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Abstract We give a bundle method for constrained convex optimization. Instead

of using penalty functions, it shifts iterates towards feasibility, by way of aSIater

point, assumed to be known. Besides, the method accepts an oracle delivering

function and subgradient vaIues with unknown accuracy. Our approach is moti-

vated by a number of applications in column generation, in which constraints are

positively homogeneous - so that O is a natural Slater point - and an exact ora-

cle may be time consuming. Finally, our convergence analysis empIoys arguments
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which have been little used so far in the bundle community. The method is illus­

trated on a number of cutting-stock problems.

Keywords NondifferentiabIe optimization . Convex programming . Proximal

bundIe methods . Approximate subgradients . CoIumn generation . Cutting-stock

problem
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1 Introduction

We consider the convex constrained minimization problem

infj(u), u E C, h(u) ~ O; (1.1)

here C is a "simple" closed convex set in the Euclidean space llł l1l (typically a

polyhedron); j(.) is a "simple" convex real-valued function (typically linear, or

quadratic); h(·) is also a convex real-valued functionl, but onIy known via an

oracle which delivers appropriate information at any given u E C.

The present paper relies upon the assumption that a Slater point

uO E C such that h(lP) < O (1.2)

exists and is available; motivating applications are given in §§3.2-3.3.

We are interested in algorithms of the cutting-plane type, whose building

bricks are linearizations of h(·), i.e., affine functions f( u) = ua - r minorizing

h(u). At the cun'ent iteration k of such an algorithm, the oracIe has been called

l In this paper, we will systematically use notation such as 1('), h(·)•. . . for functions, whiJe

l, h, ... will be reserved to particular values of such functions.
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at a number of trial points ul, ... , uk in C, and has returned the corresponding

couples (hi,a i), ... , (hk,ak) in IR x IRin. Normally, hj = h(uj) and aj E CJh(uj)

denote the (exact) constraint value and a subgradient at uj. In this paper, the ora­

cle is allowed to be noisy: we assume for all j

where the inaccuracies 17 jare unknown. The above notation introduces the 17­

subdifferential-

CJT/h(u) := {a : h(·) ~ h(u) -71 + (.- u)a}. (1.4)

As far as cutting planes are concerned, each (hj ,aj) from the oracle defines the

linearization

(1.5)

and the 71j-subgradient inequality gives for all u E IRlIl

In this context, the general bundle methodology [14, §XV.3] maintains

- a model Tl(.) of h(·), which must satisfy

fzk(U) ~ h(u) for aIl u E C ,

- a stability center ak,

- a stability parameter t k > 0,

(1.7)

2 For reasons to come in §3 below, II and a are eonsidered as row and column veetors respec­

tively: a will be a eolumn of an In x n constraint matrix A and II will be a multiplier veetor.
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and the next referenee point uk+ ł is the optimal solution of

(1.8)

In faet, h(.) := hk ( . ) is pieeewise linear (so (1.8) is typically a quadratic pro­

gramming problem); as sueh, it ean be written for some finite index set Jk:

(1.9)

where eaeh (yj,aj) lies in IRx IRI1I; we will ealI bundle the data {(yj,aj)}jEJk

eharaeterizing h(.). The affine funetions in (1.9) are linearizations of h(·). They

ean be those of (1.5), with j E {l : k} and yj := ujaj - hj ; note that (1.6) then

guarantees (1.7). However, §2.3 below will introduee "exogeneous" linearizations,

through the operation of aggregation.

Remark 1.1 We have introdueed two ways for eharaeterizing an affine funetion

sueh as h)(.):

- (1.9) is the natural way; it uses the eonstant term r'. whieh will be useful for the

applieations in §3;

- (1.5) rather translates the origin to uj, whieh is useful for the deseription and

analysis of the algorithm; we will see in §2.4 that translating the origin to fi is

even more appropriate.

With the above notation, (1.8) ean be more eoneretely written as

D

(1.10)

Lemma 1.2 Under assumption (1.2), (1.8) has a unique optimal solution lf+ 1

given by

(1.11)
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where

· bk E }RIII is a sub gradient ot t at uk+ I ,

· rl E}RIII is a subgradient ot fi at uk+l ,

· vk E}RIII lies in the normal cone NC(uk+ ł) to C at ll+l .

With the explicit expression (1.9), we have in (1.11)

jlk = L l') and jlkrl = L ?I)aj ,
jEJk jEJk

w/wre the nonnegative multipliers II) satisfy },)(uk+łaj - yj) = O.

(1.12)

Proof Because of (1.7), the Slater assumption is transmitted to (1.8), which clearly

has a unique optimal solution. Then these statements are just the standard optimal-

ity conditions, see for exampłe [34, Chap. 28]: a subgradient of the Lagrangian is

opposite to the stated normaI cone. Such a subgradient can be written b+ lt7ii + jla

for (1.8) or b+ lt7ii + LjA)aj for (1.10). D

This resuIt reveals the crucialm-vectors gk and ak. Up to the approximation

h(·) ~ Tl(.), t is a distinguished subgradient of the Lagrangian associated with

(1.1) and the update formuła uk+1 = ak - tkgk of (1.11) resembles a subgradient

step with stepsize t k , to minimize that Lagrangian. With respect to footnote 2, page

3, note that the subgradient gk is a' colurnn; but t kgk should be viewed as a row.

The whole business of convergence will be to drive gk to O. As for ak, it takes its

importance for aggregation (§2.3), and also for Lagrangian relaxation, or rather

column generation (§3.1).

The paper is organized as follows: §2 reviews the various points in the paper

which make its originality: §3 is devoted to our motivating application: column
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generation; §4 states the algorithrn, whose convergence is analyzed in §5 and in-

terpreted in the primal space in §6; we conclude in §7 with numerical illustrations

on cutting-stock problems.

2 Main ideas in the paper

We first proceed to outline the algorithm studied in this paper, by describing its

current kth iteration. In this informal description, we will often drop the index k to

alleviate notation; then the superscript "}" will stand for k + 1.

2.1 Maintaining the stability center

The role of zł := tl is to control a suitable balance between objective and constraint

values. Our variant uses the Slater point (1.2) to take care of feasibility of each u;

as a result, the management of the stability center may disregard h-values and

needs to check j-values only.

More precisely, having called the oracle at the new iterate u+, we construct the

interpolated point

(2.1)

Note here that ~ E [O, l]. The algorithm uses the (strictly negative) answer hO from

the oracle, but aO need not be used. The next result is illustrated by Fig. 2.1.
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Fig. 2.1 Interpolation guarantees h(it) ~ (1-~)71o+~71+.

Proof By convexity of hi-],

h(il) ~ (1- ~)h(tP)+~h(u+)

= (1- ~)(hO+ 11 0) +~(h+ +11+)

= ha+~(h+ -ha) + (1- ~)11°+ ~11+,

where we have used (1.3). Inspection of (2.1) shows that ha + ~(h+ - ha)~°in

either case, so the result follows. D

Thus, possible infeasibility of ii is controlled in the same way as the oracle's

inaccuracy. In particular, tt is feasible in the case of an exact oracle.

