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Abstract

Inn this paper we establish the global existence and uniqueness of sulution for the three-dimeusional
shape memory alloys. The system represents a multi-dimensional version with viscosity and capii-
larity of the well-known Falk model [or one-dimensional martensitic phase transitions. In the set-up

considered by Pawlow and Zajgczkowski ({21], {22] and {23]) some conditions have been required fur
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the nonlinear term. In the present paper we imprave the result by imposing less restrictive assump-

tions.

1 Introduction

We consider the following initial-boundary value probler"n in quasi-linear thermoelasticity:

u + £8QQu —vQuy = V- Fe(e,0),

[ev — Fog(e,0)6)0, — kD = 6F g, (,0) : £, + v{Ae,) : £, in Qr = (0,T] x §L
(TE)a

u=Qu=98 - n=20 on St ={0.T] x 0.

w(0,7) = up(z), w(U.0)=u(x), OH{0,x)=>0(x)>0 in Q.

where 0 C RY (d = 2,3) is a bounded domain with a smooth boundary 8Q. Let « = (u,) € R’

) : 0 2 L )
denote the displacement vector, £ = (c,,) with &,;{u) = %(%’xit + 72%) the linearized strain tensor. # 1he

absolute temperature and F € R is called the elastic energy density. The capillarity term QQu with
constant coefficient £ > 0 corresponds to interaction effects on phase interfaces. The coefficients v, ¢,

and £ are positive constants corresponding to the viscosity coefficient, caloric specific heat and Lhe heat

conductivity, respectively.

8F

We use the notations F, = (2£), Fo = 45 and é: ¢ = Ef].=ls'.~j5,~j. We define the linearized
- .

elasticity operator @ by the following second orde‘r differential operator
Qu=pAu+ (A+u)V(V-u),
where A and u are the Lamé constants such that
p>0 and d/\‘+2/.4>0.‘ (1.1)
The fourth order tensor A represents linear isotropic Hooke's law, defining by
Aijrt = Mii0u + p(8irdjt + Sudji).
We note that the tensor has the following symmetry properties

Aiit = Aty Aij = Ajists Aijee = Atk



and the relation Qu = V-&(u)A holds. The assumption (1:'1) assures the strohg ellipticity of the operator

Q and the following inequality

a.lel® < (Ae) e < a’ef?,

where n, =
structure of the elastic energy density:

(A4) F(e.0) = G(6)H () + H(e) such that

(1) G e CHR.R) is as follows:

Cy”

min{dA + 2,1, 2u} and a* = max{dA + 2x,2u}. In this article, we consider the following

if 6 ef0,6]
if 8 € lth.6a)

il 8 € (8. 00),

where » € CHR.R), " < 0 and C; and C; are positive constants for some fixed 8., 9, satisfying

0 <8 <#, <oc. Weextend G defined on R as an odd function.

i) H € CHSL R) siishies the condition H{e) > 0, where S? denotes the set of symmetric second order

Lensors in RY.

(iti) H e C*(S? R) satisfies H(e) > —Cy, where Cy is some real number.

(iv) H(e)} and H{(e) satisfy the following growth conditions:

«

[H.(e)l < Clel™ 1,

[H ()] < Cle™=1,

for large {e/.

[Hee(e)l < Clefr72,

1H cele)] < Clef*2,

[H ece(€)] < Clel2,

[H ceele)] < Cle)e~?

Here we note that the regularity assumption for H(e) and H () assures that there exists a positive

constant M such that

(He () + | Hoee )+ Heee ()] + [Hol)] + [Heel) + [H ceele) < M



for small je]. Under the above structure of nonlinearity the system (T'E)4 can be rewritten as follows:

u + £QQu — vQuy = V - [G(O)H . (¢) + H e (e)], (1.2)
e, — kAO = 9G"(8)6, H(e) + 0G' ()8, H () + v(Ae,) 1 & in Q7. (1.3)
u=Qu=V8.n=0 ' on S, (1.4)
uw(0,z) = wolz), w(0,z)=u(z), 6(0,z)=0o(z)20 in Q. (1.3)

In this paper we show the unique global existence of a solution for (1.2)-(1.3) under the following
power of nonlinearity:

5
0§r<8, 0< Ky, Ky <6, 6r+ I, <6 (16)

in the 3-D case, and
0<r<l1. 0< K I{z <0 (1.7)
in the 2-D case.

