





Variable Fixing Algorithms for the
Continuous Quadratic Knapsack Problem!

K. C. KiwigL?

Conmununicated by P. Tseng

'The author thanks the Associate Editor and an anonymous referee for their helpful

comments, and A. G. Robinson for useful information.
2Professor, Systems Research Institute, Warsaw, Poland.



Abstract. We study several variations of the Bitran—Hax variable fixing
method for the continuous quadratic knapsack problem. We close the gaps
in the convergence analysis of several existing methods, and provide more effi-
cient versions. Encouraging computational results are reported for large-scale
problems.

Key Words. Nonlinear programming, convex programming, quadratic pro-
gramming, separable programming, singly constrained quadratic program.



1 Introduction

The continuous quadratic knapsack problem is defined by

P: min flz) = 1z"Dz — "z, (la)
s.t. blo=r, (1b)
<z <u, (Ic)

where z is an n-vector of variables, a,b,l,u € R*, r € R, D = diag(d} with d > 0, so
that the objective [ is strongly couvex. Assuming P is feasible, let z* denote its unique
solution.

Problem P has applications in resource allocation (Refs. 1-3), hierarchical production
planning (Ref. 1), network flows (Ref. 4), transportation problems (Ref. 5), multicom-
modity network flows (Refs. 6-8), constrained matrix problems (Ref. 9), integer quadratic
knapsack problems (Refs. 10-11), integer and continuous quadratic optimization over sub-
modular constraints (Ref. 3), Lagrangian relaxation via subgradient optimization (Ref.
12), and quasi-Newton updates with bounds (Ref. 13).

Specialized algorithms for P employ either breakpoint searching or variable fixing.
Breakpoint searching methods solve the dual of P by finding a Lagrange multiplier ¢, that
solves the equation g(t) = r, where g is a monotone piecewise linear function with 2n
breakpoints (cf. Section 2). The earliest O(nlogn) methods of Refs. 6 and 12 sort the
breakpoints initially, whereas the O(n) algorithms of Refs. 3, 5 and 13-19 use medians of
breakpoint subsets.

The variable fixing methods of Refs. 1, 4, 11 and 20-23, stemming from Ref. 24,
determine at each iteration the optimal value of at least one variable; such variables are
fixed and hence effectively removed for the next iteration. Although these methods have
worst-case performance of O(n?), they may be competitive in practice (Refs. 4 and 23),
since they do not need sorting or median calculations.

The first aim of this paper is to clarify certain convergence issues of the variable fixing
methods. Only the methods of Refs. 21-22 for a special case of P (cf. Section 5.8) have
full proofs of convergence. We show that the algorithms of Refs. 11 and 23 fail on a simple
counterexample (cf. Section 5.7). The method of Ref. 4 relies implicitly on the convergence
framework of Ref. 1 (similar to Ref. 20). However, the proof of the main convergence result
of Ref. 1 (Theorem 3) has a gap (cf. Section 5.5); we show how to fill this gap in the case
of P (in the more general setting of Ref. 1 where f is merely separable and convex, our
proof technique could close the gap when f is strictly convex).

Second, we provide more efficient versions of the variable fixing methods. This is quite
suprising, since the methods of Refs. 4, 11 and 21-23, as well as ours, may be derived from
Ref. 1 by replacing certain nonstrict inequalities by strict ones and using slightly different
stopping criteria (these tight relationships have not been noticed so far). Yet in practice
such “tiny” differenices can be significant (cf. Example 5.2). We also discuss updating
techniques which reduce work per iteration.

Third, we show how suitable modifications of the variable fixing methods may find the
Lagrange multipliers of P; this is useful in certain applications (Ref. 2).



_9.

The paper is organized as follows. Basic properties of P are reviewed in Section 2.
In Section 3 we introduce a symmetric version of the method of Ref. 1. Its convergence
is established in Section 4. Various modifications and relations with other methods are
discussed in Section 5. Finally, encouraging computational results for large-scale problems

are reported in Section 6.

2 Basic Properties of the Problem

Viewing ¢ € R as a multiplier for the equality constraint of P in (1), consider the Lagrangian
primal solution (the minimizer of f(z) +t(b"z —r) st. | <z <)

z(t) := min{ max[l, D" (a — tb) ], u } (2)
(where the min and max are taken componentwise), its constraint value
g(t) = b(t) @)
and the associated multipliers for the constraints | — z < 0 and z — u < 0, respectively,
u(t) ;=max{Dl—a+1th,0} and v(t):=max{a—tb— Du,0}. (4)

Solving P amounts to solving g(t) = r for a multiplier lying in the optimal dual set
= {t:g(t)=r}. (5)

Indeed, invoking the Karush-Kuhn—Tucker conditions for P as in Ref. 6, Section 2, Ref.
7, Section 1.2, Ref. 13, Theorem 2.1 and Ref. 16, Theorem 2.1 gives the following result.