Now let us assume for the moment that ft is feasible in (l.8) - this is the case

with an exact oracle. Then the predicted decrease v := f(ft) - f(u+) is positive

(the case v = O, i.e., u+ = a, is uninteresting; and §2.2 below will explain how to

enforce positivity of v in the noisy case). As a result, the following strategy makes

sense:

- Improve the current stability center if f(u) is "definitely smaller" than f(tt).

More precisely, fix a coefficient lC E]O, 1[ and set a+ := u if f(ft) - f(u) ~ lCV;

this is a descent step.

- If such is not the case, make a null step: a+ := a.
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- In either case, update h(.) and t and proceed to the next iteration.

The above interpolation idea is reminiscent of versions of the cutting-plane

algorithm which also use points like uO and ii;see [38] and the references therein.

In these versions, however, the oracIe is called at il, while our variant disregards

ii for the oracle, which is called at u+ only. However, §3.2 below will show that

both appraches become cIoser in an important special case.

Except for the two recent filter methods [9,15], the existing bundle methods

for constrained optimization require a merit function, for example an exact penalty

(f(u) +nmax{O,h(u)}, as in SQP) or an "F-distance" (max {f(u) - f(a),h(u)},

as in the method of centers). The earliest feasible-point methods of [32] and [18,

Ch. 5] converge slowly, because their method-of-centers subproblems prevent ap­

proaching the constraint boundary fast. No feasible starting point is needed by

the phase I/phase II methods of [18, Ch. 5.7], but they can also be quite slow, as

confirmed for the recent variant of [35]. The penalty function methods of [19,20]

tend to perform better; still, they require additionally that C be bounded, and may

converge slowly when their penalty parameter estimates are too high. Finally, the

level method of [29] (also see [24] and [2]) has good efficiency estimates when the

set C is bounded, even if a Slater point does not exist; not suprisingly, therefore, it

cannot benefit from the knowledge of a Slater point.

2.2 Coping with the noise

Suppose t := t k = +00 in (1.8): there is no stabilizing term .and (1.8) becomes

a relaxation of (1.1), thanks to (1.7) . U, in addition, we take Jk = {I : k}, we
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obtain the pure cutting-plane algorithm' [5,16] used for standard column genera­

tion, see §3 below. This algorithm is little affected by inaccuracies: it just requires

the oracIe to provide linearizations satisfying (1.6) . Accumulating linearizations

eventually drives h+ to O; insofar as h+ is cIose to h(u+) (depending on the noise

in the oracle), a small h+ implies that u+ is approximately feasible, and therefore

approximately optimal for (1.1).

This observation indicates that the noise can disturb our bundle algorithm only

via the stabilizing term in (1.8). In fact, the new stability center a+ is constructed

so as to be feasible in the curren.tproblem (1.8) (see Fig . 2.1). Nevertheless, h(Ci+)

may be positive and the property (1.6) need not guarantee a+ to stay feasible in all

subsequent problems (1.8). When the stability center is not feasible, the predicted

decrease may be negative: the algorithm is so much fooled that it seeks points

worse than the stability center.

QUI' previous remark immediately suggests the cure, already proposed in [26]:

just increase t in (1.8) in order to lessen the influence of the stabilizing term; do

this until

- either v gives a safe descent test,

- or t is deemed large enough so that the whole algorithm can stop, just as the pure

cutting-plane method would do.

Remark 2.2 We will see (end of §4) that more accurate answers from the oracle

are required only at descent steps: large errors h(u j ) - hj at null steps do not

deteriorate the final answer of the algorithm. D

3 When t = +00, (1.8) may have no solution; we skip this difficulty here .
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To give a safe descent test, v should be "substantially" positive. Technically, it

is convenient to require a decrease of the whoIe objective function in (1.8) from zł

to u+: descent is tested onIy when

otherwise t is simpIy inereased and (1.8) is solved again, with the same fi and h(.).

Remark 2.3 (Bounding the objective) Let us mention here that no feasibIe aneed

ever be produeed when the oracle is noisy; it may not be straightforward to bound

from above the optimal value f * of (1.1).

It is known that f(u) -ł-zrmax {O,h(u)} ~ f * for any u E C if n is large enough

(1arger than an optimal multiplier )1*). Vet, sueh bounds assume some information

about )1* - and are corrupted by noise anyway.

However, assume that the oracle is also able to answer upper bounds, say r,) ~

h(uj ) . They ean be inserted in the above exaet penalty funetion, but better bounds

can be obtained. In faet, introduee analogously to (2.1) the upper interpolated

point

1
1 ifh+ ~ o,

fi := uO+ i3 (u+ - lP) with i3:= -lio
li+ _ lio otherwise

and assume lio < O.Then i3 E [0,1] and h(źl) ~ Oby eonvexity, as in Lernma 2.1.

This eonstruetion ean be useful in applications, see Remark 3.5 below. D

Our algorithmic eonstruetions and analysis of inaeeuracies in the oracIe extend

to the eonstrained case the inexaet Iinearization framework of [26,27]; for earlier

related developments, see [13,17,22,33,37].
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2.3 Managing the constraint model: the aggregate linearization

11

The management of h(.) should guarantee convergence in spite of possible non-

smoothness of h(·). To this aim the standard idea, which is used in the pure

cutting-plane algorithm, is to accumulate information coming from the oracIe (the

"bundling" process): with the new linearization ii+(u) := h++ (u - u+)a+ - re-

calI notation (1.5) - one sets h+(-) := max {h(.),ii+( .)}, i.e., J+ := JU {+}. This

results in storing alI the (yj,a j) in (1.10), which may become inconvenient or

impossible when the iteration index k grows; the question is therefore: Which

linearizations should h+(.) be made from? To answer it, (1.7) should be kept in

mind.

NaturalIy, the new couple (h+,a+) must appeal' in the new model: J+ :>{+}.

As for information accumulation, it uses the set

(2.3)

of active linearizations at u+. From standard convex analysis (see [14, §VIAA or

Ex. VI.3A] for example), the subdifferential of h(.) at u+ is the convex hull of the

corresponding slopes:

ah(u+) = {LĄaJaj: a) ~ 0, L o) = l}. (204)
JEJ JEJ

By the definition of subgradient, the function f(u) := h(u+)+ (u - u+)a sat-

isfies f(·) ~ h(.) if a E ah(u+). With reference to (1.9), this f(·) can be put in the

form f(u) = ua- y and its constant term y is easy to compute:

Lemma 2.4 With a E ah(u+), the above function f(·) has

(r) L .(rj

)
a = JEJa/ aj

for some a ~°witli L aj = 1 .
JEJ

(2.5)
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Proof Because u+aj - yj = h(u+) = f(u+) = u+a - y for all j E i, we obtain for

any set Ci of convex multipliers

u+(L~Cijaj) - L~Cijyj = h(u+) = f(u+) = u+a- y.
iEJ iEJ

This holds in particular for the Ci making up a - see (2.4) .

Then the bundling process distinguishes three cases:

D

(i) A descent step is made . Then the descent property is strong enough to imply

convergence, even if J+ is reduced to the singleton {+}.

(ii) The constraint is not active in (1.8); more precisely, )1 = O. Again, we may

set J+ = {+} without impairing convergence.