Before discussing the result of this paper more precisely we shall explain the related results and the
physical background of this model. In [10], Falk presents the Landau-Ginzburg type theory using the
shear strain £ := 8,u as an order parameter to describe the martensitic-austenitic phase transitions
occurring in 1-D SMA. There are many papers related to 1-D SMA (e.g. [2], [3], [6), [12], {16}, [17] and
[24]). The system (TE)q is a generalization of the 1-D Falk model with internal viscosity to the 3-D case.

The Helmholtz free energy density takes the following form
F(e,Ve,0) = Fo(6) + F(e,6) + |Qu?,
Fo(8) = ~c,0log(0/03) + cof + &

and the stress tensor is given by

§F
o= = + vAey,

where ¢ and 83 denote the positive physical constants. System (TE)q can be derived by an argument

similar to that in the 1-D case (see [5]). For more details on the derivation of this system, we refer to

[19). In [11], Falk and Konopka give the form of the elastic energy density F' as follows:

3 5 2
Fe,6) =Y al(0— 6.2 e) + Y al(f - 8)T1(e) + D alTP(e), (18)
i=1 i=1 i=1



proved under no conditions between & and v, and the class of nonlinearities is generalized to A3 < 6. The
first two assumptions in (1.10) are present due to the semilinearization which causes the lack of energy
conservation law (Lemma 4.1 below). Recently, Pawlow. and Zajgczkowski [21] have proved the unique
global existence for the quasilinear system (1.2)-(1.5) under the assumptions

2 1 . .9
O<r<§, 0<K‘<TS and 15 +4J(; =15 il K| > 1, 0</\,g§, 0<2V/r<v.  (1.12)

The latter, restrictive condition between viscosity and capillarity has been removed by the above men-
tioned authors in [23]. The aim of the present paper is to prove the unique global existence of a solution
to system (1.2)—(1.5) under weaker assumptions than (1.12). More precisely, we admit. the nonlinear-
ity specified in (1.6), (1.7}, and arbitrary positive coeflicients of capillavity & > 0 and viscosity v > (.
Unfortunately, our result still does not cover the physically realistic case (1.8).

Here we add some remarks on the 2-D case. The results of {20] include the 2-D case of Lhe semilin-

earized problem (SLTE),. The unique global existence for the 2-D quasilincar system (T E); is estab-

lished in (22] under the assumption:

0 <Ny < noc. 0< Ky < {1.13)

o5 ~1

In |26]) the unique global existence for r = 1 is proved under other strong assumptions. Roughly speaking.
the restrictions in [26] are such that K; = 0 and that the energy of initial data fuopll g2 + lJuifl 2 + |60l
is sufficiently small. We note that if we take r = 1 then the quasilinear term 8G"(8)H (¢)8, of (1.3) does
not appear. We also describe the result for the 2-D case in Section 5 of this paper. We show that Lhe
system (TF)2 has a unique global solution under the assumptions (1.7). Comparing these assumptions
with (1.13), we see that the restriction for r is weaker, nevertheless we cannot admit r = 1.

We now introduce some notations and function spaces. Throughout this paper C and A are positive

constants independent of time T and depending on time T, respectively. In particular, we may use A

instead of A([{(vo,u1,80)|lx) for some X if there is no danger of confusion.

o LP(2p) = LELP = L"(0,T; L;’(Q)) is the standard Lebesgue space. We oflten use the notation

Lr(Syy) = LYL” for some interval /.




E ;
where a8, are constants and J¥ denote certain k-th drder monomials with respect to (€ij). Here we

vernark that in the 1-D case the elastic energy density takes the following form:

Fip(e.0) = me2(8 — 8.) — et + age®, (1.9)

where = 1= O,u and «,, #, are positive constants. Cm}xz'lp;u‘ing (1.8) with the 1-D form (1.9}, we see
that in the 3-D case H(¢) must be the fourth order Wit}:l respect to €. This causes some difficulties in
the mathematical treatment of the system (1.2)-(1.5). Moreover, the difficulties arise also from the fact
that the useful embedding H' — L does not hold in the multi-dimensional case. There had been no
papers on the solvability of this system with the Falk-Konopka elastic energy density (1.8),r =1, K =4
and Ay = 6. Then Pawlow and Zochowski |20} studied the energy density F under several stronger
assumptions than (1.8). niunely, lower order powers of nonlinearity. Moreover, for the simplification of

treatments they first considered the semilinearized equations of the quasilinear system (TE)y:

ity + 8QQu — vQu, = V- F (£,8),

By — RO = 0F 4. (c.0) g + v(Ag,) & in Q7.
(SLTE),

wo= Qu=Vf n=10 on Sr,

w(0,2) = up(x), u(0,z) =uy(x), 6(0,z)=b0(z) >0 in 2,

which is the model (T £)q with removed quasilinear term 6G” (8)8, H (¢). They showed the unique global
existence of a sufficiently smooth solution for (SLTE)4 under the following assumptions on the nonlin-

earity:

0Sr<%, OSK,S(%—r)K2+1, ogkgs% (1.10)
in the 3-D case, and

0<r<—;—, OSKls(%-—r)K2+l, 0< Kz < 0o (1.11)

in the 2-D case. In addition, due to the applied parabolic decomposition of elasticity system, they assumed
the condition 0 < 2\/k < v between viscosity and capillarity. Such assumption, however, does not seem
realistic for SMA viscosity effects which are negligibly small. In [25] the unique global existence of the

solution Lo (SLTE)y in a larger class is proved by using the contraction mapping principle. The result is

<t



o W24Q7) is the Sobolev space equipped with the norm

2 B
lullwaiiam =2 >, 1DiDSullLeiar),

7=02r +fal=5
where D, 1= i%‘ D7 = H DZ* and Dy := ia“it for multi index o = (o)7;.

a=a)taztag

o HI(Q) := W] (1), where W] is the Sobolev space equipped with the norm "“"W;’(O) = Dot 105l ey

o B, = B;,(Q) is the Besov space. Namely, B; , := [L7(Q), W] (Q)],/;.q, where [X,Y],,, , is the

ra

real itnerpolation space. For more details we refer to [1) by Adams and Fournier.

o (/2(Q7) is the Holder space: the set of all continuous functions in Q7 satisfying Hélder condition

in + with exponent ¢ and in ¢t with exponent /2.
We now state the main result of this paper.

Theorem 1.1. Let the positive physical constants s, v, ¢, and k be fixed arbitrarily. Assume that

> U and (1.6} holds. Then, given 5 < p < q < oo, for any T > 0 and {up.u,,6) €

M fy
B x B,':_z/" x B;j)l,_,z/" =:U(p,q), there ezists at leust one solution (u,8) to (1.2)~(1.5) satisfying

»
(w,80) € WHE(Qr) x W2 (Qr) =: Vr(p, q).
Moreover, if we assume ming g = 6, > 0 then there ezists a positive constant w such that
8 > 6. exp(—wt) in Q.
For completeness we recall also the uniqueness result which follows by repeating the a.rgumen.t.s of the

corresponding result in {22, Section 6].

Theorem 1.2. In addition to assumptions of Theorem 1.1, suppose that F(e,8) € C(S? x R*,R). Then
the solution (u,0) € Vr(p, q) to (1.2)-(1.5) constructed above is unique.
We prove Theoremn 1.1 by using the Leray-Schauder fixed poinl principle. The key estimates are

the maximal regularity estimate for (1.2), and the classical energy estimate and the parabolic De Giorgi

method for (1.3). In general, the derivative of a solution is less regular than the right-hand side of the



corresponding equation. However, for parabolic equatif;nS'suC:H a loss of regulla.rity does not occur, as
in the case of elliptic equations. The estimate ensuring':this regularity is called the maximal regularity.
For more precise information on the maximal regula.rity‘.We refer to [4], and for more recent topics of the
maximal LP-regularity we refer to [9). Since the maxima}l reéularity theory is limited to linear parabolic
equations, we cannot use it directly for the quasilinear equa},ion (1.3). To obtain the higher order a priori
estimates we apply the classical energy methods and the parabolic De Giorgi method (see [14], [13]).
Using these methods we can show the Holder continuity of §. By virtue of such regularity, we arrive at
the estimate in higher Sobolev norm.