Theorem 2.1. z* = z(t) iff ¢t € T,. Further, the set T, is nonempty, and ¢, u(t), v(t)
are Lagrange multipliers of P whenever ¢ € T,.

As in Ref. 14, we assume for simplicity that b > 0, because if b; = 0, z; may be
eliminated:

z} = min { max [l;, a;/di] ,u: },

whereas if b; < 0, we may replace {z;, a;, b;, l;, ui} by —{z:, a;, bi, us, ;} (in fact, this trans-
formation may be implicit).

By (2)—(3) and our assumption that b > 0, each z;(t) and ¢(t) are continuous, piecewise
linear and nonincreasing functions of ¢. Hence the set T, of (5) has the form

T.=[t,ty]NR with ¢} :=inf{t:9(t) =7}, t:=sup{t:g9lt)=r},  (6)

with g(¢5) = r if t] > —oo, g(t})) = r if 1}, < oo; clearly, g(t) > r iff t < &}, g(t) < riff
t}, < t. Further, since g(t) and z(t) are nonincreasing, and z* = z(t,) for any t. € T,, we
have the following useful result (implicit in Ref. 1 and explicit in Ref. 4, Theorem 6). It
states conditions under which some of the components of z can be optimally set to their
bounds.

Theorem 2.2. Let € R, J':= {i : o;(f) = &}, [* := {i : 2:(f) = w;}. Then:

(a) If g(f) > 7, then z;(t) = L =z} forall t > { and i € [

(b) If g(f) < r, then z;(t) = w; =} for all t < { and i € I*.



_3.

3 Variable Fixing Algorithm

In this section we state our algorithm and discuss its simplest implementation.

At each iteration k, our algorithm partitions the variables as = = (zy,, z1,, Zv, ), where
(Ix, Ly, Uy) is a partition of the set N := {1:n} such that &} = l,, 2}, = uy,. Thus,
Ly, is the set of variables that can be pegged to lower bound, Uy is the set of variables
that can be pegged to upper bound, and I is the set of the remaining free variables.
After fixing xr, = l1,, v, = uy,, we need only consider the remaining free variables z,
in a restricted version of problem P, which is solvable in closed form. If its solution is
feasible in P, termination occurs (in fact we use a more efficient stopping criterion based
on infeasibilities with respect to lower and upper bounds). Otherwise, the partitioning of
the index sets is updated, so that at least one more variable is pegged at the next iteration.

A formal statement of the algorithm is given below.

Algorithm 3.1.
Step 0. Initialization. Set I ;== N, L; :=U; =0, k := 1.
Step 1. Restricted subproblem solution. Find the restricted minimizer

2% = argmin{ f(z) : b7 = r,z1, = i1, 20U, = uy, }. (7

Step 2. Feasibility check. Compute the infeasibility indicators

Vi = Zbi(li —zF), where I,lc ={ie€l: o < L}, (8a)
i€l]

Ay = Zbi(z? —u;), where IFi={icL:2F>u} (8b)
ely

Step 3. Stopping criterion. If Vi = Ay, reset m’]‘, = ZIL’ z’f;‘. == ujv and stop.
k
Step 4. Variable fixing. If Vi > Ay, set Ty = I \ I,’c, Lgpy = Lp U I,lc, Uy = Uy
if Vk < Ak, set, Ilc+1 = [k \ I;:, Lk+1 = Lk, Uk+1 =Ux U I;:
Step 5. Loop. Increase k by 1 and go to Step 1.

