 and pass to the limit to prove (ii).
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The second statement in (iii) follows directly from Lemma 2.1. For the first,
assume f* > —oo (otherwise the proof is finished); write (2.16) with an arbitrary

u feasible in (1.1) and pass to the limit to obtain f* > f. [u]

6 Convergence in the primal

When the algorithm is used in the framework of §3, attention must be paid to the
primal candidate 2 introduced in §3.1. The model T has the piecewise linear form
(1.9) and several strategies are possible for the management of the bundle. To be
specific, we will assume that Step 4 of Algorithm 4.1

— arbitrarily destroys indices from Jk,

— appends if necessary the aggregate column defined by (2.6),

1

— then appends the new column coming from k!,

so that the resulting J¥*! satisfies (2.7).

Y _
Lemma 6.1 With this strategy, the columns , j € J¥ are convex combina-
al

tions of the columns “ in (3.1).
A;
Proof Two sorts of columns make up the bundle at a given iteration:
— The “natural” columns, which have ¥/ = ¢;;, a/ = a; with j > 0, computed at
the j call of the oracle by a (possibly inaccurate) resolution of (3.3) foru= ul.
— The aggregate columns, with negative indices; consider the aggregate column
—k < 0, constructed at the k™ iteration:
. from (2.4), a=* = & of Proposition 1.2 is a convex combination of the a’’s in

Jk,
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- from Lemma 2.4, y~% = ukt1ak — i (uk+1) is the same convex combination of
the /’s.
Thus, the very first aggregation during the algorithm introduces a convex combi-
nation of natural columns. The subsequent aggregations introduce further convex
combinations. Now taking convex combinations is a transitive operation, so these

are again convex combinations of the original columns. [m]

To construct A¥ of (3.9) from A of (1.12) is then a matter of computer program-
ming, using appropriately the history of the successive aggregations. In (3.8), we
have oc,-j >0and Y, a,.j =1 for each j; hence

& n n . n 8 .
>0 and YAH =Y VYo=Y M =pt, 6.1)
=l ek =l e

while Theorem 3.3 gives

cAx 4 akb = %, 6.2)

AAK b > gk 6.3)

With these premises, the convergence properties of Ak follow naturally from

Theorem 5.8:

Theorem 6.2 Let the primal problem (3.1) have a feasible point, so that (3.1)
and (3.2) have a finite common optimal value z* and (3.2) has a multiplier *, as
stated in Proposition 5.7.

Suppose that the algorithm neither terminates nor loops infinitely in Step 1 (so
that k — o), and the oracle inaccuracies N* are bounded. Define the asymptotic
primal error €* := pu*7™ from (5.13) and let 2 C N be an index set as described

in Theorem 5.8(ii). Then:
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(i) Each cluster point A= of the bounded sequence {ik}ke_;g lies in the €*-

optimal primal solution set
Agr = {AERY 1 cA <" +€*, AL +b>0}. 6.4)

(ii) The distance d(A¥) :=minjep,, |A* — A from A* 10 the &*-optimal set satis-

fies limye ¢ d(A¥) = 0.

Proof When both (3.1) and (3.2) are feasible, their respective optimal solution
sets are nonempty and there is no duality gap. Comparing (3.2) with (1.1), their
common optimal value z* is —f* of Theorem 5.8.

Use Proposition 5.7(ii) and Theorem 5.8(iii): —z* > f* > —z* — £*. Besides,
Theorem 5.8(ii) gives limsupye i < oo: from (6.1), {A¥} e is bounded.

Let 2= be a cluster point of {A*}e¢. Write (6.2) as cAk = 8% — 4*b and pass

to the limit:
cA= <limsupbF— F* <0—f*+e* =7 +¢*.
ket

Pass likewise to the limit in (6.3): AA=+b > 0. This proves (i); then (ii) follows

from the continuity of the distance function d(-). 0

7 Numerical illustrations

We conclude this paper with a brief account of our conic variant in practice, on
the application that really motivated it: cutting-stock problems in the formulation

of Gilmore-Gomory [12]; see also [30].
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7.1 The cutting-stock problem

Recall that the problem is to minimize the number of stock pieces of width W,
used to meet demands d', ..., d™, for m items to be cut at their widths w',...,w".

Hereafter, w € R™ denotes the vector of widths. Consider a vector x € N,
whose each coordinate is the number of units of the corresponding item cut in a
given roll; such an x characterizes a cut pattern and is feasible if wx < W; let n
be the (huge) number of feasible cut patterns. Then let A; be the number of rolls
cut according to pattern i; relaxing the integrality constraint on A, we obtain the

formulation

n n
minY, A, Y Ax>deR", 1>0.

i=1 i=1
This is (3.1), where ¢ € R" is the vector of all ones and the feasible cut patterns
make up the columns of A. The dual is to maximize ud over R}, subject to the
constraint o'(z) := max/_, ux; < 1 and the oracle computing ¢ has to solve the

knapsack problem

max ux, wx<W, xeN" (7.1)

7.2 Data sets

To save space, we give results only for the following randomly generated instances
employed in [25]: the 4000 instances of Wischer and Gau [41] and the 3360 in-
stances of Degraeve and Peeters [7].