In Section 2 we list several preliminary results which are used in the paper. In Section 3 we prove
the unique global existence of the solution for certain truncated version of problem (1.2)-(1.5). To this
purpose we use the Leray-Schauder fixed point principle. In Section 4 we show that the solution of (T E)x
coincides with the solution of the truncated problem constructed in Section 3 for a sufficiently large

truncation level L. In Section 5 we consider the 2-D system (TFE)s.

2 Preliminaries

In this section, we present some auxiliary results which will be used in the subsequent sections.

Lemma 2.1 (Maximal Regularity). (i) Let p € (1,00). Denote by u the solution of the linear problem

Uy + 8QQu —vQu, =V - f in Qp,
u=Qu=0 on St,
u(0,2) = wo(x), w(0,7) = m(z) in D
Then the following estimates hold
llullt;;»=(nf).sl ?("'%"3;;5 + !'u;l|53;5 + IIV'fIIL»(nT)) . (21)
for any (uo,u1) € BAZYP x B2;¥P 4nd V - f € LP(Qr), and |

IVellwa gy € C(IluoIIB:'-P; + ”“‘"s,’,;ﬁ + 1 flerr) (22)

Jor any (uo,uy) € B3HP x BL3YP and f € LP(Qr).



(it) Let q € (1,00). Assume that p(x:) is Holder continugus in §) such that infn p > 0. Denote by 6 the

solution of the linear problem

8, — pA8=yg- inQr,

n-V8=0 on S,

(0, z) = fo(z) in L

Then the following estimate holds

"

Wl zsspy < CUGOH -3 + lalliaen) (2.3)

]

Jor any fy € B;f:,)/'“, where C' depends on infq p.

For the proof of (i} we refer to [23, Lemma 2.1, Proposition 2.4], and (i) is the particular case of [13,
3.2 Examples A), 2)|. Next, we recall the useful space-time embedding lemnma.
Lenma 2.2 (Embedding |14, Leunma 113.3]). Let [ € ”Alvj” "(Syr). Then, for | € 2% ond multi indez c,

ol follows that

107D flgary € CE W sy + C6 D fllLrisiry (24)
provided ¢ > p and ¥ =1 + J%‘ + % (1_1‘ - 5) <UL lfp=r+ I;j + %fpl < {, then

107 D2 flimeiair) € CO8 U Nt gy + €O N Logarys (2:5)
moreover, Df D2 f is Holder continuous. Here, 5 € (0, min{T,(?)], ¢ is the altitude of the cone in the
statement of the cone condition satisfied by 1.
Lemma 2.3. Let p be given in {A)—(i). Then the function p(s) satisfies

o(s) = s'(s) > 0 2o

Jor uny s € [8;,62)
Proof. Putting f(s) = p(s) — s¢'(s), we have f'(s) = —sp”(s} > 0 and f(6;) = 0. Then f(s) =
2(s) — s'(s) 2 0in {#,62). [m]

To show Theorern 1.1 we apply the Leray-Schauder fixed point principle. We recall it here in one of

s equivalent formulations for the reader’s convenience .



Theorem 2.4 (Leray-Schauder Fixed Point Principléﬂ'[ﬁ]). Let X be o Banach space. Assume thal

$:[0,1] x X — X is a map with the following properties.
(L1) For any fized T € [0,1] the map ®(7,") : X — X is compact.

(L2) For every bounded subset B of X, the family of maps ®(-,€) : [0,1] — X, € € B, is uniformly

equicontinuous.
{L3) ®(0,-) has precisely one fired point in X.

(L4) There is a bounded subset B of X such that any fired point in X of ®(7.-) is contained wn B for

every 0 < 7 < 1.

Then ®(1,-) has ot least one fized point in X.

3 Truncated Problem

To prove the existence theorem we first consider the Tollowing truncated problem (TE)%:

e+ £QQu — vQu, = T (V- [COH.() + o)), (3.1)
8, — kAB = 8C™(0)6,H (€) + 6C' ()0, H(e) + v(Aey) : &, in O, (3.2)
u=Qu=V8 -n=0 on St,
w(0,2) = up(x), u(0,z) = uy(z), 6(0,z) = fo(z) >0 in
where
z ifiz] < L,
Po(x) =
L il =L

Theorem 8.1. Fiz L and 5 < p < ¢ < co. Assume that 6y > 0, (1.6) holds and F(e,0) € C*(S? xR*,R).
Then for any T > 0 and (ug,uy, 80) € U(p, q), there exists o unigue solution (uy,,8,) to (TE)} satisfying
(ur,8L) € Vr(p.q).
Proof of Theorem 8.1. We apply Theorem 2.4 to the map ®£ from Vr(p,q) into Vr(p,q),