Step 1 can be implemented as follows (more efficient implementations are discussed
later). At Step 1, z’ik =1,, x?,k = uy,. The remaining components may be computed as

r:c = (ai — tkbi)/di7 l E Ik (9)

(by the form of f in (1)), where t; is the Lagrange multiplier of (7) given by

fp = <Zaibi/di — Tk)/ be/dl with Tk (=7 — Z b,—li - Z biui; (10)

i€l i€l €Ly i€l

inn other words, t is the Lagrange multiplier of the reduced subproblem

m’}k = arg min { Zielk (%diz? — aia:i) : baz“ =7y } . (11)



_4-

4 Convergence of the Variable Fixing Algorithm

Since each iteration reduces the set Iy, Algorithm 3.1 is finite. However, before showing

that the final ¥ = z*, we must prove that the algorithm is well defined, i.e., I # 0 at

Step 1 for all k (this condition is assumed in Ref. 1, Section 2, and implicitly in Ref. 23).
Consider the following estimates of the boundary multipliers ¢} and #f; in (6):

th=sup{t; 1 V; > A, <k} and tf:=inf{t;:V,; <A;i<k},  (12)

with ¢ := —o0, t% := 0o. Define the reduced constraint value and its linearization
ok(t) ==b] o, (t) and Ge(t) := o] &, (t) with £(t) := D '(a —tb); (13)
note that
gk(tk) =7, and I‘;k = f?[k (tk) (14)
by (9} and (11). We shall show that at Step 2
zr (5N = min{up, &, (85} and  ap (8571 = max{l;,, &, (t5H }, (15)
ge(t5h) = e > gilth), (16)
o (7Y =l =27, and @y (i) = uy, = 27, (17)
rr(t) =11, = a:zk and 2y, (L) = uy, = z{,k. (18)

Lemma 4.1. Suppose I}, # @ and (15)—(17) hold at Step 2 for some k. Then:

(a) i <t <tf.

(b) Condition (18) holds.

(C) g(tk) —r = Vk — Ak.

(d) If Vi, = Ay, then t, € T, and z* = 2* after the reset of Step 3.

(e) If Vi > Ay, then (15)~(17) hold for k increased by 1, and % # I at Step 4.

e)
(f) If Vi < Ay, then (15)—(17) hold for k increased by 1, and I # Ix at Step 4.

Proof. (a) Since by assumption b,d > 0 in (13), gx(¢) is a decreasing function of t. Hence
te > t571, since otherwise for t;, < 571, (14), (15), (13) and (16) wonld yield

= Gulte) > Ge(tfY) 2 ai(tf ) 2 7,
a contradiction. Similarly ¢, < t’{,‘l, since otherwise we would have the contradiction
e 2 ge(ty™) 2 Gty > Get) =
(b) This follows from (a) and (17): since z(t) is nonincreasing in (2),
I, =20, () > or(t) > 1, and  wy, > 2o (te) > 20, (0571 = uy,.

() By (18) and (7), 2§y, = Tr.uv, (t). Since g(tx) = bTz(te) by (3), v¥z* = r by
(7), and I, = N\ {(Lx U Uy) (cf. Steps 0 and 4), we have

glte) = =Y _blwi(ts) —afl+ > bilwlt) — ] =D bilwite) — b

i€l 1€ L LU i€l




Now, by (2), (8) and (9),

J?IL(tk):lIL, .T[,:A(tk):u;:, l; <zi(tk)=zf < Uy ViEIk\(I}CUI;:), (19)
and zf = I; = u; Vi € IL N I}*. Using these relations and the definitions (8) gives

gt —r =3 b(li—ab)+ > bl -2+ D bifzite) ~ i = Vi - Ak

iel} il el \(ILUIY)

(d) Since g{tx) — 7 = 0 by {(c), we have ¢, € T, by (5) and z(tx) = z* by Theorem
2.1. By the proof of (c), at Step 2 we have z¥ = z;(t;) for all i € N\ (JL U I}*) (cf. (19)),
whereas Step 3 resets z¥ := z;(t;) for the remaining ¢ € ILUI¥ (if any), so that 2 = z(ty).
(e) We have t¥ = tx, th = 57! by (12). Since lxy = I \ I} at Step 4, (8a) with
= &1, (t) (cf. (14)) yields &i,,, (t) = «f,,, > U,,,; hence by (2) and (13),

k
7,

Tr,, (k) = min{uy,,,, max(Zy,, (t), i, )} = min{ur,,,, T, ()}

Next, since I[i(tk) =l by (19), combining (13) and (18) with (3) and (c) gives

Gerr(te) + Y bl + Y bili+ Y b = g(te) =7 + Vi — A,

iel] €Lk 1eUx

which implies gry1(te) = Thr1 + Vi — A, using Liyy = Ly U T, Ugyy = Uy in (10). Thus
ka1 (te) > Teqr. Similarly, using ¢ = t57! in (15)-(16) and then (10) gives

ng(tf,) = gk(t’{,) - Zbi max { li,ii(t’{,) } <7 — Z bili = Thpp-

iell ielf

Combining the preceding relations, we obtain (15)—-(16) for k increased by 1.