The instances of [41] are constructed by the CUTGEN1 generator of [11],
using the following parameter values:

— Number of items m = 10,20, 30,40, 50.
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— Width of the wide rolls W = 10000.

— Interval fraction ¢ = 0.25,0.5,0.75,1; the widths w; are uniformly distributed
integers between 1 and cW.

— Average demand d = 10,50; with m uniform random numbers Ry,...,Ry, €
(0,1), the demands are d; := [ﬂﬁé"fT‘"J for i < m, and d,y = md — e di
(in fact slightly more complicated formulas are used by [11]).

Duplicate widths are aggregated by summing their demands. Combining the dif-

ferent values for m, ¢ and d results in 40 classes; in each class, 100 random in-

stances are generated for a total of 4000.

The small-item-size instances of [7] are generated similarly for m = 10, 20, 30,
40,50,75, 100, ¢ = 0.25,0.5,0.75,1 and d = 10,50, 100, except that Ry,...,R, €
(0.1,0.9) for the demand distribution. In the medium-item-size instances of [71,
only d = 50 is used and the widths are uniformly distri.buted on [Wmin,cW], where
Wmin = 500, 1000, 1500. Both cases have 84 data classes, and 20 random instances

are generated in each class for a total of 2 x 1680.

7.3 Implementation

Our testing environment uses a notebook PC (Pentium M 755 2 GHz, 1.5 GB
RAM) under MS Windows XP, and Fortran 77.

In order to emphasize the primal-dual aspect of the algorithm, we report on the
simultaneous generation of feasible primal solutions, along with the dual iterates
1. These solutions are obtained by various heuristics, as described in [25].

We use the QP solver of [21] for (1.10). For the dual algorithm and primal

heuristics, the knapsack problems (7.1) are solved by Martello-Toth’s procedure
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MTIR, with an early termination test inserted (see [25, §2.2]): the branch and
bound procedure is terminated when it obtains a feasible knapsack which is opti-
mal within €, = 1073 of relative accuracy.

A relative accuracy of £ = 10~° is required from the conic algorithm. More
precisely, Algorithm 4.1 is stopped when either v from (2.17) or |g*| + & from
(1.11), (2.13) is smaller than g(1+ ﬁ"d), with (2.18) holding in the former case.

Besides, “early” termination occurs if the heuristic discovers a primal-optimal
solution (this implies that the dual problem is solved as well, but the algorithm

need not know it yet).

7.4 Results

Tables 7.1 to 7.3 give the statistics for the three series of problems in §7.2; in these
tables,

 kay and kpy are respectively the average and maximum numbers of iterations for
the corresponding series of experiments;

- tay and tyy are likewise running times in wall-clock seconds;

- ne is the number of “early” terminations due to the discovery of an optimal
primal solution;

- ng is the number of instances with a nonzero final gap between the incumbent
primal value and the dual bound rounded up to the next integer; we stress that
this gap, which is 0 most of the time, never exceeds one unit.

These results demonstrate the validity of the method. Actually, they are quite
similar to those reported in [25]. The latter concerns a highly elaborate bundle

implementation to solve (3.2) by exact penalty, with a very smart choice of the
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Table 7.1 Small-item-size instances of Degraeve and Peeters (240 instances per row)

m kay Kinx lay finx Ne ny
10 14.92 32 000 001 108 O
20 32.66 61 0.0l 004 110 O
30 53.05 97 006 1063 115 |
40 71.61 140 004 032 124 O
50 9320 171 009 068 139 O
75 14580 259 0.26 1.89 140 1
100 192.05 338 046 4.07 147 0

Table 7.2 Medium-item-size instances of Degraeve and Peeters (240 instances per row)

m kay ke fav fox  Me Ny
10 17.33 27 0.00 001 54 O
20 34.92 58 001 008 63 0
30 53.43 86 0.02 014 83 0
40 7073 123 0.04 061 68 0
50 90.10 164 0.07 089 69 1
75 13922 236 0.36 828 80 |
100 191.29 300 146 59.67 78 O

Table 7.3 CSP instances of Wischer and Gau (800 instances per row)

mo ky o ko hw o M Ny
10 14.24 31 0.00 002 425 0
20 31.10 63 002 13.13 461 O
30 4895 110 0.01 0.15 475 0
40 6634 139 0.04 033 513 2
50 86.68 171 0.07 058 530 1
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penalty parameter via the FFD heuristic. By contrast, our implemented conic vari-

ant is quite exploratory. At present, its heuristics perform slightly worse on the

instances of [7] (on 3360 runs, 4 nonzero gaps instead of 3); their improvement is

left for future work.
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