(iii) A null step is made and J1 > O. Then Lemma 1.2 reveals the aggregate lin-

earization

which satisfies ii-(·) :::;; hC). Indeed, ii-C) somehow gathers the whole in-

formation contained in the current bundle, entailing the memorization effect

crucial for convergence; this is explained in [6, §4] for example.

Altogether we have max {ii-(u),ii+(u)} :::;; h(u) for all u, which reveals a

piecewise linear function satisfying (1.7): it is a valid candidate for the next

model Jz+(.). Taking this candidate as Jz+(.) corresponds to the "minimal"

set {-, +} for J+. A "maximal" J+ would be {l : k + l}, as in the pure

cutting-plane algorithm. We therefore see that the new index set just has to

satisfy

{-k,k+ l} C Jk+l C {-k,k+ l} UJk. (2.7)
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No matter how J+ is chosen as above, the result is a new model function

satisfying - recall the notation (2.6), (1.5):

max{ii-k(u),il+l (u)} ~ hk+1(u) ~ h(u), for all u E C . (2.8)

We concIude this section with a few remarks:

- A consequence of (2.5) is that the {-}-linearization is useless if J+ already

contains the whole of f. When m is not too large, a reasonable choice is J+ =

fu {+}. An even more sensible choice reduces f to the set of those j such that

)) > O in Lemma 1.2; this is linearization selection, in which each Jk can be

forced to have at most m+ 1 elements; see [18,27].

- In case (iii), the software solving (1.10) usually provides the multiplier vector Il

of(1.12), so ais readily available:just take 0'):= li) /Jl in (2.5).

- Reducing J+ to {+} in cases (i), (H) is not recommended: the next iteration will

be (cIose to) steepest descent, well known for its numerical inefficiency. Even

when h(u+) < O(in which case J1 = O), bundling is probably worthwhile.

- This latter point suggests that aggregation might be desirable even if J1 = O.

For this, we can take any linearization of the form (2.6), where a is any convex

combination of active aj,s at u+.

2.4 Convergence analysis

For later use, we return in this section to the full k-notation. We start with ele­

mentary relations: the properties bk E df(uk+ 1) , ak E dh(uk+1) , Vk E NC(uk+ 1) in
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Lemma 1.2, and (l.7) give for all u E C

K.C. Kiwiel, C. Lemarechal

f(u) ~ f(u k+1)+ (u - uk+1)bk l

h(u) ~h(u) ~ h(uk+1)+(U-ll+1)li ,

O~ (u-ll+1)Vk.

(2.9)

(2.10)

(2.11)

Multiply (2.10) by Jlk ~ O, use complementarity slackness and sum up to obtain

"lu E C, f(u) + Jlkh(u) ~ f(u) +JlkJ?(u) ;;:: f(ll+l) + (u -ll+l )gk. (2 .12)

In a bundle method, convergence of the "natural iterates" u+ is not a relevant

property: the actual candidates to solving (l.1) are rather the stability centers. This

is why the optimality conditions of (1.8) Ol' (1.10) are traditionaIly translated to fi:

Theorem 2.5 With the notation ofLemma 1.2, set

ek := f(Cl) - f(u k+ 1)- (Cl- uk+ 1)gkl

Sk:=ek+ligk.

Then

ek ;;:: -Jlkh(cl).

Besides.for all u feasible in (1.8) (e.g.,feasible in (1.1)):

f(u) ~ f(Cl) - ek+ (u - tl)gk 1

or equivalently

(2.13)

(2.14)

(2.15)

(2.16)

Proof We use (2.12). First take u = fi and arrange terms to obtain e;;:: -Jlh(fi) ;;::

-Jlh(ii). Then take u feasible in (1.8): h(u) ~ Oand f(u) ~ f(u+) + (u - u+)g.

Straightforward manipulations then give (2.15) and (2.16). Note that the feasible

set of (1.8) contains the feasible set of (1.1) thanks to (1.7). D
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Note that emay be negative if a is not feasible in (1.8). In connection with

§2.1 and §2.2, use (1.11) and (2.13): the predicted decrease is

(2.17)

As explained in §2.2, it is "substantially" positive when (2.2) holds, which has

several equivalent expressions obtained by suitable manipulations based on (2.17):

(2.18)

When this holds, the descent test is

(2.19)

with ii given by (2.1) and K E]O,l(.

Traditional convergence analyses of bundle methods consist in showing that O

is a eluster point ofthe sequence {ek,gk} C JR. x JR.11I; then (2.15) implies thatf(ak)

is "asymptotically good". Here we use a slightly different argument, namely:

The sequence {(8 k,gk)} has a eluster point (8,0), with 8 ~ O, (2.20)

Remark 2.6 This argument goes back to [26] and has an interesting background

in convex analysis. Call q>(-) the actual objective function of (1.1) (q>(u) = f(u)

if u is feasible, +00 otherwise) and admit that every ak is feasible. Then write

(2.16) as ut - q>(u) ~ 8k - q> (ak) for all u E JR.11I and take the supremum over u:

q>*(gk) ~ 8k - q>(ii) where q>*(.) is the convex conjugate of q>(.). Finally take a

subsequence stipulated by (2.20): knowing that q>* (.) is lower semicontinuous and

that q> (li) has a limit (q> (ak) = f(ttk) is monotone),
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Remembering that -li> *(O) is the infimum of li> (.), this establishes that ak is a

minimizing sequence for (1.1).

With the traditional approach, the term akgk in (2.15) brings trouble if cI is

unbounded. D

Thus, f-values ofthe stability centers are assessed by (2.15) or (2.16). Their h-

values are assessed by Lemma 2.1. Supposing that the latest descent step occurred

at iteration K (Le., after the K + 1st oracIe's calI), feasibility of adepends on f]K,

i.e., on 1]0 and 1]K+l; for example, h(li) ~ 1]K+l if hK+1 ~ O.

3 Motivation: column generation

Consider the folIowing primal-dual pair of LP problems (c is an n-row, b is an

m-column)

min cI\. l Al\.+b ~ Ol A E lR~ l

max - ub l uA ~ c l U E lR~ l

(3.1)

(3.2)

where 11 is a huge number: then column generation is a method of choice. For

i E {l : 11}, let A, denote col um n i of A. Setting C:= lR~, f(u) := ub and

h(u) := .max (uAj - Cj)
1=1, ... ,11

cIearly puts (3.2) in the form (1.1).

(3.3)

The possibility of an inaccurate oracIe is usefuI in this framework. In fact

(keeping Remark 2.2 in mind), the oracIe in charge of solving (3.3) is allowed to

compute an arbitrary i = ij :
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Proposition 3.1 For given uj E ]R/II and ij E {l : n}, set hj := uj Ajj - Cjj and

aj := Ap. Then

Proof The property ryj ~ O is obvious from the definition (3.3) of h(uj ) . Now

consider the definition of dT/jh(uj ) in (lA): for all u

the last term is just uAjj - Cjj, which is not larger than h(u). D

As for the availability of a Slater point, it is application dependent; note that

we may take uD = O in (1.2) if c > O. A particularly interesting situation will be

seen in §3.2 below.

In this section, we explain how our bundle method for the dual problem (3.2)

can soIve the primal problem (3.1) . Again we drop the index k whenever possibIe.

