

An [nexact Bundle Approach to Cutting-Stock Problems
Krzysztof C. Kiwiel

Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland, kiwiel@ibspan.waw.pl
We shiow that the LP relaxation of the cutting-stock problem can be solved efficiently by the
recently proposed inexact bundle method. This method saves work by allowing inaccurate
solutions to knapsack subproblems. With suitable rounding heuristics, our method solves

aliost all the cutting-stock instances from the literatuve.

Key words: nondifferentiable convex optimization, Lagrangian relaxation, integer prograni-
ming, bundle methods, knapsack problems, cutting-stock

History: Initial version April 23, 2005; revised May 22, 2006; October 31, 2006.

1. Introduction

The classic Gilmore and Gomory (1961) formulation of the cutting-stock problem (CSP) is
usually solved by LP-based colunin generation, rounding hewristics and branch-and-bound;
see, e.g., (Belov and Scheithauer, 2002, 2006; Degraeve and Peeters, 2003; Degraeve and
Schrage, 1999; Vance, 1998; Vanderbeck, 1999). Since column generation (CG) applied to
its LP relaxation may converge slowly, there is interest iu stabilized variants based on LP or
QP (Ben Amor et al., 2004; Ben Amor and Valério de Carvalho, 2005; Briant et al.. 2005).
Alternatively, the highly efficient hybrid approach of Degraeve and Peeters (2003) generates
additional columus by applying subgradient optimization to its Lagrangian relaxation.

In this paper we show that its LP relaxation can also be solved efficiently by the inexact
bundle method of Kiwiel (2006). This QP-based method saves work by allowing inaccurate
solutions to Lagrangian subproblems. For the CSP, each subproblem is a knapsack problem
(KKP). We give a simple test for imnexact KP solutions (see §2.2 below) that works well in
practice for a standard branch-and-bound I{P solver of Martello and Toth (1990). Further, to
avoid the difficulties arising when a bounded KP is transformed into a 0-1 KP (Vanderbeck,
2002), we use relazed bounds. Next, by adapting the ideas of (Belov and Scheithauer, 2002;
Holthaus, 2002; Stadtler, 1990; Wascher and Gau, 1996) to our inexact framework, we give
rounding heuristics that solve almost all the CSP instances from the literature; in particular.

they perform better than the best heuristics of Wascher and Gau (1996). In effect, our

1

inexact KPP solutions, bound relaxation and rounding heuristics should be of interest also for
other, more traditional CG-based approaches to the CSP.

We now provide a historical perspective for our contributions. Our work was inspired
by Briant et al. {2005), where (together with four other applications) the LP relaxation of
the CSP was solved by several variants of CG and a standard bundle method. On some
CSP instances, bundle was much slower than CG, mostly because its subproblems were
niore difficult for the KP solver of Vanderbeck (2002). Hence Claude Lemaréchal suggested
the CSP as a testing example for owr inexact bundle (IKiwiel, 2006). For technical reasons,
instead of the I{P solver of Vanderbeck (2002), we used the MT1R procedure of Martello and
Toth (1990). Our initial quite disappointing vesults improved greatly once we used relaxed
KP bounds and inexact sclutions: our method became much faster in practice than all the
algorithms tested in (Briant et al., 2005, §2.2) (see §5.6.2). Next, we collected more test
instances and adapted some rounding heuristics from the literature. The main aim was to
appraise our inexact bundle solutions: they are deemed accurate enough if the heuristics
solve almost all instances.

We now summarize our findings on admissible inexactness. The relative accuracy in dual
function evaluations is controlled by the tolerance €, of our KP solver (cf. §2.2). First, for
e = 0 (ie., exact bundle), the average computing times are much greater than those for
€, = 1073 (usually by factors of 30 or more), although the iteration numbers and the heuristic
performance are almost the same. Second, the iteration numbers and timings are close for
¢, = 1073, 107* and 1075 however, relative to ¢, = 1073, owr heuristics perform much worse
for €, = 1072, and just marginally worse for ¢, = 107%. Third, further experiments (not
reported here for brevity) gave very close results for ¢, = 107% 107%, 10~7 and 10~%. To
sum up, ¢, = 107% seems to be a good borderline choice. On the other hand, since in the
CSP the gap between the primal value and the relaxed dual value is usually less than 1, and
either rounding heuristics or branch-and-bound should “close” this gap, it may seem more
appropriate to ensure a given absolute accuracy ¢, < 1 in dual function evaluations (see
§5.7.3). Quite suprisingly, our results for a fairly large ¢, = 0.01 are very close to those for
&, = 107, whereas for ¢, = 0.05 owr heuristics perform slightly worse.

We thus present the first successful application of our inexact bundle method.

The paper is organized as follows. In §2 we recall the classic CSP model of Gilmore
and Gomory (1961) and introduce inexact KP solutions for its Lagrangian relaxation. Our

rounding heuristics are given in §3 in a general form suitable for other CSP solvers. The

inexact bundle method is reviewed in §4. Qur computational results are presented in §5.

2. Lagrangian relaxation of the CSP

The one-dimensional cutting-stock problem (CSP) is to minimize the number of stock pieces
of width W used to meet the demands d; for items to be cut at their widths w; € (0, W],

for i = 1,...,m. The bin-packing problem (BPP) is a special case of the CSP with uuit

demands.
2.1. The Gilmmore-Gomory model

This classic model is fornmlated as follows. Denote the set of cutting paiterns by
P={peZ} wp<W} (1)
Let z, be the number of times pattern p is used. The original model has the form

min Yz, st Y pz,>d z € Zlfii (2a)

pEP peP

For Lagrangian relaxation we augment this model with the redundant constraint

>z <N, (2b)

peEP
where N is an upper bound on the optimal value of (2a) (e.g., N = ¥, d,); this ensures
boundedness of the ground set Z := {z € Z’f‘ : 3,5 < N}. Relaxing the demand coustraint
Yp Py 2 d with a price vector u vields the Lagrangian L(z;u) = 3, 2 +u(d — 3, pz,) and

the dual function

A(u) = l.}]EilZl {L(:; u) =ud+ Zpep(l - up)zp} . (3)

The Lagrangian subproblem above may be solved by finding a solution p(u) of the KP
p(w) € Argmax{up : p € P} = Argmax{up : wp < W,p € Z}'} (4)
and taking sy = N and z, = 0 for p # p(u) if up(u) > 1, = = 0 otherwise, thus producing
G(u) =ud+ N{1—uplu)]_, (5)

where [-]_ := min{-,0}. Let v, and vyp denote the optimal values of (2} and its LP relaxation,

respectively. It is well known that vpp coincides with the dual optimal value
f. ;= max { Ou) :ue R} } . (6)

3

Experiments show that 2 := w/W is a good initial estimate of solutions to the Lagrangian
dual (6) (Ben Amor and Valério de Carvalho, 2005, §4), (Briant et al., 2005, §2). In fact i

minimizes the relaxed dual function
Orp(u) = ud + N{1 —up(u)]_, (7)

where p(u) solves the LP relaxation of (4). (Since Opp(i) = d4d < v, < N, we see that

—d = —~N(ad/N)(d/td) is a subgradient of the second term of (7) at @: 0 € 98, p(i).)