L (2,0) — (v,0), 7€),

10




defined by means of the following initial-boundary value problems:

1y + KQQu — vQu( = 70, (v (CBYH c(8) + ﬁ,(en),

Gl - kA = 7 {BC7(8)6.H (2) + 6C(B)OH (€] + v(Ae,) e} in Qr,
u=Qu=V0-n=0 on St,
u(0,z) = rugl{z), u(0,z) =7y (z), 6(0,z)=78(x) in 0,

where & = (). A fixed point of ®L(1..) in V(p. ¢) is the desired solution of the system (TE}%. Therefore
Lo prove the existence statement it is sufficient. to check that the map $ satisfies assumptions (L1)~(L4)
of Uheorem 2.4. Noting that L'y, is Lipschite continuous, we can check assumétions (L1}, (L2) and (L3)
in the same way as that in [21, Section 3]. Then it is sufficient to check the assumption (L4), namely, to
derive a priori bounds for a fixed point of the solution map ®%. Without loss of generality we may set
7 = |. Heuce, fromn now on our purpose is to obtain a priori bounds for (T£)f. To this end we prepare

severad lermmas. 1 chere s no danger of condusion we write lor simplicity (u,¢) instead of {ug,6;).
i > eine 4=2/p 2-2/p 2 fo0 a0~
Lemma 3.2 (Maximam Principle). Lel (w0 8) € BL77 < B,77 < L2 for p > 5. Assuwine that
ming #y > 0. Then the solution 8 to (TE)% is non-negative almost everywhere in Q.
Prouf. It [ollows from the maximal regularity (2.1) for (3.1) that

Nl 2y < € (ol g + sl g + U0 {V - GO H.e (@) + Ha@)} lloiar))

»

< Gllfwoll ga=zrm + fugll ga-arw + LIQTIF) (3.3)
P e
< A(L).
Then taking p > 5, by Lemma 2.2 we have
flell=ar) + ez € AL) < oo (3.4)
Therelore it holds that
18 H () Lminiry € lleellLoorlelfbihyy S AL)
for K1 > 1. Since sup g [H (€)] £ M for K; < 1, we conclude that
10 H (el L 2y < A(L) (3.5)

1



for every K1 > 0. From now on throughout this section we shall write A = A(L).

Multiplying (3.2) by 6. := min{#,0} and integrating over 2, we have
4 .
& / 0 dzx + k / |Vo_ 2z = / [6_6C"(6)8,H () + 6_6G"(6)0, H(e) + v6_ Ae, : e dz
2} [y
= i/H(E)Gg(o_)dI'F/52(0_)51H(E)dr+/ vB_ Ae, : g,dr,
dt Jg B a

where Go(8) = 62G"(8) —G4(8) and C2(8) = 2f sG’(s)ds. We have G(0) = 0 and G4(y) = y2C"(y) > 0
for y < 0, because G” is the odd function such that G"(y) € 0 for y > 0. Then G(y) < 0fory > 0.

Hence we have

—/ H(e)G4(6_)dz > 0.
i3

It follows from (1.1) that

/ v8_ Ay i g,dr < va, / f_ ]5,]2([,7: <0.
S0 At

Noting that G2(8) = %0102 for 6 € [—6,,8,], we have sup g Jﬁ—(r—)l < C. Therefore we conclude thal

e 2 [Ga(0-)}
/ch(o_)a e)dx </;9 e 1, H (e)idx

< Al8-1a

Consequently, we have
d
a (cvuo_mni: - [ H@1Ga(0-)ax) < (cvuo_mm - [ HteGa(o-)az)

Using the Gronwall inequality we obtain
18- < lo-(0)1s = [ H(e)Ca(o-)is
Aeh (ll"- ()2 - /ﬂ H(e(0))Ga(6- (0))dr)
=0,

which completes the proof. O

Lemma 3.3. Let I > 2 be arbitrary integer. Assume that r < 1. Then for any (up,u,,6o) € B:;.z/" x