3.1 Primal recovery

We proceed to show that the multiplier vector A of Lemma 1.2 provides a good

candidate for solving (3.1), once properly embedded in ]R1l. In fact, the (yj,aj)'s

in (1.9) or (1.10) connote the (cj,Aj)'s in (3.3) or (3.2). The Aj's of (1.12) define

).1{1 as well as

JlY:= L yjAj ;
JEJ

(3.4)

then J.l(Y,ii) eonnotes (cA,AA) in (3.1).

A primaI-dual optimaI pair for (3.1), (3.2) is a O.. ,a) E ]R~ x ]R+ satisfying

aA ~ c, A?t. + b ~ O, c?t. + Iib ~ O, (3.5)
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where the last ~-sign could just be replaced by = (weak duality). In the eon-

struction of an optimal pair by our bundle method (remember from §2.4 that the

candidate to dualoptimality is the stability center ił), the next result deals with the

second and third inequalities:

Lemma 3.2 With (3.4), (2.13) and the notation of Lemma 1.2, there holds

(3.6)

(3.7)

Proof By the definition of norrnal cone, v in (1.11) is in complementarity with

u+:°~ u+ -l (-v) ~ 0, hence

which gives (3.7) and u+(Jlii) = u+g - u+b. Besides, complementarity slackness

in (1.10) guarantees that u+aj = yj if )) > 0, hence u+(Jlii) = JlY; this gives

JlY= u+g - ur». Since 8= (ił - u+)b+u+g by (2.13), (3.6) follows. D

The role of the convergence property (2.20) for primal recovery is nowelear:

together with the constraint h(u) ~ 0, it aims at satisfying the three inequalities

in (3.5). Assume for the moment that J C {l : H}. Extending the ),)'s by zero

gives 1 E IRII, which satisfies approximately the optimality conditions when the

algorithm is elose to convergence. Actually, J can be slightly more general:

Theorem 3.3 Assume in (1.9) that the (yj, aj)'s are linear combinations oj the

(ci,Ai)'S in (3.1):

for each JEJ. (3.8)
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With A ofLenima 1.2, define ~ E jRlI by
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~i:= L Aja!
JEJ

Then there holds

for i E {l :n} . (3.9)

Proof Using successively the definition (3.9) of~, (3.8) and the definitions (1.12),

(3.4) of (y,a), we have

(
c~ ) z • (C;). , II , (Ci) .(yj) (y)= L A; = L AJL al = L AJ = J1
Al i=1 A; JEJ ;=1 A; JEJ aj a

The result is thenjust Lemma3.2. D

Naturally, a should be nonnegative to guarantee ~ ~ O. In our framework, the

rx'sactually form convex multipliers, coming into play when aggregating: in (2.7),

aE ah(u+) is a convex co~bination of the aj,s making up h(·) - see (2.4). The

above result is therefore useful to deal with a bundle with negative indices. This

will be seen more precisely in §6.

3.2 The positively homogeneous case

The main innovative feature of our method is the interpolation technique outlined

in §2.l; arguably, its efficiency relies heavily on the choice of ,the Slater point: for

example, would it not be a good idea to improve uO whenever a strictly better fea-

sible point is found? Our technique, however, seems convenient in the particular

instances of (3.1), (3.2) where c is the vector of all ones in R". Then the constraint

in (1.1) has the form

h(u) = cr(u) - l, where cr(u):=, max uA;.
1=1,... ,11

(3.10)
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Here come a few key observations:

(i) The above 0"(-) is a positiveły homogeneous function of u: a(f3u) = f3 o («)

for all f3 ~ O.

(ii) An obvious SIater point is uO= O, for which hO := h(uO) = -1 is readily

avaiIabIe.

(iii) Assume h+ = h(u+) ~ Oin (2.1) and use positive homogeneity (11°= 11+= O

and h(·) is affine with respect to f3 in Fig. 2.1, a(·) is lineał"):

Thus, in the noiseIess case, the candidate LI for the next stability center lies

on the boundary of the feasibIe domain in (3.2).

(iv) Of course, it is a(-) which is computed by the oracle, and this computation

can be inaccurate, as in the generał case.

Property (iii) above is very convenient and assesses the choice of uO = O as

the interpoIation center: first, optimaI soIutions of (3.2) shouId be sought on the

boundary of its feasibłe domain; second, the stability centers are feasibIe (if the

oracIe is exact), so each -ub is a Iower bound for the primaI optimaI value. These

two features are a definite advantage of our approach, whieh is then really "eonie".

Remark 3.4 Note an interesting consequence of positive homogeneity: suppose

the oracIe is called at a point f3 ul , with f3 > O. Then chances are that the oracIe

will find the same index i j (see Proposition 3.1) that wouId be obtained at ul:

calling (ai l a~) its answer, we will have
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Setting 0-(.)= ii(.) + 1 for ii given in (1.5) and using (J"j = ujaj gives

o-~ (u) = (J"~ + (u - {3uj)a~ = {3(J"j + (u - {3u j)a j

= (J"j +{3(J"j + (u - uj)a j - {3u ja j

21

In other words: assuming that the oracle is reasonably deterministic, its answer at

u+ or ił of (2.1) produces the same linearization (l.5).

3.3 Combinatorial applications

o

Linear programs with a constant cost row may not be so frequent. However, (3.1)

may come from the Dantzig-Wolfe formulation of various combinatorial prob-

lerns; A is then an integer vector, and the constraint A E Nn is relaxed to A ;;;:: O;

see [42, §11.2]. The case Ci == 1 occurs in the c1assical approach [12] of Gilmore

and Gomory to the cutting-stock problem; §7 below gives an illustration. Then

(3.10) is a knapsack problem.Tor which the possibility of an inexact oracle is

particularly welcome. The same situation occurs in sorne relaxations of the graph-

coloring problem [31], in which the oracle computes a maximum stable set. See

also [4].

When C is a general positive vector, positive homogeneity can of course be

recovered by modelling the constraint uA ~ c as

(
UAi - Ci) (UAi)h(u) := ,max --- = .max - -1 ~ O;

1=1,... ,/1 Ci l=l, ...,1l Ci
(3.11)

see [3,36]. This, however, implies that the oracle maximizing UAi accommodates

scaled columns of A.
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Remark 3.5 Dual feasible points are useful to produce primallower bounds. From

this point of view, the il's from (2.1) are useful if the oracIe is exact; actually,

f(il) = -ilb is just Farley's bound of [8], see also (1,7,30,39,40] (to realize this,

compare (3.11) with the equation preceding the theorem in [8]).

If a branch and bound algorithm is used to approximate Iz(u) in (3.11), upper

bounds li are available and convenient Farley-type bounds f(ii) = -riib can still be

produced, via the interpolation mechanism mentioned in Remark 2.3. D

More generally, Dantzig-Wolfe formulations of combinatorial problems are

min CA. +dex, AA. +Bex+b ~ O, A. E Nil, ex E {O, I}P

(see [40]). Their associate auxiliary problems (to maxi mize the Lagrangian, see

[28]) are

min(c-uA)A.+ min (d-uB)ex-bu.
A~O O~a~l

They result in a dual problem of the form (1.1), but where the objective function

f(u) = ub - min (d - uB)ex
O~a~1

is given through an oracle, just as the constraint h(·). Then (1.1) becomes a fully

nonsmooth constrained optimization problem, for which there are a num ber of

possibilities:

- It can be solved by standard versions of constrained bundle methods, as reviewed

in §2.1.