2.2. Imnexact KP solutions

To strengthen our relaxation, we may consider only proper patterns p such that
p<b with b :=min{d;, W/}, i=1m (8)

Indeed, adding the bound p < b to (1) and (4) does not change v,, but it may raise v.p
(Nitsche et al., 1999). Then the CG subproblem (4) becomes a bounded KP, which can be
turned into a 0-1 KP via the transformation of (Martello and Toth, 1990, §3.2). However,
this transformation may duplicate solution representations, thus creating difficulties for 0-1

KP solvers (Vanderbeck, 2002). To avoid duplicates, we may use the relazed bound
p <V with b o= 2Moeelbet Dl g oy (9)

which corresponds to replacing d; in (8) by the smallest number of the form 27 — 1 with j > 1
such that 29 — 1 > d; (2d; — 1 in the worst case); the number of transformed variables is the
samme. We solve the transformed KP by a double precision version of the branch-and-bound
procedure MTIR of Martello and Toth (1990). To reduce its work, we allow MTIR to find
an approximate solution for a given relative accuracy tolerance €,. Namely, the backtracking
step exits if ¢ > (1—¢,)¢, where ¢ := up for the incumbent p and ¢ is MT1R’s upper bound

on the optimal value up(u). Hence, by (5), we have the accuracy estimates
B(u) =ud+ N(1—C)_ <O0(u) <0(u) :=ud+ N(1-¢)_, (10a)

f(u) — 8(u) < N({—¢) < Nel. (10b)

For a normal exit with an optimal p = p(wu), we may replace ¢ by ¢ and ¢, by 0 in (10).
As for our choice of MT1R, we add that Valério de Carvalho (2005) used MTIR as

well, Belov and Scheithauer (2006) employed a similar branch-and-bound solver, whereas

4

Vanderbeck (1999) and Briant et al. (2005) used the more specialized branch-and-bound
solver of Vanderbeck (2002). On the other hand, Degraeve and Peeters (2003) employed
a similar branch-and-bound solver but with prices multiplied by 10,000 and rounded to
integers, without discussing the effects of inexact I(P solutions. Further, more recent KP
solvers (ISellerer et al., 2004) accept integer data only; hence their use with suitable price
roundings is left open for a future study. To smm up, MTIR is outdated, but we could not
find anything better, and we believe that the current results will serve as a useful yardstick

for future work with modern KP solvers.

3. Heuristic rounding of relaxed solutions

Typical rounding heuristics for the CSP proceed as follows; cf. (Belov and Scheithauer, 2002,
2006; Degraeve and Peeters, 2003; Holthaus, 2002; Scheithauer et al., 2001; Stadtler, 1990;
Wischer and Gau, 1996). A solution £ of the LP relaxation is rounded down into an integer
solution Z := |Z]. Next, a sequential hewristic applied to the residual problem (2) with d
replaced by ' := d — 32, pZ, delivers a residual solution z. Then the sum Z + Z serves as
a possibly inexact solution of (2) (which is exact if its value is equal to a lower bound on
v.; e.g., [vpp]). Since for simple rounding down (2 = |£]), the residual problem may be
too large to be solved optimally by a heuristic, some components of Z may be increased
(Holthaus, 2002; Scheithauer et al.,, 2001); however, if the residual problem becomes too
small to produce a solution to the original problem, some components of £ may be decreased
(Belov and Scheithauer, 2002).

In §3.1 we give a general rounding procedure, which augments the ideas of Belov and
Scheithauer (2002) and Holthaus (2002) with the oversupply reduction of Stadtler (1990).
As for sequential heuristics, in §3.2 we describe minor (but useful) modifications of the frst-
fit-decreasing (FFD) of Chvdtal (1983) anud the heuristics of Belov and Scheithauer (2004)
and Holthaus (2002). Since it pays to call lighter heuristics first, useful combinations of
rounding and sequential heuristics are detailed in §3.3.

We add that the rounding procedures of {Vanderbeck, 1999, §3.7) aud (Wischer and Gau,
1996, RSUC) would be difficult to implement in our context. As for sequential heuristics, we
also tried the best-fit-decreasing of Chvdtal (1983) and the fill bin heuristics of Vanderbeck
(1999}, but they did not perform significantly better than FFD in our trials.

3.1. A general rounding procedure

Numbering the patterns so that P = {p’}]_,, we may write (2a) as
n n .
min >z st. Y plz>d ze). (11)
j=1 g=1

Given an incumbent solution z* of (11) (e.g., found by FFD) and a point £ € IR}, (e.g., found
by LP relaxation), the following procedure attempts to improve z* by calling a heuristic on

residual problems derived from rounded variants of 2. Let e := (1,...,1) € R".

Procedure 1 (Rounding procedure).
Step 1 (Rounding down). Set Z := |2} and d' := d — }¥; Pz, Sort the fractional parts

vy =%, — 5 so that v, > ... > v, and set 7 := ({7 : r; > 0}].

) J

Step 2 (Oversupply reduction). While d' 7 0, pick 7 to maximize

ST wimin{p!, —d}} (12)

;<0
over j s.t. Z; > 0, set Z;:= % — 1l and &' := d' + p.
Step 3 (Partial rounding up). Set / := 0. For i = Lia, if p* < &, set 3, = 5, + 1,
d=d —p I=10{j}

Step 4 (Heuristic improvement). Using a heuristic, find a feasible point Z for the residual

e

problem (11) with d replaced by d'. If eZ + eZ < ez*, set 2* 1= Z +

Step 5 (Residual problem extension). If I # (), remove from 7 its last entry 7, set z, 1= z;, -1,

d' = d + p and return to Step 4.

If % solves the LP relaxation of an equality-constrained CSP, our procedure reduces to
the one in (Belov and Scheithauer, 2002, §2.5); otherwise Step 2 (due to (Stadtler, 1990, Fig.
3)) helps. Following (Belov and Scheithauer, 2002, §5.2), our implementation allows at most

ten returns from Step 5.

One of our heuristics uses the following modification of Step 3, based on the ideas in
(Holthaus, 2002, §3.2).
Step 3’ (Partial rounding up). Set [:= @, K = {j:p) <d' »; > 0}. While K # 0, pick
7 to maximize 3, pl over j € K, set 5 =5+ 1, d:=d -p, [:=TU{J}, K ={j€ K:
p<d,j#)

3.2. Sequential heuristics

We now describe our heuristics for the residual problem (2a) with d replaced by d' > 0,
assSuing wy = ... > Wy
Our implementation of FFD works as follows. Set Z := 0, d” := d. While d" # 0,

generate the next pattern p by setting

pe = 1min { d, KW - ZK, 'wjpj> /w,-J} for i = 1:m, (13)

set m = min{ | df/pi| : pi > 0}, & = 2, + &, d" :=d” — kp. The version of (Chvatal, 1983,
p. 208) employs k = 1, aud heuce is less efficient for large demands.