B,E,;z/” x Lt =: Uy (1), the solution (u,8) to (TE)} satisfies
Nz < A

12



where A = A(T, [[(w, u2,60)llu,(1y). Moreover, if (ug,uy,60) € Uy (c0), then we have
181l Lo ) < AL
where A = A(T, (w1, u2. 8 Mlu, (o0))-

Proof. Multiplying (3.2) by 8'~! and integrating over §2, we have
c d
%Enon’u + k(l - l)/ne"2|V9|2dz = /n (6'G"(6)6,H () + 6'CG'(8)8,H(€)) da

+/u€l‘1AE¢ T gedx
0

(3.6)
d —
= ~—/ Gi(0)H (e)dzx + / Gi(8)0 H (e)dz
dt Jq a
+ u/ 9" Ae, ¢ e, dor,
n
where Gi(f) = 8'G'(8) — Ci(#) and Gi(0) = Uﬂu s'~1C"(s)ds. Since
Cor(r = " =2< 0 for 6 > 6y,
GG"0) = gy () < 0 for 8, <6 <y, (3.7)
V] for 8 < 64,
we have Gj(6) = 6'G"(6) < 0 for 8§ > 0 and G}(0) = 0. Thereby, we obtain
Gi(8) <0 for 620 (3.8)

We put
1/t
G-nli— IGi(8)H (€) )
c, 0!

We note that § > 8 due to (3.8). Since SUP,ef0,00) IG'(5)| =1 M < o0, we have

8
G1(8)] = 1/ S1G (s)ds| < C8*
o

and

(Gi®)] < M8' +|Gu(8)] < C8".
In view of (3.4) and (3.5) we obtain

,/ﬂ Cu(6)0 H(e)dz| < ClI' Ly l0H (€}l ooy < A8l

13



and

[0 e e < Gl 00 ) < AN

Since 18|14, = 18]1%2 818l s, it follows from (3.6) that-
d v
TNty < AlBllLay + A
< Alfllgiay + A
Thus by the Gronwall inequality we have
”é”L.;’?L’ < Aol + A (3.9)

Since

_@mwmv”

Go =61
o= oo o

<O, (1+IMAJc)Y,

we can obtain the first assertion. Here we note that the constant A in (3.9) is independent of {. Therefore

taking a limit as / — co we can obtain the second assertion. This completes the proof. O

Lemma 3.4. Let T be arbitrarily fized. Assume that v < 1. Then for any (ug,u1, o) € B:‘;z/" X

B2 5 HY =: Uy, the solution (u,8) to (TE) satisfies
M6llwzrngy < A
where A depends on T and ||(uo, v1, 80)||v, -
Proof. By using Lemma 3.3 the.mks to Bp € H! — L‘2, we havev
NollLgers < A. (3.10)
Since #G"(8) < 0 from (3.7) for | = 1, the following estimate holds true

/ / 6%0G" (8)H (¢)dzdt < 0. (3.11)
Qr



Multiplying (3.2) by 8, and integrating over §i7, we have

k koo " ,
cullbellisg + 71V Ez1e < 51001 +// 620G (6)H(£)d::dt+// 6,0G"(6)0,H (¢)dzdt
r r

+ // vB, Aey : e dadt
JJQr

< |18ollb + AHGL"L’(QT)HGHZ;?L? N0 H (€)oo (ary + AlOellLge L2llen)im iy
. Co
< [1Boll% + —2-"‘9(”21(:17) +A,
thanks to (3.4), (3.5), (3.10) and (3.11). Therefore we arrive at

0tz ry + VOl 2 < Alll{up, w1, 60)llu, ).

Nextonuluplying (3.2) by '_—"(’% and integrating over 2, we get
' k(26)? : Aé
Vo - —_—— = — _—_— (6G'(8)0, Agq e ) dr.
SFICOOIL + | e = — [ s (GO H ) 4 vite s 1)

Here we remark that

¢ Son =G "(H)H{e) < e, + MA,

where 1) < sn]),,?”(k(')(v'”((f)) = Al < x. Then integrating over [0.4] for ¢ < T, we conclude the estimate
. 24 .
IV OlL: + —mlli\ﬁ”umr) < IV8oliL: + 20280 Lagar) 16G' ()8 H (e) + vAe : ell 12y