Next, we have z;(t¢) = I; for all 4 in Ly 3 1= Ly U I} (cf. (18), (19)), whereas g(t;) > r
by (c). Hence zs,,,(t) = l1,,, = =%, ,, by Theorem 2.2(a}, i.e., (17) holds for k increased
by 1. Since zy, (tx) = z, by (18), if we had 7{ = I, then Liy; U Uk = N and z(tx) = z*
combined with Theorem 2.1 and (5) would give ¢(t) = r, a contradiction.

(f) The argument is symmetric to that of part (e). 0

We may now state and prove our principal convergence result.

Theorem 4.1. Algorithm 3.1 is well defined and terminates with z* = z*, t, € T,.

Proof. Clearly, conditions (15)-(17) hold for k£ = 1. Indeed, since [, = N, (15) means
lime oo 2(t) = u, limy_ez(t) = 1 (cf. (2)), whereas for Ly = Ux = 0 and 1, = r,
(16) reduces to 6Tu > r > b7l (feasibility). The conclusion follows from Lemma 4.1 by
induction, with parts (e) and (f) ensuring that /r; # 0 at Step 4. 0



-6-

5 Modifications and Relations with Other Methods

5.1 Updating and Incremental Forms

Each iteration of Algorithm 3.1 requires finding # and =¥_(cf. (9)). Now, by (10),

tk = (pp — Ti)/qe  with pg = Zaibi/di, qr = Zb?/d,-.

i€l i€l

(20)

To save work, we may update py, gx and rx by using the “fixed” set I = I \ Jr41 in

Pk+1 =Dk — Z aibi/dn Qe+1 = k. — Z b?/di’
€l i€l
_ L i I =1L,
Tk+1—7‘k"‘Zbi{ui if I = I,
i€l

This updating technique of Refs. 11 and 23 may be improved as follows.
Relations (20)—(22), (9) and (8) yield the incremental multiplier formula
1 Ve if I =1},
t =t —_— s
e { 8 i Ig = I

Indeed, for Vi > Ay (the opposite case is similar), we have I = I} and

Qeritksl = Prd — Thyl =Pk~ Tk — Zaibi/di + Z bil;

iel] iell
= gt — ey b}/di+ Z bills — (a; — tibi)/di]
iel} iel]
= Gentet+ Y bl — o) = gyt + Vi
ielf

Further, using the facts that >, bizk =71y, Iy = L, UT, and (22) in (24) yields

Qo1 (tigr — te) = Zbi(li —z¥) = Zbili =Tk + Z bixf = —rpp + Z bzt

ielf i€l i€l 4 1€1k41

for Vi > Ay, with [ replaced by u for V), < Aj. Hence we also have

teyr =1k + <Ziezk+l bixf - Tk+1) /Gk1-

Of course, by (9), we may also update

$:~€+1 = If - (tk+l - tk)bi/di, i€ ]k+l~

(21)

(22)

(23)

(24)

(25)

(26)

The incremental formula (23) saves work by not requiring the updates of py and 7.
The second formula (25) and the update (26) are listed for comparisons (cf. Section 5.8).



5.2 Fixing Fewer Variables

The convergence results of Sections 3-4 hold for the sets I} and I} replaced by their subsets
If={iel:af<li} and 7 ={i€l:af>u}. (27)

However, this version is less efficient, since it may fix fewer variables per iteration.

5.3 Stopping Criteria
Note that, by (27) and (8), we have

I <zf <u,, = K=R=0 < Vi=4=0, (28)
in which case Step 3 needn’t reset z*. Further, by the proof of Lemma 4.1(e,f), if Iy = 0,

then V; = A. Thus our stopping criterion Vi = Ay subsumes the criteria in (28), as well
as Ixy1 = 0. In practice, choosing a feasibility tolerance €y, > 0, we may use the stopping

criterion:
Vi — Ag| < emax{ 1,ir|} or Ly =06

it will guarantee termination even under roundoff error (since the set I shrinks).

5.4 [Illustrative Example

For future comparisons, consider the following example. Let e := (1,...,1) € R™.

Example 5.1. Forn=2,letd=b=¢e,a=0,r=1,1=(1,-1), u=(2,0), so that
z* = (1,0) and T. = [-1,0]. Then r; = 1, t; = —0.5, z! = (0.5,0.5), V; = A; = 0.5,
It = {1}, I+ = {2} and Step 3 of Algorithm 3.1 resets z! to z(¢;) = z* before terminating.