Our modification of the sequential heuristic procedure (SHP) of (Holthaus, 2002, §3.2),
given a price vector & € IR” (e.g., an approximate solution of (6)) and a price tolerance
uy) > 0 for rounding errors (we use wy,) = 10“”), sets U; = max{a.,,uw[} for i = 1:m and

replaces the FFD formula (13) by the bounded KP
p€ Argmax{ip:wp < W,p<d',peZ}}. (14)

Our implementation of the sequential value correction (SVC) heuristic of (Belov and
Scheithauer, 2004, §2) records the best solution found by calling SHP at most thirty times
with @ modified as follows. Initially @, := max{l, Wi}, ¢ = Limn. If wd” £ W, then after

solving (14) and updating d”, for ¢ such that p; > 0, set

1

@ = (vt + (W/wp)wl ™/ (v +1) with 5= Q (d) + d)) /p., (15)

for §, picked randomly in {1/}, Q2}], where] is chosen at random in [1,1.5]. An early exit

oceurs if SHP finds Z such that ez + eZ = [#(@1)], in which case z* := ¥ + Z is optimal.

3.3. Combinations of rounding and sequential heuristics

We now give more details on the five heuristics used in our experiments. The heuristics are
described as if being called by a general solver for the LP relaxation of (11), which could be
any variant of the CG procedure or the bundle method given in §4.

Owr initial heuristic HO calls FFD with d’ = d (i.e., on the original problem) to initialize
the incumbent z* := Z, the upper bound N := ez* and the lower bound ¢, := —co.

Suppose at iteration & > 1 of the solver, the following quantities are available: z* is an

incumbent solution of (11), 2* € R” and @* € R are tentative primal and dual solutions
+ + b

7

of the LP relaxation, and g, is a lower bound on 6, = vy p {cf. (6)). If ez* = [8,], the solver
may stop (since z* is optimal). Otherwise, for iterations &k specified below, the remaining
heuristics consist in calling an extension of Procedure 1 with a copy of Step 4 inserted after
Step 1; the sequential heuristics employed at these steps are listed below.

Owr periodic heuristic H1 is called by the solver every twentieth iteration, starting from
iteration k = m+1 (i.e., for k= m+1,m+21,...), with the current relaxed solution 2 = 3*
and the lower bound g, < 6,. H1 employs FFD in Procedure 1, exiting if ez* = [8,].

Our final heuristics H2, H3 and H4 are called successively upon termination of the solver,
using the final 2 := 2* @ := @* and g,. H2 employs both FFD and SHP, H3 just SHP and
the modified Step 3’, whereas H4 uses SVC. Of course, H3 and H4 (or just H4) are not called
if H2 (or H3) exits with ez* = [#,], whereas SVC exits when eZ + ez = [§,].

The impact of the various heuristics will be discussed in §5.8.

4. The inexact proximal bundle method

We now sketch the main features of the inexact bundle method of Kiwiel (2006).

Our method generates trial points u* € RY, & = 1,2,.., at which the dual function #
is evaluated (possibly inexactly) as described in §2.2. Specifically, for each k, set p* to the
(possibly inaccurate) KP solution p satisfying the bounds of (10) for u = «*, and let ¢, := ¢,

(. := C. Recalling (3), define the associated Lagrangian solution =* by setting

. . : N ¢ >1
Lk . k N k)
zg = 0for g #p% zp= { 0 otherwise. (16)

Thus we have the lower bound #(u*) < 0(u*) and L(z*;w*) = 8(u) in (10); in particular,
LR ub) — 0(uk) < N(G, — ¢) < Neoly. (17)

Further, by (3), the following linearization of 8 at u* majorizes 8(u) for all w:

N —upk)y if 28 #0,

W) e Tk)
Bi(u) = L(z"u) = ud + { 0 otherwise. (18)
[teration & uses the polyhedral cutting-plane model of 0
O() = mizﬁj() with ke J*C{1,... K} (19)
jeJk
for finding
u*l = arg nlax{ék(it) - iht —a** i ue RT } , (20)

8

where ¢, > 0 is a stepsize that controls the size of |u**! — @*| and the prox center @* = u*
has the value 65 := 6 (u¥') for some &' < k (usually 6% = maxt_, 8;(u?)). Due to evaluation

errors, we may have 6% > G,(a*), in which case the predicted increase
5 () kL k
vy, = O (uFY) — 0% (21)

may be nonpositive; then ¢y is increased and u**! is recomputed to increase 0 (uf*+!) until

vp > JuFtt — aF %2t An ascent step to @5t = o1 with &' := k + 1 occurs if
9k+1(uk+l) — 0:{ > KU (22)

for a fixed & € (0,1) (we use x = 0.1). Otherwise, a null step @**! ;= &* improves the next
model @y, with the new linearization 41 as stipulated in (19).

If we omitted the quadratic term in (20), the resulting cutting-plane method could
generate w**! far from the previous points, and it would require storing all linearizations
(J¥ = {1,...,k} in (19)). In contrast, the quadratic term usually keeps u**! close enough
to the best point found so far, and it allows limiting the number of stored linearizations.

We solve subproblem (20) with the QP routine of Kiwiel (1994}, which finds its multiplics
{uJ"‘}jEJk C IRy, also known as conver weights, such that) ;¢ uf =1 and the set J* ;=
{J € J¥: v} # 0} has at most 2 + 1 elements. We set J** := J¥ U {k + 1} and theu, if
necessary, drop from J**! an index j € J*\ J* with the largest 6;(i*) to keep [J¥Y| < Af
for a fixed M > m + 2.

Combining the accumulated Lagrangian solutions {27}, ,x with their weights {v}};e e,
we may estimate solutions to the LP relaxation of (2} via the aggregate primal solution

o= 3 (23)
JEJ*
In other words (cf. (16)), 5:‘, = NVF for nontrivial patterns p’ indexed by J§ = {j € Jr
27 # 0} (which need not be stored, since they can be recovered from V0, = d —~ Np’; see
(18)). Our heuristics also use the lower bound), := max;<, 8(u?) on 8, = vyp (cf. (6)).

We now point out some useful consequences of the convergence analysis in (Kiwiel, 2006,

§5). The LP relaxation of (2) may be written as

upp = min o(z) = Z 2 st @z)i=d—~ Z pzp <0, z € conv Z. (24)

pEP pEP

Let ¢ := sup, [0, (u*) — («*)] be the maximum evaluation ervor; by (17), we have ¢ < & :=

Ne, supy, €. Consider the set of e-optimal solutions of the LP relaxation (24):
Zoi={zcconvZ 4hp(z) <upp+e,d(z) <0} (25)

The limits 02° := limy, 6%, 0, = limy 0, satisfy 02° € {vrp, vpp + €], 0o € [0 — & v p], and
there exists ' < {1,2,...} such that limgen 3o (3*) = 62 and Timge e max’™, i, (3%) < 0;
in particular, the bounded sequence {Z*}ren converges to the c-optimal set Z.. If ¢, is
small enough, the accuracy observed in practice corresponds to such estimates with ¢ and €
determined by the maximum ervors & (u*) — (u*) and @(z*) — 9(u*) that oceur for large k;
since both errors are at most N((x — (), where the KP gap {; — ¢y is usually tiny for large
k, small values of € and € can be attained if the algorithm runs long enough.