- An additional variable can be introduced, say v, and (1.1) can be formulated as

minimizing v, subject to the constraint max {f(u) - v,h(u)} ~ O.

- QUI' present variant can be tailored to this situation.
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4 The inexact eonie proximal bundle method
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We now specify the algorithm outlined in §2. In our description, the model 'hk of

(1.7) is abstract. It may have the particułar form 'hk(.) = max jEJk lij (.), Jk being

managed as described in §2.3; but this level of detail is not necessary in our de­

scription. The management of the stepsize t k is also left vague. However we do

describe the management of the stability center tl, as specified in §2.1.

The algorithm uses the Slater point uO of (1.2), a descent parameter 1( E]O, 1(

and a lower bound (min> °for the stepsize; K(·) will mark descent iterations (at

iteration k, the last descent iteration was the K(k)th one) and the flag NA will

secure the noise-attenuation mechanism of §2.2 (during which a decrease of the

stepsize is untimely).

Algorithm 4.1 An initiaI point u l E C and an initial stepsize t l ~ tminare given.

STEP °ilnitiation). Call the oracIe at ul to obtain hl and al of (1.3). Choose

a function 'hI ( .) satisfyi ng (1.7). Compute LłO by (2.1) and set ił. I = t"io. Set

NA = 0, K(1) = 0, k = 1.

STEP 1 (Trżal point finding). Find u~+l, ak, Jlk, t as described by Lemma 1.2.

Compute vk of (2.17), ek and $k of (2.13).

SUBSTEP l' tStopping criterioni . If t =°and $k :::;; 0, stop.

SUBSTEP 1" (Noise auenuationy. If (2.18) does not hołd, set tk = 10tk , NA = 1

and loop back to Step l.

STEP 2 (Oracle call). Call the oracIe at uk+1 to obtain hk+1 and ak+1• Compute

Li of (2.1).

STEP 3 (Step distribution). Perform the following operations, depending on the

descent test (2.19).
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Descent-step: If (2.19) holds,

set K(k+ l) = k, NA = O.
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Null-step: If (2.19) does not hold,

set ak+1 = tl;

set K(k+ l) = K(k).

Select t k+ I ~ tmin .
If NA = l, settk+1 = tk •

If NA = O,select r'"! E [tminltk].

STEP 4 (Modelupdating). Choose a function Jzk+l (.) satisfying (2.8).

STEP 5 (Loop). Increase k by l and go to Step l. D

A few comments on the method are in order.

(i) The initial u I may be the Slater point itself; in this case, al = z'i° = u l = uo.

(ii) The simplest initial model is Jz1C) = ii1( . ) . However, the algorithm may be

hot-started, with a nonempty initial bundle: JI in (1.9) will contain more

than one index. Being higher, the model hl (.) will thus be more accurate.

(iii) Similarly, multiple cuts may be used at each iteration: the oracIe may answer

several values for h and a at a given Zł, each of which providing its lineariza­

tion ii(·) satisfying (1.6). The main change in the algorithm is notational; we

will not elaborate on this technique here.

(iv) Step l may use the QP method of [21] Ol' [10], which can solve efficiently

sequences of subproblems (1.10) when C and f are polyhedral. The same

method can also handle a quadratic f.

(v) Section 5 below will establish that either f(ti k ) ---t -00 or the convergence

property (2.20) holds. An additional stopping criterion could accordingly be

inserted in Substep l ': stop if f(uk ) is deemed smalI enough.

.-
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Along the same lines, tolerances may be inserted in Substep 1': one can

stop when Igkl ~ 12 and 3k ~ §.., with 12 > Oand §.. > O.Admitting that j(ztk) is

bounded from below, (2.20) will guarantee that the algorithm stops anyway.

Note that §.. is homogeneous to j-values; as for 12, (3.7) shows that it is a

constraint residual in (3.1).

(vi) Substep l" may of course use extrapolation formulae more sophisticated

than just multiplying tk by 10. The only important thing is to drive tk to +00

in case of an infinite loop within Step 1.

Step 3 may likewise use sophisticated updating formulae. Note that the

stepsize may not increase after a nulI step.

(vii) As mentioned in §2.3, the property hk+l (.) ~ Ji-k(.) in Step 4 is (always

recommended but) oni y necessary when a null step is made and J1 k > O.

It should be cIear that (2.20) is the desirable convergence property. With re­

lation to our comment (v) above, let the tolerances §.. and 12 stop the algorithm

at some iteration lf., the last descent step having been performed at iteration K:=

K(k). Then (see Lemma 2.1) ais.. is feasible within f]K. ~ max{1]°, 1]K+I}. As for

objective values, assume that (1.1) has an optimal solution at finite distance, say

lu*1 ~ R. Using the Cauchy-Schwarz inequality in (2.16), f(a lf) ~ j(u*) +§..+R12.

5 Convergence

Convergence of a bundle method is usualIy split into two cases: either there are

infinitely many descent steps, Ol' the stability center stops. Here, the latter case

splits in turn into several subcases, due to possible loops within Step l.

We first establish relations coming from the noise in the oracIe.
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Lemma 5.1 Let k be sucli that (2.18) does not hołd. Then, uo being the Slater

point (1.2),

-Jlkh(uO)~ f(uo) - f(li) +2:k Iuo -lil2
l (5.1)

k k

-Jlkh(tl) ~ ek < _~lgkI2 and Igk
l
2~ 2h(ttk) J1

k
. (5.2)

2 t

Proof Set u = uO in (2.12) and use "not (2.18)":

Jlkh(uO) ~ J1 khk(uO) ~ f(u k+1) + (uO- uk+1)gk- f(uO)

= f(tl) - ek+ (uO -li)gk - f(uO)

~ f(tl) + ~lgkl2 + (uO- ttk)gk - f(u O).

This gives"

which is (5.1). The first inequality in (5.2) comes easily from (2.14) and "not

(2.18)"; the second inequality is a consequence.

5.1 Infinite loop within Step 1

D

This section considers the case where k stops: the algorithm solves (1.8) repeat­

edly, without visiting Steps 2 to 5. Then the model h= hk and the stability center

tt = tl are fixed, only t = t k va.ries (increasingly). We therefore drop the mislead-

ing superscript kand use more appropriate notation Jl17 gt, ut, etc. It is convenient

to introduce the pure cutting-plane problem

minf(u) l U E C , h(u) ~ o.

4 Just develop the square l.fig + (uD- Li)/.fil2 ;;;::O.

(5.3)
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Indeed, (l.8) amounts to computing the Moreau-Yosida regularization at a([14,

§XY.4.1]) of the actual objective function in (5.3) (equal to f(u) if u feasible, +00

otherwise).

Proposition 5.2 Suppose the loop within Step l is infinite at some iteration k - so

that t -> +00; call t: the optimal value oj the pure cutting-plane problem (5.3).

Then.

(ii) r > -00, h(ił) > Oand f(a) ~ l':

(iii) j(ut) -> I': and if (5.3) has a nonempty set oj optimal solutions, then ut

tends to the projection oj aonto that set.

Proof With the present notation, (5.1) reads

which is bounded from above since t increases.