2

< |IVbo|1s + (—TI'\A_{'“AGHL’(QT)

e, + AM 2
+ 222 (Al6ls a0 H ) omiar) + Alleelliogar))
k A
< m“ auu(nr) + A

Consequently we arrive at the desired result. a

The same procedure as in {21, Lemma 6.1] allows to conclude that § € C**/3(Qr) for some Hélder
exponent 0 < o < 1 depending on T, supgn 8o and [|8)| Lo (). The proof relies on the classical parabolic
De Giorgi method. For more precise information of this method we refer to [14, Chapter 1I, §7] and [15,

Chapter V1, §12]. Here we note that ¢ is Hoélder continitous due to Lemma 2.2.
Lemma 3.5 ((21, Lemma G.1]). Assume that k = supy 6y < oo. Suppose that
ufnw}‘(nﬂ + ”0”;4/;‘"(;).,.) + JIHNL"’(QT) <A (3.12)
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holds for any s € (1,00). Then 8 € C*/2(Qr) with Haldér exponent o € (0,1) depending on A and k.

Lemma 3.6. Assume that (3.12) holds. Then for any (uo,u1,60) € U(p,q) and 5 < p,q < 0o we have
”(uv 9)"VT(P.<I) = ”ull‘”ﬁ”(ﬂr) + ne”wq’»‘(n.r) <A,

where A depends on ||(uo, 1, 80)|lu(p.qy ond T.

Proof. We can construct a unique time local solution (u,8) € Wi2(Qz) x W2!(25) of (TE)j for suffi-
ciently small T < T, using the result of Clément and Li [7] (see also {27, Lemma 3.3.7]). Then from the
embedding we have 8 € C([0, 'f"] x ). By combining this regularity result with Lemma 3.5, we obtain

8 € Co/2([0, T) x 02).

For brevity of notation we denote ¢, — G (8)H (g) by co{e,8), and 8G'(8)0, H(e) + v( A=) 5, by

R{e,8). Then the equation (1.3) can be rewritten as

col€0.6a)8 — A8 = (coleq, o) — cole, 8))8, + R(e,8).
By the assumptions we have

IR (e, 0)| Logarry < CHONL oo rpy N H e (W Lowrry et Lugrry + Clledangagy

< A.

From the Holder continuity it follows that
llcoleo, Bo) — cole. )l L=(ar) < KT %,

where K is the Holder constant independent of Tj. Here T) « T will be determined later.
Next, we show that 1/co(e, 6)(z, T2) is H6lder continuous with respect to the space variable for T
fixed in [0,7). We remark that
Gly) =yG" (W) < M



and G € C! is Lipschitz continuous. Then we have

G(8(a', T2)) H (e(2’, T2)) — G(8(x, Ta)) H (e(z, T2))
{co ~ G(6(=, T2)) H (e(z, T2)) Hew — G(O(", T2)) H (e (=", T2))}

1 1
—(z,Ta) - —(x’,T;), =
o co

N

LHGOG! T H (el T2)) — G(0(m, Ta) He(&', T2)))

+{6(8(z, L)) H (e(=', T2)) — G(O(=, T2)) H (=, T2)))|

A

C—ISIH(E(I'. T)IG(8(2". T2)) - G(6(=, T2))|

+ E%IG(H(I,Tz))HH(E(I’.Tm — f{e(z. To))l
<AKfz — 2| + CMlz — 2|7
< Alz - 2'|7,

where A is independent of T3, Therefore {1/co(s,8))(x. T3) is Holder continuous for any Tp € [0.T).

Maoreover. we have supg [1/co(.8)] > 1/{c, + MA). These conditions assure that WmA has
|

Lhe naximal vegularity propecty according to (2.3). Hence, taking Ty = (m) " we have
Wliz 1,y € AKALT) (||<'0(50v90) = co(€, )llL=(ar 10l Loqry + HR(E O Lagar) + “90”53;2/'7(;“)

< Sl8llaar,y + A + Aol ga-2rqy,

0 -

which yields

1lwzrar) S A+ Alléol| B2y
Here we remark that.
16Tl ga-2re < (TGN w2y, ) < CLTNA + Alluoll g2-219)

_z
thanks to the embedding W2 (Qr,) — BUC((0, T3), B:,q") (see [4], [18]). Then similarly for the interval

[T1,27,] we have
”‘9”W.,J"(n(r,,:-r,|) <A+ A'lu(T,)IlB:;:/, <A+ A"“"”Bf,‘.”" <A
Repeating the same operation yields