We stop if min{uvy, [7*] + ar} < eope(1 + [65]), where vy is given by (21), n* := (4" —
WY, o= op — 4T and eqn > 0 s an optimality tolerance (cf. (IGiwiel, 2006, §4.2)).

For eop = ¢, = 1078, 8, usually agrees with 4, in at least 8 digits, enough for our purposes.

5. Computational results

5.1. Data sets

In our computational experiments, for the CSP we use the 28 industrial instances of Vance
(1998), the 10 industrial instances of Vanderbeck (1999), and the 20 industrial instances
of Degraeve and Schrage (1999). In addition, we use the following randomly generated
instances: the 4000 instances of Wascher and Gau (1996), the 3360 instances of Degraeve
and Peeters (2003) and the 120 instances of Vanderbeck (1999). For the BPP, we use the
540 randomly generated instances of Degraeve and Peeters (2003), and the 160 instances
from the BINPACK collection of the OR-Library (Beasley, 1990).

The instances of Wascher and Gau (1996) are constructed by the CUTGEN] generator
of Gan and Wischer (1995), using the following parameter values: the number of orders
m = 10, 20, 30, 40, 50, the width 1/ = 10,000, the interval fraction ¢ = 0.25,0.5,0.75, 1, and

the average demand d = 10, 50. The widths w, are uniformly distributed integers between 1

and cl¥. For m uniform random numbers Ry, ..., R,n € (0,1), the demands d; := LTJIS‘%J
for i < m, and dp, = md — Y di (in fact slightly more complicated formulas are used

by Gau and Wascher (1995)). Duplicate widths are aggregated by sumiming their demands.

10

Combining the different values for m, ¢ and d results in 40 classes; in each class, 100 justances
are gellerated.

The small-item-size instances of Degraeve and Peeters (2003) are generated similarly
for m = 10,20,30,40,50,75,100, ¢ = 0.25,0.5,0.75,1 and d = 10, 50,100, except that
Ry,..., R, € (0.1,0.9) for the demand distribution. Iu the medium-itemn-size instances
of Degraeve and Peeters (2003), only d = 50 is used and the widths are uniformly distrib-
wted on [wyy, ¢H], where wy, = 500, 1000, 1500. Both cases have 84 data classes, and 20
instances are generated in each class.

The instances of Vanderbeck (1999) comiprise 6 classes with m = 50, and 20 instances per
class. The first three classes are generated like those of Wascher and Gau (1996) above with
¢ =10.25,0.5,0.75 and d = 50, the next two classes have widths in [500, 2500] and [500, 5000
with d = 50, and the sixth class has widths in [500, 5000] and d = 100.

In the BPP instances of Degraeve and Peeters (2003), m = 500 or 1000 weights are
uniformly distributed in the intervals (1, 100], {20,100], [50, 100] as in BPPGEN (Schwerin
and Wischer, 1997), and the capacity W = 100, 120, 150; identical items are aggregated for
the corresponding CSPs. In each of the 18 resulting classes, 20 instances are generated. The
modified BPP instances of Degraeve and Peeters (2003) use 2 = 500, the weight intervals
(1. 10000]. [2000. 10000], [5000, 10000}, and the capacity W = 10000, 12000, 15000, again with
20 instances per class.

The BINPACK instances from the OR-Library (Beasley, 1990) comprise two categories.
The wniform category has the capacity W = 150, m weights uniformly distributed in the
interval [20,100], and 20 instances generated for each value of m = 120, 250, 500, 1000. (The
classes with m = 500, 1000 also appear in the BPP category of Degraeve and Peeters (2003},
but with different instances.) In the triplet category, each bin of capacity W = 1000 is filled
with exactly three items (the first item w’ is picked in {380.490], the second item w” in
(250, (W — w')/2), and the third item equals ¥ — w’ — w"). There are 20 instances for each

value of mn = 60,120, 249, 501.

5.2. Implemented variants

Our codes were programined in Fortran 77 and run on a notebook PC (Pentium M 755 2
GHz, 1.5 GB RAM) under MS Windows XT.
For solving the dual problem (6), we used a general-purpose bundle code that treats

subgradients as dense vectors in double precision. A faster code could exploit the fact that

11

Table 1: Small-item-size instances of Degraeve and Peeters (2003), int = all, d = all

ne Hl H2 H3 Hi =n
0

o

m_ May Ty, fay fmx tav lax
10 9.99 26.77 15.14 31 0.00 0.01 113 49 70
20 19.95 53.13 32.51 69 0.01 6.04 120 64 64
30 29.91 79.76 51.90 91 0.02 0.22 130 85 57
40 36.85 105.55 70.41 134 0.04 036 134 98 53
50 49.75 132.16 90.20 181 0.08 0.66 134 102 55
75 7436 197.32 141.82 256 0.24 200 149 122 43
100 98.92 263.36 183.88 311 0.40 2.8t 165 136 34

ool e i an B an R e R R
o000 00O
SOoOCcCo~OoOo

each subgradient of 8 has the form V8, = d or V8, = d — Np* (see (18)), with a common
integer part d and an integer sparse knapsack solution p*. Ignoring sparsity, our code requires
m x A/ memory locations for storing up to A/ > m+3 subgradients, and additional workspace
of order Af? for solving the QP subproblem (20) with the routine of Kiwiel (1994). We used
M = m + 3 to test how “minimal” bundle performs.

The bounded KPs arising in column generation and SHP were solved by the modified
version of MT1R (cf. §2.2) with the accuracy tolerance ¢, = 1075 (other choices are discussed
in §5.7.2); MT1R’s tolerance ¢ was set to 107!, For column generation, we used the relaxed
bounds of (9), because the tighter bounds of (8) produced longer computing times. In
contrast, SHP employed in (14) the natural bounds given by (8) with d replaced by d”.

Our implementation of the rounding procedure of §3.1 is slower than necessary because

the patterns are recovered as 3 = (d — V6;)/N, instead of being stored separately.

5.3. Results for the cutting-stock problem

To ease comparisons, we follow closely the presentation of Degraeve and Peeters (2003).
Every data class is identified by three parametefs: the number of items m, the interval in
which the widths are distributed denoted by int, and the average demand d. An indicator
“all” for any of these parameters means that the reported results are aggregated over all
relevant values for that particular parameter. If a parameter is constant for all instances
represented in a table, its value is indicated in the table heading.