Then write (5.2): -)1th(a) ~ et < -~lgtI2 and Igr/ 2 ~ 2h(a)Łjt; this implies

et < O and gt -> O. It follows that St ~ et + lallgtl (see (2.·13)) cannot have a

positive eluster point; (i) is proved.

If ił were feasible in (1.8), we could set u = a in (2.15), entailing the contra-

diction et ~ O. Next, (2.16) shows with (i) that f(u) ~ j(u) for all u feasible in

(1.8), hence in (5.3); in particular, (5.3) has a finite optimal value: this proves (ii).

Finally, fix u feasible in (5.3), hence in (l.8):

(5.4)

and pass to the limit: {ut} is a minimizing sequence for (5.3). Besides, set u in

(5.4) to an optimal solution of (5.3): u is feasible in (1.8), j(ut) ~ f(u) and we
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can write
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this completes the proof of (iii). D

It is known that the sequences {f(ut)} and {lut - al} are actually monotone;

see for example [23]. Because t: is not Iarger than the optimaI value of (1.1), (ii)

shows that tt has a very good f-value - but a blatantly bad h-value, although the

latter is assessed by Lemrna 2.1. During a Ioop within Step l, triaI points ut rely

upon the deceiving point a; they may be driven toward uninteresting regions of

c, without even consulting the oracle to check. If f and C (and h) are polyhed.ral,

ut solves (5.3) for t large enough: see [14, Prop.XY.4.2.5]. This case may be

discovered by a parametric QP method such as [23], which is thus usefuI ta shorten

such potentially fruitless loops.

5.2 Finitely many descent steps

This section is devoted to the case where the stability center stops, say at iteration

k;accordingly, we denote by athe stability center(s) cl = ak for k ~ k.

First of a11, a rather simple situation, similar to that of the previous section, is

when there are infinitely many Ioops within Step l. Then NA = l forever, and t k

is never decreased in Step 3; in fact, t k ~ +00.

Proposition 5.3 Suppose there are only null steps after iteration k. Denote by X

the set of k ~ kfor whicli at least one loop within Step 1 occurs. If X is an infinite

set, then (2.20) holds: indeed IimkEx gk = Oand IimsUPkEX3k ~ O.

Proof This is essentially Proposition 5.2(i): write (5.1), (5.2) for k E X and Iet tk

tend to +00 for k E X. D
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The other situation is when (2.18) holds for all k large enough. From then on,

t k may only decrease (or stay fixed forever). Besides, (2.17) implies ek ~ li; so

we clearly have

(5.5)

Introduce the Lagrangian associated with (1.8)

We start with properties linking successive nulI steps, which are crucial for es tab-

lishing convergence of bundle-type methods. They explain the importance of the

aggregate linearization (2.6).

Lemma 5.4 After a lULU step issuedfrom U, the Lagrangtan (5.6) satisfies

(i) Lk(uk+1)+ ~Iuk+l - ill2 ~ Lk(u).

(ii) Lk(uk+1) + ~lzl+2 - zl+11 2 ~ Lk+1(zl+2); this relies upon the properties

zi+ 1 = fi. and tk+1 ~ tk.

Proof Linearize the non-quadratic part of Lk to obtain the quadratic function

C:3 Zł ~ Ik(u) := f(u k+1) + (u -zl+l )gk+ ~k lu - a12 • (5.7)
2t

In view of (2.12), we do have t: ~ Lk over C.

Developing the square lu_uk+1+uk+1 - a1 2 , direct calculations using (1.11)

give

so that

Lk(zl +l)+ 2~k lu _zl+112 = Lk(u) ~ Lk(u) for alI u E C
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and (i) follows by setting u = a.

Now we cIaim that
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f(u) ~ f(uk+ 1
) + (u - uk+ 1

)gk for all u such that hk+1(u) ~ O. (5.9)

If /lk = O, this is cIear frorn (2.12), so assume /lk > O: then hk(u k+1) = O (com­

plementarity slackness). The definitions (2.8) and (2.6) of hk+1(-) and h: (-) then

give

O~ hk+1(u) ~ ii- (u) = (u - uk+1)rl.

Multiply by /lk > Oand sum up with (2.9), (2.11); our cIaim is proved.

Plug (5.9) into (5.7): for all u E C such that hk+ l (u) ~ O,

rk(u) ~ f(u) + 2~k lu - al 2 ~ f(u) + 2t~+llu - a1 2
,

because tk+ 1 ~ tk. Take in particular u = tl+ 2: because ak+1 = aand because of

complementarity slackness, the righthand side is Lk+ l (uk+2) , which is therefore

bigger than rk(uk+2) ; (ii) then follows from the expression (5.8) ofrk(uk+2) . D

It is interesting to mention that the above result is reaIly due to the strong

convexity of Lk ( . ) , which is minimized over C at uk+ l ; see [14, Thm VI.6.1.2]. We

now turn to the situation where trouble due to a noisy oracle eventually ceases.

Proposition 5.5 Suppose that, after some iteration, only null steps occur and tk

never increases (no Zoop within Step l occurs). Suppose aZsothat the oracle inac­

curacies 71 kare bounded[roni above.

Then $k, gk tend to 0, as well as vk; and uk tends to a.

Proof First we bound /lk. Fix bO E af(uO) and plug the subgradient inequaIity

into (2.12) with u = uD:
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Single out ił and use (1.11):
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o~ )1kh(uO) ~ (uO - ił - tkbO)gk + tklgk
l
2 + (ił - uO)bO

~ 2gkwk+tminlgkI2-M,

where we have set wk := (uD - ii-« tkbD)/ 2 and M is a constant. This implies (see

footnote 4, page 26) -Jlkh(uD) ~ Iwkl2/tmin +M; because t k does not increase, wk

is bounded and so is )1k; say Jlk~ p .

Then Lemma 5A(i) and (1.7) give

Lk(zl+l) ~ f(ił) + pmax{h(il), O}.

Because Lemma 5A(ii) impIies that the sequence {Lk(zl+l)} is increasing, we

see that Izl+ l - al is bounded: zl is bounded; and 17 k is also bounded by as­

sumption. Knowing that the 17-subdifferential of (1.3) is locally bounded ([14,

PropJCIA.1.2]),

the sequence {ak} is bounded .

Besides, Lk(uk+ 1) has a finite limit, hence

the sequence {luk+2-zl+ll} tends to O.

(5.10)

(5.11)

Now consider the linearization il+ 1(.) of (1.5). Note that Il+l > O: otherwise

ak of (2.1) would be equal to zl+ l and the descent test (2.19) would be passed, just

by the definition (2.17) of 0. Note also that hk+1(uk+2) ~ 0, hence iik+1(uk+2) ~ O

from (2.8). Then we have by the Cauchy-Schwarz inequaIity

0< ll+l = iik+1(zl+l) = Tzk+l (uk+2)+ (zl+l _uk+2)ak+1

~ luk+1 - uk+21Iak+ll,
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[add v = f(a) - f(u+)]

[convexity of f between cP and 11+]

so thatll+ 1 ---+Ofrom (5.10) , (5.11). In (2.1),~k ---+ l so ~k ~ 1( for k large enough.