“0”“’:"(“[!1‘..runm) <A



Summing the inequalities from k=0tok=m satisfying(m + l)Tl > T and mTy € T, we conclude that

nel’w,,"‘(n.,) = A

Next we estimate the norm "“”w,?"(nr)' From Lemma 2.2'it follows that
198l =ary + IVElLoinry < A
for ¢ > 5. Therefore, by virtue of the maximal regularity (2.1), we have

lullwazqry < Cluo,u, Oy e + 1V - (GIOH (M Lriar + IV - H - (llriay)
< Cli(uo, ut, My gy + AV L @) G (Ol oo ary | H e (€)oo
+ AR oy 1 Vel Lo I H cc ()]l L (i) + ANVERLn i T e ()L 2
< Alll(uo, 21, 0)lugrg)s

which completes the proof.
[}

Proof of Theorem 3.1 (continuation). The assumption (L4) is satisfied thanks to Lemma 3.6 and the
estimate (3.3). Then the existence of a solution to problem (T'E)% results from Theorem 2.4. Noting
that Iy is Lipschitz continuous, we can obtain the uniqueness result by repeating the arguments of {22,
Section 6). We remark also that the assumption p < g is required to show (L1), see [21]. Thereby the

proof of Theorem 3.1 is completed.

4 Proof of Theorem 1.1 (Existence)

The idea of the proof consists in showing that the solution (uz,8r) to (TE)% constructed in Section
3 satisfies also the original system (1.2)-(1.5) for sufficiently large truncation size L. To this purpose,
assuming that there exists a sufficiently smooth solution of problem (1.2)-(1.5) such that § > 0, we derive

for it a sequence of a priori estimates which are independent of L.

18














































21

3]

4]

4

I8l

9]

(10]

(11]

(12]

13}

T. Aiki, Weak solutions for Falk's mode] of shape mémory alloys, Math. Meth. Appl. Sci., 23 (2000},
299-319.

T. Aiki, A. Kadoya and S. Yoshikawa, One-dimensional shape memory alloy problem with small
viscosity. submitied to GAKUTO International Series Math. Sci. Appl.

H. Amann, Linear and quasilinear parabolic problems, vol. I, abstract linear theory, Monographs in
Mathematics, Birkh&user, Basel, vol. 89, 1995.

M. Brokate and J. Sprekels, Hysteresis and phase transitions, Appl. Math. Sci., Springer, Berlin,
Vol 121. 1996.

N Bubner and o Sprekets, Optimal control of martensitic phase transitions in a deformation-driven
experiment on shape memory alloys, Adv. Math. Sci. Appl., 8 (1998), 299-325.

P. Clewment and S. Li, Abstract parabolic quasilinear equations and application to a groundwater
flow prodlem, Adv. Math. Sci. Appl., 3 (1993/94), 17-32.

C'. M. Dafermos and L. Hsiao, Global simmooth thermomechanical processes in one-dimensional non-
linear Lhermoviscoelasticity, Nonlinear Anal., 6 (1982), 435-434.

R. Denk, M. Hieber and J. Priiss, R-boundedness, Fourier multipliers and problems of elliptic and

parabolic type, Mem. Amer..Math. Soc., 166 (2003), Number788.

F. Falk, Elastic phase transitions and nonconvex energy functions, Free boundary problems: Theory

and applications I (K.-H. Hoffmann, J. Sprekels, eds.}, Longman, London, (1990), 45-59.

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase trans-

formation of shape memory alloys, J. Phys.: Condensed Matter, 2 (1990), 61-77.

K.-H. Hoffmann and A. Zochowski, Existence of solutions to some non-linear thermoelastic systems

with viscosity, Math. Meth. Appl. Sci., 15 (1992), 187-204.

M. Hieber and J. Priiss, Heat kernels and maximal L”-L¢ estimates for parabolic evolution equations,

Comin. Part. Diff. Eq. 22 (1997), 1647-1669.

33






|23] S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory

alloys, Adv. Math. Sci. Appl., 15 (2005), 603-627.

[26] S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape

memory materials, submitted to GAKUTO International Series Math. Sci. Appl.

|27] S. Yoshikawa, Global solutiens for shupe memory alloy systems, Doctor Thesis, Tohoku University,

(2006).