Our results for the small-item-size instances of Degraeve and Peeters (2003) with int = all,
d = allare reported in Table 1; full details are given in Tables 17-19 in the Online Supplement
to this paper on the jownal's website. The columns 1, and m}, give the average numbers

of items and variables in the associated 0-1 knapsack subproblems. The columus 4, and iy

12

Table 2: Medium-item-size instances of Degraeve and Peeters (2003), int = all, d = 50

m May mh, lay tmx lav tmx n. H1I H2 H3 H4 ny
10 4.98 23.09 17.52 29 0.00 .02 54 48 112 1 0
20 19.95 45.58 35.09 53 0.01 .10 68 50 114
30 29.84 068.47 53.71 93 0.02 016 73 73 105
40 39.78 90.65 69.94 120 0.03 058 70 63 110
50 49.64 113.69 88.76 156 0.00 090 74 65 118
75 74.08 169.10 137.04 232 0.37 8§.60 82 73 105
100 98.45 226.07 184.45 295 1.43 6218 73 72 117

cor~oocoo
[==
OO Cc o

report the average and maximum numbers of iterations of the bundle code. The coluimnns ¢y,
and f, give the average and maximum running times in wall-clock seconds. The columu
ne lists the numbers of “carly” terminations due to discovering that ez* = [4,] for the
incumbent z* delivered by HO or H1 before bundle terminated on its own. Recall that 111
is called after HO, H2 after H1, etc., unless ez* = {6,] occurs earlier. The columns labelled
H1 through H4 give the nunbers of instances in which the corresponding heuristic found
the best primal value ez* first (for the remaining instances ez* was found by HO); a zero
entry means that heuristic was not called or did not contribute usefully. The final column
n, reports the numbers of instances with a nonzero final gap g := ez* — [8,]; we stress that
the final gaps never exceeded one unit in all of our instances. The averages, maxima and
sums in Table 1 are taken over the 240 instances used for each value of m.

From the entries for n,, H1 through H4 and 74 in Table 1, we see that early termination
occured on between 47% and 69% of problemss, HO and H1 solved between 70% and 85%
of problems, H2 solved almost all the remaining problems, H3 and H4 helped in solving 2
problems, and just one out of the 1680 problems was not solved. Note that the best method
LR of Degraeve and Peeters (2003) also could not solve one instance within 15 niinutes (two
instances within 6 minutes), and its FFD-based rounding heuristic solved 91.6% of problems,
whereas our “lighter” heuristics HO through H2 solved 99.8% of problems.

Our results for the medium-item-size instainces of Degraeve and Peeters (2003) are pre-
sented in Table 2, where each row gives statistics over the 240 instances used for each value
of m (see Tables 20 and 21 for more details). Early termination occured on between 22% and
35% of problems, HO and H1 solved between 49% and 56% of problems, H2 solved almost all
the remaining problems, H3 solved one problem, H4 solved 7 problems, and just two out of

the 1680 problems were not solved. The rounding heuristic of Degraeve and Peeters (2003)

13

Table 3: CSP instances of Wischer and Gau (1996), int = all, d = all

mo Moy "y, tay frax fav tmx Ne Hi H2 H3 H4 ny

10 9.99 25.37 14.27 35 0.00 0.02 449 134 192 0 0 0

20 19.96 50.46 30.73 61 001 835 485 240 183 0 2 0

30 29.90 75.72 4818 105 0.01 0.13 503 281 161 4] 1 0

40 39.84 100.10 65.06 123 0.04 3.31 502 313 160 0 2 2

50 49.73 12522 8475 171 0.07 046 526 341 138 0 4 1

ell 20.88 7537 48.60 171 0.03 835 2465 1309 834 0 9 3

Table 4: CSP instances of Vanderbeck (1999), m = 50

d int May mhy fav imx tav tmx me HI H2 H3 Hi n,
50 [1, 2500] 49.40 185.30 47.40 71 0.03 0.05 20 18 0 0 0 0
50 [1, 5000} 49.65 143.05 114.05 151 0.20 034 13 13 7 0 0 0
50 [1, 7500] 49.75 110.00 111.85 144 0.06 0.11 [5 8 0 0 0
50 [500,2500] 49.40 166.10 57.05 77 003 0.05 14 14 6 0 0 0
50 [500,5000] 49.70 128.20 103.65 114 0.14 0.27 11 11 9 0 0 0
100 [500,5000) 49.70 129.25 104.40 131 0.14 0.32 8 g8 12 0 g 0

solved 69.9% of problems, whereas HO through H2 solved 99.4% of problems.

Comparing Tables 1 and 2, we see that the average and maximum solution times are quite
similar in the small- and medium-size-item cases for problem sizes m up to 50. However, for
m = 75 and 100, in the medium-size-item case the average solution times grow significantly,
and the maximwm solution times jump up, most spectacularly on the instances with width
interval {1500, 2500]; see Table 21. This is due to the poor performance of our knapsack
solver on these instances. Similar slowdowns on this interval were reported in (Degraeve and
Peeters, 2003, Tab. 4a) already for m = 20, i.e., even for smaller problems.

To save space, Table 3 presents only aggregate results on the instances of Wascher and
Gau (1996), with each row giving statistics over the 800 instances used for each value of
m. Here our main point is that only three out of 4000 (0.075%) problems were not solved.
Our “lighter” heuristics HO through H2 solved 99.7% of problems, whereas the two best
(and more complicated) heuristics RSUC and CSTAOPT of Wascher and Gau (1996) solved
98.0% and 92.7% of problems, respectively (99.6% if they had been applied together). The
fairly large maximum solution time in Tab. 3 stemmed from a single knapsack subproblem.

Table 4 gives our results for the 6 data classes of Vanderbeck (1999) with m = 50 and 20

instances per row. Since we used the original instances, the results are not identical to those

14

Table 5: BPP iustances of Degraeve and Peeters (2003)

m W int May mh, fav imx tav fax ne HI H2 H3 Hd ny
500 100 (1, 100] 99.35 167.20 184.10 221 0.06 0.09 12 1 1 0 0 0
120, 100] 80.75 116.00 111.50 123 0.02 0.03 10 2 0 0 0 0

(50, 100) 51.00 52.00 56.60 63 0.00 0.01 15 0 0 0 0 0

120 [1,100} 99.65 181.85 3700 195 029 3.7% 17 1 o 0 0 0

120, IOO} 80.85 131.20 132.80 146 0.03 0.04 14 6 0 0 0 0

[50,100] 51.00 62.00 56.55 61 000 001 13 0 0 0 0 0

150 1, 100} 99,45 201.55 1.00 1 0.00 0.00 20 0 0 0 0 0

|20, 100} 80.85 151.65 86.55 102 0.01 0.02 14 14 5 0 1 0

[50, 100} 51.00 77.00 64.80 72 0.01 0.01 12 0 0 0 0 0

1000 100 [1,100) 100.00 183.65 199.20 230 0.07 0.11 12 1 1 0 0 0
120, 100} 81.00 11795 114.25 133 0.02 0.02 14 4 1 0 0 0

(50, 100] 51.00 52.00 57.35 64 0.00 0.01 9 0 0 0 0 0

120 [1, 100] 100.00 202.20 25.00 18F1 0.01 0.04 20 3 0 0 0 0

120, IOO] 81.00 132.95 14340 167 0.03 0.04 10 3 2 0 0 0

[50, 100] 51.00 62.00 56.90 62 0.00 0.01L 11 0 0 0 0 0

150 {1, 100] 100.00 226.15 7.00 121 0.00 0.03 20 1 0 0 0 0

120, 100] 81.00 154.90 86.85 101 0.01 0.02 11 11 9 0 0 4

[50, 100] 51.00 77.00 67.25 77 0.01 0.01 10 0 0 ¢ 0 0

in Tabs. 17 and 21, but the performance of HO through H2 is similar; in fact HO through H2
suffice for solving all the CSP instances used by Vanderbeck (1999).
Quite suprisingly, all the industrial instances we could find in the literature turned out

to be easy for our method: they were solved in a fractiou of a second (see Tables 22-24).