5.5 Revisiting the Bitran—Hax Algorithm

The Bitran-Hax (BH for short) algorithm of Ref. 1 differs from Algorithm 3.1 in two
aspects. First, at Step 4 it replaces the condition V, < Ay by Vi < Ag; our version is
symunetric. Second, its stopping criterion (cf. Section 5.3)

r, < :c’;‘= <up, or Lyr=0 (29)

may be less efficient than our criterion Vi = Ayg; e.g., the BH algorithim solves Example
5.1 in two iterations (with Uy = {2}, I = {1}, to = —1, 2% = z*). However, the case
of In,; = # is not covered by the main convergence proof of Ref. 1, Theorem 3; in our
setting, the second condition of (29) is redundant, as shown below.

Lemma 5.1. If (18) holds and either If =/} or I = I, then {5, < o < wuy,.

Proof. Suppose I} = I, (the case I = I is similar). Then of < U, = z;,(t) by
(8a) and (19), z(tx) = z* by the proof of Lemma 4.1(e), whereas (7), (10) and (18) yield
bf z§ =i = 0] zj,. Since b > 0, 2§ < z}_and b] of = bf z}, give z§, =z} . o



- 8-

Consequently, an equivalent version of the BH algorithm is obtained from Algorithm
3.1 by replacing the condition Vi < Ag by Vi < Ay in Step 4, and Step 3 by

Step 3'. Stopping criterion. If I; < z‘,‘k < uy,, stop (zF = z*).

Theorem 5.1. The BH algorithm is well defined and terminates with z* = z*, ¢, € T,.

Proof. We only show how to modify the analysis of Section 4. In view of (28), we have
max{Vy, Ax} > 0 at Step 4, and using the fact that zf = z;(#) for alli € N\ (S U I7),
we may replace part (d) of Lemma 4.1 by

(@I, < m’fk < up,, then #, € T, and zF = z”.

Next, the condition Vi < Ay, replaces Vi < A, in Lemma 4.1(f), with Lemma 5.1
showing that I, 7 . Consequently, Theorem 4.1 holds for the BH algorithm. O

The BH algorithm coincides with Algorithm 3.1 until Vi = Ay occurs; then Algorithm
3.1 terminates, but the BH algorithm may go on. The following example shows that the
number of additional iterations of the BH algorithm may be quite large.

Example 5.2. Forn=2m+1withm >1,letd=b=e¢,a=0,r=0,; =i and
yy=oofori=1lm,lny=—-1,uppn=1L=-0anduy;=m+1—ifori=m+2in,
so that T, = {0}, zf = L for i = 1:m, a7, =0, 2] = u; for { = m + 2:n. Algorithm 3.1
generates ty = 0, 2! =0, I! = {Lim}, I} = {m + 2:n}, Vi = A, = @, terminating
with z! reset to =*. In contrast, the BH algorithm continues with I = {1:m + 1} and
Ty = L’T—Q, bisecting /i and decreasing ry, until [y = {m+1} and r = 0. Our experiments
with instances having up to twenty million variables show that the BH algorithm makes
k = |logy(n + 1)] + 1 iterations; e.g., k = 20 for n = 105 4 1.

5.6 Ventura’s Modification of the Bitran—-Hax Algorithm

Assuming that | < u, consider the following modification of Algorithm 3.1.
Replace Step 3 by Step 3’ of Section 5.5. At Step 4, if Vi = Ay, set

Iepr = B\ (LUTY), Lppr =Ly UL, Upyy o= U UIY
if Iryy = 0, reset m'I‘, = l!,‘g m’}: := uyp and stop.
k
Clearly, this modification behaves like the original version until V = A occurs.

Lemma 5.2. Suppose the above modification produces V, = A, for some k. Then
ty € T.. If (29) holds, then ¥ = z* upon termination; otherwise, the next iteration
terminates with t44; = tx and z**! = z*. Consequently, Theorem 4.1 remains valid.

Proof. By Lemma 4.1(d), t, € T, and (29) implies ¥ = 2* after the final reset, if any. If
no termination occurs, then zp, ., (tc) = i, ,,, Tu,,, (te) = vy, Tr,,, (t) = =5, by (19),
and using (21) with 77 = I} U I* and

Tkl == Tk — Z bili — Z biu;

ielf el









