Start from "not (2.19)": -1(Vk < f(tl) - f(ti k ) and write

(l - 1()J' < f(tl) - f(uk+1)

~ (1- ~k)[f(uO) - f(u k+1) ]

= (1 - ~k)[f(uO) - f(ti) +i].

v k f(u O) - f(a) Vk
Take k so large that f3k - 1( > O and obtain v= ~ v (1 - f3 '); hence

f3k_1(

vk ---+O.

To finish the proof, observe from (5.5) that t ---+ O because tk ~ tmin, and

also sk ---+O. So from (2.13), 8k = sk +ftgk ---+O.Finally observe from (2.18) that

IUk+1 - al tends to ojust as vk, since tk does not increase.

5.3 Case of infinitely many descent steps

D

The last situation is when the algorithm "looks like" an ordinary optimization

algorithm, consisting of a series of descent iterations.

Proposition 5.6 Suppose that the set X C N ofdescent iterations is infinite. Ei-

ther f( tl) ---+ -00 or the cottvergence property (2.20) holds in the sense that

lim gk = O and liminf8k ~ O.
kE.}(; kE.}(;

Proof Assuming that the monotonie sequence {f(tik ) } has a finite limit, let ki and

k2 be two successive indices in X.

Because of (5.5), vk ~ O for k E Je; besides, tl2 = Ltkl+1 and the descent

subsequence {vk } .}(; therefore tends to O;and remembering tk ~ tmin:

(5.12)
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using (1.11), we then write

Ili+1 - uOl2 -lak - uO
l
2 ~ lak - tkgk_u0

1
2 -lak _u0

1
2

= tk(tkgk+2(uO- Cl))gk .

Using again the fact that li = li2= ltk l + l , we sum these inequalities over X to

obtain

-00 < L tk(tkgk+2(uO- ak))gk.
kE.A:

If there existed e > Osuch that (tkgk+2(uO - tl) )gk~ -8 for all k E X, then we

would have LJf.'tk < +00, which is impossible. Therefore, using (5.12),

O~ limsup [tklgk
l
2 +2uOgk- 2ligk]= limsup [-2a kgk].

kE.A: kE.A:

Then plug (5.12) into (2.13): liminfkE.A:3k ~ Oand the proof is complete. D

5.4 Synthesis

The above study of the various possible cases clarifies the convergence properties

of the algorithm. The present section summarizes these properties; it also studies

boundedness of the multiplier u, which is important in the primal-dual framework

of §3.

Recall from the rules of the algorithm that K(k) indexes the last descent iter-

ation prior to k; and an important number for feasibility is the asymptotic oracle

inaccuracy

11 00 := limsup f]K(k) .
k-+oo

First we fix the case of a bounded objective.

Proposition 5.7 Let the optimal objective value f* oj (1.1) be finite. Then:

(5.13)
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(O there exists /-1 * ~ Osucli that infuEc f(u) + /-1*h(u) = t',

(ii) witli the notation (5.13), liminff(~i) ~ f *- /-1*17 00

, so that {f(itk)} is bound-

ed from below if 17 00 < +00.

Proof Statement (i) is just [34, Cor. 28.2.1]. To obtain (ii), use Lemma 2.1 and

write f* :::;; j(uk) + /-1*h(uk) :::;; f(uk ) + /-1*11 K(k) for all k; then pass to the limit.

o

Then convergence of the algorithm is as follows:

Theorem 5.8 Suppose that Algoritlun 4.1 neither terminates 1101' loops infiniteły

in Step l (so that k -+ 00), and the oracle inaccuracies 11 kare bounded. Call f*

the optimal value of (1.1) and r the limit oj f(uk). Then:

(i) The cottvergence property (2.20) holds if f* > -00;

(ii) In this case, let:Je be an ilulex set sucli that limkEX max {8k
l Igk l} = O.Then

the corresponding subsequence {/-1k} is bounded:

. k j(uO)-foo
limsup /-1:::;; l ( 0)

kEJt' - 1. u

(iii) In any case, I" :::;; f* and limsup h(uk ) :::;; 77 00 of (5.13).

Proof Propositions 5.3, 5.5 and 5.6 guarantee (i).

Now the first relation below is obtained by setting u = uO in (2.12); the second

is direct from (2.13):

f(uO)-f(u+)-uOg+u+g ~ -/-1h(uO)

f(u+) -u+g = fUl) -8.

Sum up, divide by -h(uO) > Oand pass to the limit to prove (ii).
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The second statement in (iii) follows directly from Lemma 2.1. For the first,

assume 100 > -00 (otherwise the proof is finished); write (2.16) with an arbitrary

II feasible in (1.1) and pass to the limit to obtain 1* ~ 100

•

6 Convergence in the primal

D

When the algorithm is used in the framework of §3, attention must be paid to the

primal candidate ~ introduced in §3.1. The model hhas the piecewise linear form

(1.9) and several strategies are possible for the management of the bundle. To be

specific, we will assume that Step 4 of AIgorithm 4.1

- arbitraril y destroys indices from Jk,

- appends if necessary the aggregate column defined by (2.6),

- then appends the new column coming from uk+ l,

so that the resulting Jk+l satisfies (2.7).

Lemma 6.1 With this strategy, the columns (:~). j E Jk are convex combina-

(
Ci)tions ofthe columns Aj in (3.1).

Proof Two sorts of columns make up the bundle at a given iteration:

- The "natural" columns, which have yj = cii, aj = aii with j > O, computed at

the r call ofthe oracle by a (possibly inaccurate) resolution of (3.3) for u = uj.

- The aggregate columns, with negative indices; consider the aggregate column

-k < O,constructed at the kth iteration:

. from (2.4), a-k = ak of Proposition 1.2 is a convex combination of the aj,s in
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. from Lemma 2.4, y-k = uk+1fl- kk(Ll+ I) is the same convex combination of

Thus, the very first aggregation during the algorithm introduces a convex combi-

nation of natural columns. The subsequent aggregations introduce further convex

combinations. Now taking convex combinations is a transitive operation, so these

are again convex combinations of the original columns. D

To construct,Ą,k of (3.9) from A of (1.12) is then a matter of computer program-

ming, using appropriately the history of the successive aggregations. In (3.8), we

have a(~ Oand 'Li'=l a( = l for each i. hence

,Ą,k ~ O and ±,Ą,;k = L. Aj ±a(= L. Aj = j1k , (6.1)
;=1 jEJk ;=1 jEJk

while Theorem 3.3 gives

(6.2)

(6.3)

With these premises, the convergence properties of i k follow naturally from

Theorem 5.8:

Theorem 6.2 Let the primal problem (3.1) have a feasible point, so that (3.1)

and (3.2) have a finite C017U1l0n optimal value z*and (3.2) has a tnultiplier u", as

stated in Proposition 5.7.

Suppose that the algorithm neither terminates nor loops infinitely in Step l (so

that k -t 00), and the oracle inaccuracies TJk are bounded. Define the asymptotic

primal error e" := j1*f]oofrom (5.13) and let X C N be an index set as described

in Theorem 5.8(ii). Then:
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(i) Each eluster point ~oo of the bounded sequence {~khEX lies in the e*-

optimal primal solution set

Ac. := {A E Ilł~: CA ~ z*+e*,AA +b ~ O}. (6.4)

(iż) The distance d(i k ) := min.:tEAt;.lik - Alfrom ~kto the e*-optimal set satis­

fies limkExd(~k) = O.