5.4. Results for the bin-packing problem

Following Degraeve and Peeters (2003), in the next three tables we present our results for
the BPP. Table § gives our results for the BPP instances of Degraeve and Peeters (2003) (20
instances per row). All the 360 instances were solved (H4 helped once).

Table 6 reports results for the BINPACK instances from the OR-Library (Beasley, 1990)
(20 instances per row). The first four uniform classes were solved by calling H4 just once.
However, only 19 out of the 80 triplet instances were solved (with H4 helping on one instance).
The remaining instances had unit gaps; the “gap” column gives averages of relative gaps
(ez* — [0:1)/18;]. We add that for the CSP instances of §5.3, the running times of H4
were not excessive, and H4 was called quite infrequently anyway. In contrast, on the triplet
classes t249 and t501, the use of H4 increased the running times substantially, as illustrated
in Table 7 (the influence of H3 could be ignored). Note that the triplet classes are quite

difficult for traditional LP relaxation (Degraeve and Peeters, 2003, Tab. 12).

15

Table 6: BINPACIK uniform and triplet instances

name Mgy my, tav imx tav lmx T H1 H2 H3 H4 pgap ny
wl20 63.20 88.75 18.60 89 0.00 001 20 141 © 0 0 0.0% 0
u250 77.25 129.00 86.40 122 0.01 0.03 19 19 1 0 0 0.0% 0
w500 80.80 151.05 85.90 113 0.01 0.04 16 16 3 0 1 0.0% 0
11000 81.00 155.00 86.30 97 0.01 002 12 12 8 0 0 0.0% 0
t60 49.95 58.80 40.20 56 0.01 0.04 0 1 19 0 0 1.5% [§
t120 86.15 110.75 72.70 91 0.06 0.09 0 1 18 0 1 2.0% 16
£249 140.10 199.15 12670 146 0.26 0.37 0 1 19 0 0 1.2% 20
t501 19425 31540 16740 189 0.67 1.14 0 0 20 0 0 06% 19
Table 7: BINPACK triplet instances without H3 and H4
name Mav mh, tay imx tav tmx Me Hl H2 gap 1ny

t60 49.95 58.80 4020 56 0.00 0.01 0 1 19 15% 6
6120 86.15 110.75 7270 91 0.01 0.02 0 1 19 21% 17
t249 140.10 199.15 126.70 146 0.04 0.06 O 1 19 12% 20
t501 194.25 315.40 167.40 189 0.08 0.10 0 0 20 06% 19

Table 8: Modified BPP instances of Degraeve and Peeters (2003)

W int Mav mh, Tav Imx tay tmx me Hl H2 H3 Hd4 n,
10060 {1, 10000] 488.65 494,05 148440 1737 3495 4835 14 3 0 0 0 0
(2000, 10000) 485.15 490.20 800.70 916 7.05 9.87 15 1 0 0 0 a
[5000,10000] 474.75 474.80 457.70 480 1.15 1.35 16 0 0 0O 0 0

12000 [1, 10000] 486.95 494.55 817.90 1732 2589 58.02 18 7 1 0 0 0
(2000, 10000] 484.75 49220 1157.90 1328 15.00 21.33 18 2 0 0 0 0
[5000,10000] 475.95 180.35 520.75 550 2.20 2.64 15 0 0 0 0 0

15000 {1, 10000] 487.90 497.15 293.60 1171 8§.00 67.00 18 G 0 0 1 1
[2000,10000] 482.70 494.25 805.05 1144 16.19 2937 16 16 4 0 0 0

[5000, 10000] 475.25 486.95 691.50 786 5.14 6.31 13 0 0o 0 0 0

Table 8 presents our results for the modified BPP classes of Degraeve and Peeters (2003)
(20 instances per row as described in §5.1). Just one out of the 180 problems was not solved
(H4 helped on one problem). The transformation into a CSP reduced the number of items
by at most 5% on average. For almost 500 variables, the large iteration numbers and running

times are not too suprising.

16

Table 9: Small-item-size instances with tight IXP bounds, int = «ll, d = ull

m May M. fav imx tay tinx ne Hl H2 H3 Hd ny
10 9.99 26.77 15.30 31 0.00 0.03 113 50 70
20 19.95 53.13 32.52 68 0.01 0.12 113 59 69
30 2991 79.76 52.21 97 0.04 0.55 130 82 61
40 39.85 105.55 70.60 141 0.10 1.37 126 93 58
50 49.75 132.16 80.50 171 0.20 2.20 132 101 56
75 7436 197.32 141.59 249 0.61 6.2 154 127 38
100 9892 263.36 183.75 319 0.88 11.15 153 125 45

coooCc oo
oo ooc oo
cCoocoCcoo

Table 10: Medium-item-size instances with tight XP bounds, int = all, d = 50

m May ml, tay Tmx tav Einx n, HI H2 H3 H4 n,
10 9.98 23.09 17.55 29 0.00 0.02 57 48 112 0 1 0
20 19.95 45.58 35.08 58 0.02 022 74 57 108 O 0 0
30 29.84 68.47 53.63 91 0.05 0.79 78 77 100 0 1 0
40 39.78 90.65 70.06 116 0.11 362 70 64 109 0 0 0
50 49.64 113.69 88.91 154 0.19 470 83 71 111 0 3 1
75 74.08 169.10 137.08 216 1.48 53.20 80 71 106 1 0 0
100 98.45 226.07 184.88 293 7.76 41038 74 72 119 0O 2 0

5.5. Impact of tighter knapsack bounds

The results of §5.3 were obtained for the relaxed bounds of (9). Using the tighter bounds of
(8) allowed us to solve just two more instances at the expense of longer running times. To
save space, the following tables and remarks list only data classes on which the tightening
of KP bounds mattered most, giving more details for larger problem sizes.

Concerning Tables 9-10, the good news is that tighter bounds allowed us to solve all the
small-item-size instances of Degraeve and Peeters (2003), and all but one of the medium-
item-size instances of Degraeve and Peeters (2003). Unfortunately the running times grew
substantially relative to Tabs. 1-2. On the small-item-size instances, for m > 40 the average
runuing thnes grew by about 150%:; on the medin-item-size instances, the average running
tines grew by 200%, 217%. 303% and 446% for m = 40, 50, 75 and 100 (see Tabs. 25-26 for
more details). The iteration numbers were about the same. The increase in running times
can be attributed to the knapsack solver (which made more than two million backtrackings
on sonie subproblems).

For the instances of Wiéscher and Gau (1996), the same 3997 out of 4000 instances were

solved, but relative to Tab. 3, for m = 40 and 50 the average running times grew by 100%

17

Table 11: Comparison of running times with Degraeve and Peeters (2003), int = all

Tab. 17 Tab. 18 Tabs. 20-21
" HR IR BR LR BR LR BR
30 0.17 0.10 0.02 010 0.02 0.29 0.02
10 044 0.21 005 0.21 0.04 0.71 0.03
50 074 038 0.08 037 0.08 145 0.06
75 5.03 0.81 0.22 218 0.24 9.57 0.37
100 1014 2,99 042 2.63 040 21.08 1.42

and 143%. Por the instances of Vanderbeck (1999), relative to Tab. 4, the average running

times grew by between 67% and 205%; their sum increased by 175%.

5.6. Comparisons with other procedures from the literature

5.6.1. Comparison with Degraeve and Peeters (2003)

In Table 11 we compare the average running times of our bundle relazation code BR with
the two best procedures HR and LR of Degraeve and Peeters (2003) on the instances used
for Tabs. 17, 18, 20 and 21. The times for HR and LR obtained on a Pentium Pro 200 MHz
were extracted from (Degraeve and Peeters, 2003, Tabs. 1-4b}. Two points should be noted.
First, both HR and LR employed an industrial LP solver (inuch more sophisticated than
our dense QP solver), and LR additionally used subgradient optimization. Second, due to
lacking knowledge, let’s assume that the machine of Degraeve and Peeters (2003) was ten
times slower than ours. Then Table 11 suggests that on the small-item-size instances BR was
comparable in speed with HR (about twice slower than LR), while on the medium-item-size
instances BR could perform better than LR. Similarly, in view of Tab. 3 and (Degraeve and
Peeters, 2003, Tab. 10), on the instances of Wischer and Gau (1996) BR was as fast as HR
(twice slower than LR), whereas Tab. 4 and (Degraeve and Peeters, 2003, Tab. 5a) indicate
that on the instances of Vanderbeck (1999) BR was comparable with HR, and sometimes
faster than LR. On the industrial instances of Degraeve and Schrage (1999) (cf. Tab. 24 and
(Degraeve and Peeters, 2003, Tab. 9)), BR behaved like HR (sometimes better than LR).

5.6.2. Comparison with Briant et al. (2005)

We now compare our running times with those in (Briant et al., 2005, §2.2), where the task

was just to produce sufficiently accurate primal and dual solutions 2% and 4* that satisfy the

18

Table 12: Industrial and random CSP instances of Briant et al. (2005), ¢, =0

ltanme May 7’1/3\, Tay Tnx tav tux €av Cinx Qav Gmix

ind_9 18.00 56.89 3000 69 0.02 0.10 00E+00 0.0E+00 2.1E-11 1.8E-10
50b100c4 49.70 129.25 109.10 141 0.15 0.39 0.0E+00 0.0E+00 8.9E-13 4.6E-12
ul20 63.20 88.75 97.10 124 0.02 0.03 0.0E+00 0.0E400 4.0E-13 1.5E-12
u2s0 77.25 129.00 106.95 129 0.02 0.04 O0.0E+00 O0.0E+00 27E-12 1.5E-11
t120 86.15 110.75 76.05 93 0.01 0.02 0.0E+00 0.0BE+00 1.4E-12 6.4E-12
t249 140.10 199.15 133.15 148 0.04 0.06 0.0E+00 0.0E4+00 1.3E-07 2.5E-06

Table 13: Industrial and random CSP instainces of Briant et al. (2005), ¢, = 1073

nane Mav 777;/“» Tay Lrx Lav trnx Cayv €inx Uay Qx

ind_9 18.00 56.89 30.67 69 0.02 010 0.0E4+00 0.0E+00 8.9E-11 7.9E-10
50b100c4 49.70 129.25 109.10 141 0.15 040 0.0E400 0.0E+00 89E-13 4.6E-12
ul20 63.20 88.75 97.90 124 0.02 0.03 00E4+00 0.0E+00 5.2B-09 9.8E-08
u250 77.25 129.00 108.05 132 0.02 0.04 5.4E-16 8.8E-15 9.1E-09 8.2E-08
t120 86.15 110.756 78.00 95 0.0l 0.02 0.0E+00 0.0BE400 1.8E-09 1.8E-08
£249 140.10 199.15 13490 153 0.04 006 0.0E+00 0.0E4+00 1.1E-09 2.2E-08

stopping criterion

e — 9, <é and |7f|/vm <E (26)

for a given tolerance € = 1075; thus the duality gap is at most € and {since 3, p’ijk —d > %)
2k satisfies the demand constraints within ¢ on the average. Hence, to achieve a similar
impleinentation context, our code was run with a tight optimality tolerance eqp = 1074
and without early terminations due to primal heuristics. Table 12 gives our results for the
instances of (Briant et al., 2005, §2.2); here “ind 9" comprises the first 9 instances from
Tab. 23, “50b100c4” is the final class of Tab. 4 and the remaining classes occur in Tab.
6. The columns “e,,” and “ey,” give average and maximum values of relative dual errors
18, — 8,]/16.] (with 8, estimated to at least 14 digits in other runs). The colunmmns “a,,” and
“awmy” give average and maximuwn values of absolute errors ag, with ag being the minimum
¢ satisfying (26); in other words, ow code might have terminated earlier if we used (26} as
the stopping criterion with € > ayy.

Table 12 was obtained for ¢, = 0, i.e., exact I{P solutions. Results for ¢, = 1075 are given
in Table 13, and for ¢, = 1073 and 107* in Tables 27-28. The accuracy obtained was quite
poor for ¢, = 1073, a bit too weak for ¢, = 1074, but very good for ¢, = 107% (the results for

smaller ¢, were similar). These values of ¢, are also “representative” when our code is run

19

Table 14: Small-item-size instances of Degraeve and Peeters (2003), ¢, = 0

m May mh, Tay Trix tav tmx Te H1 H2 H3 H4 ny
10 9.99 26.77 15.14 31 0.00 0.02 113 49 70 1 0 (]
20 19.95 53.13 32.51 69 0.14 22.38 120 64 04 4] 0 0
30 2991 79.76 51.90 91 0.55 127.23 130 8 57 0 0 1
10 39.85 105.55 70.45 134 3.03 219.28 134 98 53 O 0 0
50 19.75 132.16 90.18 181 1.08 168.06 134 1062 55 O 0 0
75 7436 197.32 14175 256 6.97 576.03 148 121 43 0O 1 0
100 9892 263.36 18333 311 13.96 1035.61 165 136 33 O 2 0