Proof When both (3.1) and (3.2) are feasible, their respeetive optimal solution

sets are nonempty and there is no duality gap. Comparing (3.2) with (1.1), their

eommon optimal value z* is - f* ofTheorem 5.8.

Use Proposition 5.7(ii) and Theorem 5.8(iii): -z* ~ f 00 ~ -z* - e', Besides,

Theorem 5.8(ii) gives limsuPkEX pk < 00: from (6.1), {~khEX is bounded.

Let ~ 00 be a eluster point of {~khEX' Write (6.2) as c~k = 3k-lib and pass

to the limit:

ci00 ~ lim sup 3k - r ~ 0- f *+ e* = z*+ e* .
kEX

Pass likewise to the limit in (6.3): Ai00 +b ~ O.This proves (i); then (ii) follows

from the eontinuity ofthe distanee funetion d(·).

7 Numerical illustrations

D

We eonelude this paper with a brief aeeount of our eonie variant in praetiee, on

the applieation that really motivated it: eutting-stoek problems in the formulation

of Gilmore-Gomory [12]; see also [30].
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7.1 The eutting-stoek problem

x.c.Kiwiel, C. Lernarechal

ReealI that the problem is to minimize the number of stoek pieees of width W,

used to meet demands d I , • • • , d'", for m items to be eut at their widths w 1, ••• , Wili •

Hereafter, w E IRIIl denotes the veetor of widths. Consider a veetor x E NIIl,

whose eaeh eoordinate is the number of units of the corresponding item eut in a

given roll; sueh an x eharaeterizes a cut pattern and is feasible if wx ~ W~ let n

be the (huge) number of feasible eut patterns. Then let Ai be the number of rolIs

eut aeeording to pattern i; relaxing the integrality eonstraint on A, we obtain the

formulation

miniAi,
i=1

11

L AiXi ~ d E IR11I
, A ~ o.

i=1

This is (3.1), where c E IR" is the veetor of alI ones and the feasible eut patterns

make up the eolumns of A. The dual is to maximize ud over IR~, subjeet to the

eonstraint CJ(u) := maxi~1 UXi ~ 1 and the oracIe eomputing CJ has to solve the

knapsaek problem

7.2 Data sets

max ux , wx ~ W , x E M11I . (7.1)

To save spaee, we give results onIy for the following randomly generated instanees

employed in [25]: the 4000 instanees of Wascher and Gau [41] and the 3360 in-

stanees of Degraeve and Peeters [7].

The instanees of [41] are eonstrueted by the CUTGEN1 generator of [11],

using the following parameter values:

- Number of items m = 10,20,30,40,50.
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- Width of the wide rolls W = 10000.

- Interval fraction e = 0.25,0.5, 0.75, l; the widths W; are uniformly distributed

integers between l and eW.

- Average demand cI = 10,50; with 11l uniform random numbers RI,"" Rm E

(O, l), the demands are d; := lRl:~~~iR/IIJ for i < 11l, and dm := md- Ł;<md;

(in fact slightly more complicated formulas are used by [11]).

Duplicate widths are aggregated by summing their demands. Combining the dif­

ferent values for m, e and cIresults in 40 c1asses; in each c1ass, 100 random in­

stances are generated for atotal of 4000.

The small-item-size instances of [7] are generated similarly for m = 10,20,30,

40,50,75,100, e = 0.25,0.5,0.75, l and d = 10,50,100, except that RI,'" ,Rm E

(0.1,0.9) for the demand distribution. In the medium-uem-siże instances of [7],

only cI= 50 is used and the widths are uniformly distributed on [Wmin, eW], where

Wmin = 500, 1000, 1500. Both cases have 84 data c1asses, and 20 ran dom instances

are generated in each c1ass for atotal of 2 x l 680.

7.3 Implementation

Our testing environment uses a notebook PC (pentium M 755 2 GHz, 1.5 GB

RAM) under MS Windows XP, and Fortran 77.

In order to emphasize the primal-dual aspect of the algorithm, we report on the

simultaneous generation of feasible primal solutions, along with the dual iterates

uk . These soIutions are obtained by various heuristics, as described in [25].

We use the QP solver of [21] for (1.10). For the dual algorithm and primal

heuristics, the knapsack problems (7.1) are solved by Martello-Toth's procedure
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MT1R, with an early termination test inserted (see [25, §2.2]): the branch and

bound procedure is terminated when it obtains a feasible knapsack which is opti­

mai within er = 10-5 of relative accuracy.

A relative accuracy of §..= 10-9 is required from the eonie algorithm. More

precisely, Algorithm 4.1 is stopped when either vk from (2.17) or Iti + gk from

(1.11), (2.13) is smaIler than ,ę(l + tld), with (2.18) holding in the former case.

Besides, "early" termination occurs if the heuristic discovers a primal-optimal

solution (this impIies that the dual problem is solved as well, but the algorithm

need not know it yet).

7.4 Results

Tables 7.1 to 7.3 give the statisties for the three series of problems in §7.2; in these

tables,

· kav and kmx are respectively the average and maximum numbers of iterations for

the corresponding series of experiments;

· tav and tmx are likewise running times in waIl-clock seconds;

· Ile is the number of "early" terminations due to the discovery of an optimal

primal solution;

· Ilg is the number of instances with a nonzero final gap between the incumbent

primal value and the dual bound rounded up to the next integer; we stress that

this gap, which is Omost of the time, never exceeds one unit.

These results demonstrate the validity of the method. ActuaIly, they are quite

similar to those reported in [25]. The latter concerns a highly elaborate bundle

implementation to solve (3.2) by exact penalty, with a very smart choice of the
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Table 7.1 Small-itern-size instances of Degraeve and Peeters (240 instances per row)

In kav kmx fav tmx Ile ng

10 14.92 32 0.00 0.01 108

20 32.66 61 0.01 0.04 110

30 53.05 97 0.06 10.63 115

40 71.61 140 0.04 0.32 124

50 93.20 171 0.09 0.68 139 O

75 145.80 259 0.26 1.89 140

100 192.05 338 0.46 4.07 147 O

Table 7.2 Medium-itern-size instances of Degraeve and Peeters (240 instances per row)

In kav kmx tav tmx Ile Ilg

10 17.33 27 0.00 0.01 54

20 34.92 58 0.01 0.08 63 O

30 53.43 86 0.02 0.14 83

40 70.73 123 0.04 0.61 68

50 90.10 164 0.07 0.89 69

75 139.22 236 0.36 8.28 80

100 191.29 300 1.46 59.67 78

Table 7.3 CSP instances of Wascher and Gau (800 instances per row)

In kav kmx tav tmx Ile Ilg

10 14.24 31 0.00 0.02 425 O

20 31.10 63 0.02 13.13 461

30 48.95 110 0.01 0.15 475

40 66.34 139 0.04 0.33 513

50 86.68 171 0.07 0.58 530
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penalty parameter via the FFD heuristic. By eontrast, our implemented eonie vari­

ant is quite exploratory. At present, its heuristics perform slightly worse on the

instanees of [7] (on 3360 runs, 4 nonzero gaps instead of 3); their improvement is

left for future work.
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