Table 15: Medium-item-size instances of Degraeve and Peeters (2003), ¢, = 0

m Moy mh, oy Liax tav tox n, HI H2 H3 Hd4 =n,
10 9.98 23.09 17.52 29 0.00 001 54 48 112 O 1 0
20 19.95 45.58 35.05 58 0.02 1.80 68 50 114 O 1 1]
30 29.84 68.47 53.71 93 0.67 105.02 73 73 105 O 0 0
40 39.78 90.65 69.94 120 3.36 253.23 69 62 111 0 0 0
50 49.64 113.69 88.76 156 1.73 62.13 74 65 118 1 1 1
75 74.08 169.10 137.04 232 30.81 48560 83 74 104 O 0 1
100 98.45 226.07 184.32 295 67.29 850.75 72 71 118 0 4 0

with the primal heuristics, as shown in §5.7.2. In view of the excellent accuracy in Tab. 13,
we may compare our timings in Tab. 13 with the best ones of (Briant et al., 2005, Tabs. 1, 2
and 5) for various CG and bundle variants, where the machine used was about twice slower
than ours, and the CG variants could stop before the first part of (26) held. Since quoting
the tables of Briant et al. (2005) would take too much space, we just state the conclusion:
Owr running times were shorter at least 7.5 times for ind.9, 22 times for 50b100c4, 43 times

for ul20, 56 times for u250, 237 times for t120, and 197 times for t249.

5.7. Impact of evaluation errors

5.7.1. Comparison with exact bundle

When the dual objective evaluations happen to be exact, our BR code runs essentially like
the standard bundle method used in (Feltemmark and Kiwiel, 2000). Therefore, Tables
14-16 summarize our results for exact KPP solutions (e, = 0) relative to Tabs. 1-3 (where
€, = 107%); similar features were observed on other instances. First, the iteration numbers
and the performance of our heuristics did not change significantly. (In other words, the errors

occuring in the inexact case were small enough to be accommodated gracefully by our code.)

20

Table 16: CSP instances of Wascher and Gau (1996), ¢, = 0

mo My ey, Tay tmx tav inx N Hi H2 H3 H4
10 9.99 25.37 14.27 35 0.00 0.24 449 134 192
20 19.96 5046 30.73 61 0.13 31.45 485 240 183
30 29.90 75.72 4818 105 0.43 121.99 503 281 161
40 39.84 100.10 65.05 123 1.60 208.d4 503 314 159
50 49.73 12522 84.75 171 3.13 407.79 526 341 138
all 29.88 75.37 4860 171 1.06 407.79 2466 1310 833

cCoCcoCc o
O N =N O
W= NO OO S

Second, the running times increased quite dramatically. For instance, in Tab. 14 relative to
Tab. 1, for m = 30,40, 50,75 and 100, the average times grew by factors of 27.5, 75.8, 13.5,
29.0 and 34.9, respectively; for Tab. 15 relative to Tab. 2, the factors are 33.5, 112.0, 28.8,
83.3 and 47.4; in Tab. 16, the “all” time grew by the factor of 35.3. Performance profiles

(Dolan and Moré, 2002) are given in Figs. 1-3 in the supplement.

5.7.2. Other choices of the relative error tolerance

In the initial version of this paper we used the accuracy tolerance e, = 1078; the results were
very close to those in Tabs. 1-10 (where ¢, = 1073). In parallel with Tabs. 14-16, Tables
29-34 give results for ¢, = 1072 and 107%. The average iteration numbers and computing
times were similar for e, = 1073, 10~* and 10~°. However, ¢, = 1072 was too large, causing
our heuristics to fail more frequently. On the other hand, . = 10~ did not improve on our
stancard choice of ¢, = 107% (giving one wore gap in Tab. 32).

Further insight may be gained as follows. By (10), the absolute error in evaluating
is bounded by Ne, once ¢ gets close to 1. The upper bound N := ez* delivered by FFD
(cf. §3.3) is usually close to the optimal primal value v,. Typical instances have the integer
round-up property [0,] = v., but our heuristics fail if we can’t find a lower bound €, > v, —1.
Thus we may expect failures when the absolute errors get close to Ne, > 1. Now, in Tables
29-31 the average values of v, and N grow linearly with m, reaching order 5000, 2875 and
1250 for the final classes, where Ne, > | for ¢, = 1073; thus the small percentage of failures

suggests that the actual errors tended to be smaller than their upper bounds.

5.7.3. Absolute error tolerances

In view of the discussion in §5.7.2, we also considered choosing ¢, so that the evaluation

errors did not exceed a given absolute error tolerance ¢, < 1 (with SHP using ¢, = 107°

21

as in §5.3). Specifically, for evaluating ¢ we used ¢, := ¢,/N. Tables 35-40 give results for
€, = 0.05 and 0.01. For both values of ¢,, the average iteration numbers and computing
times were close to those in Tabs. 1-3 (where ¢, = 107°). However, ¢, = 0.05 was too large,
causing our heuristics to fail more frequently. On the other hand, owr results for ¢, = 0.01

were very close to those for ¢, = 1075.

5.7.4. More inexact null steps

We now consider a modification in which our IXP solver exits once at least bkmin backtrack-

ings have occured, for a given parameter bkmin, and the incumbent value ¢ satisfies
(>1+ (uk'ﬂd — HUk) /N, (27)

50 that (up1 = ¢ vields a null step; cf. (22) (normally w**'d > 6% + ko, and (27) holds iff
(22) fails). Such “more inexact” null steps may save KP work, but shallower cuts may yield
slower convergence. Tables 41-46 give results for bkmin = 0 and 1000 (with ¢, = 107°).
Relative to Tabs. 1-3, where bkmin = o0, for bkmin = 0 the average iteration numbers grew
by 59-114% on the largest instances, the solution times decreased fairly mildly, and two
more gaps occured. In contrast, for bkmin = 1000 the average iteration numbers grew by
only 5-13% on the largest instances, the solution times decreased quite mildly (although the
decreases by 32% and 37% for m = 75 and 100 in Tab. 45 are noticeable), and three gaps
disappeared. On the other hand, the maximum iteration numbers increased substantially on

the larger instances, giving some cause for concern.

5.7.5. A discussion of error tolerances

Although in general one may expect tradeoffs between the accuracy of subproblem solutions
and the speed of convergence, for the CSP such tradeoffs may have little practical impact,
since Tables 12-34 exhibit fairly small variations in iteration mumbers and computing times
for “reasonable” accuracy tolerances. Therefore, we would not expect much gain from dy-
namic tolerance adjustment: loose at the beginning and progressively decreasing.

We add that dynamic handling of the accuracy may be important in general, especially if
the oracle’s work depends “continuously” on the accuracy required. However, this need not
be the case for our MT1R, which seems to have the following properties: (1) its work explodes
on some subproblems when the accuracy required is “too high”; and (2) its work does not

vary much otherwise. Thus the main point is to avoid accuracies that are “too high”, or “too

22

