
Raport Badawczy

Research Report
RB/61/2006

Variable fixing algorithms
for the continuous quadratic

knapsack problem

K. C. Kiwiel

Instytut Badań Systemowych
Polska Akademia Nauk

Systems Research Institute
Polish Academy of Sciences

POLSKA AKADEMIA NAUK

Instytut Badań Systemowych

ul. Newelska 6

O 1-44 7 Warszawa

tel. : (+48) (22) 8373578

fax: (+48) (22) 8372772

Kierownik Pracowni zgłaszający pracę:
Prof dr hab. inż. Krzysztof C. Kiwiel

Warszawa 2006

Variable Fixing Algorithms for the
Continuous Quadratic Knapsack Problem1

K. C. KIWIEL2

Communicated by P. Tseng

1The author thanks the Associate Editor and an anonymous referee for their helpful
comments, and A. G. Robinson for useful information.

2Professor , Systems Research Institute, Warsaw, Poland.

Abstract. We study severa! variations of the Bitran- Hax variable fixing
method for the continuous quadratic knapsack problem. We close the gaps
in the convergence analysis of severa! existing methods, and provide more effi­
cient versions. Encouraging computational results are reported for large-scale
problems.

Key Words. Nonlinear programming, convex programming, quadratic pro­
gramming, separable programming, singly constrained quadratic program.

- 1 -

1 Introduction

The continuous quadratic knapsack problem is defined by

P: min

s.t.

J(x) := ½xT Dx - aT x,

bT X= T,

I::; X::; u,

(la)

(lb)

(le)

where x is an n-vector of variables, a, b, l, u E !Rn, r E IR, D = diag(d) with d > O, so
that the objective f is strongly convex. Assuming P is feasible, !et x* denote its unique
solution.

Problem P has applications in resource allocation (Refs. 1-3), hierarchical production
planning (Ref. 1), network flows (Ref. 4), transportation problems (Ref. 5), multicom­
modity network flows (Refs. 6- 8), constrained matrix problems (Ref. 9), integer quadratic
knapsack problems (Refs. 10-11), integer and continuous quadratic optimization over sub­
modular constraints (Ref. 3), Lagrangian relaxation via subgradient optimization (Ref.
12), and quasi-Newton updates with bounds (Ref. 13).

Specialized algorithms for P employ either breakpoint searching or variable fixing.
Breakpoint searching methods salve the dual of P by finding a Lagrange multiplier t, that
solves the equation g(t) = r, where g is a monotone piecewise linear function with 2n
breakpoints (cf. Section 2). The earliest O(nlogn) methods of Refs. 6 and 12 sort the
breakpoints initially, whereas the O(n) algorithms of Refs. 3, 5 and 13- 19 use medians of
breakpoint subsets.

The variable fixing methods of Refs. 1, 4, 11 and 20-23, stemming from Ref. 24,
determine at each iteration the optima! value of at least one variable; such variables are
fixed and hence effectively removed for the next iteration. Although these methods have
worst-case performance of O(n2), they may be competitive in practice (Refs. 4 and 23),
since they do not need sorting or median calculations.

The first aim of this paper is to clarify certain convergence issues of the variable fixing
methods. Only the methods of Refs. 21-22 for a special case of P (cf. Section 5.8) have
full proofs of convergence. We show that the algorithms of Refs. 11 and 23 fai! on a simple
counterexample (cf. Section 5.7). The method of Ref. 4 relies implicitly on the convergence
framework of Ref. 1 (similar to Ref. 20). However, the proof of the main convergence result
of Ref. 1 (Theorem 3) has a gap (cf. Section 5.5); we show how to fili this gap in the case
of P (in the mare generał setting of Ref. 1 where f is merely separable and convex, our
proof technique could close the gap when f is strictly convex).

Second, we provide mare efficient versions of the variable fixing methods. This is quite
suprising, since the methods of Refs. 4, 11 and 21-23, as well as ours, may be clerived from
Ref. 1 by replacing certain nonstrict inequalities by strict ones and using slightly different
stopping criteria (these tight relationships have not been noticed so far). Yet in practice
such "tiny" differences can be significant (cf. Example 5.2). We also discuss updating
techniques which reduce work per iteration.

Third, we show how suitable modifications of the variable fixing methods may find the
Lagrange multipliers of P; this is useful in certain applications (Ref. 2).

- 2 -

The paper is organized as follows. Basic properties of P are reviewed in Section 2.
In Section 3 we introduce a symmetric version of the method of Ref. 1. Its convergence
is established in Section 4. Various modifications and relations with other methods are
discussed in Section 5. Finally, encouraging computational results for large-scale problems
are reported in Section 6.

2 Basic Properties of the Problem

Viewing t E JR as a multiplier for the equality constraint of Pin (1), consider the Lagrangian
prima/ solution (the minimizer of f(x) + t(bT x - r) s.t. l '.S x '.Su)

x(t) := min{ max[1, n-1(a - tb)], u}

(where the min and max are taken componentwise), its constraint value

g(t) := bT x(t)

(2)

(3)

and the associated multipliers for the constraints I - x '.S O and x - u '.S O, respectively,

µ(t) := max { Dl - a+ tb, O} and v(t) := max { a - tb - Du, O}. (4)

Solving P amounts to solving g(t) = r for a multiplier lying in the optima/ dual set

T, := { t : g(t) = r}. (5)

Indeed, invoking the Karush-Kuhn-Tucker conditions for P as in Ref. 6, Section 2, Ref.
7, Section 1.2, Ref. 13, Theorem 2.1 and Ref. 16, Theorem 2.1 gives the following result.

Theorem 2.1. x* = x(t) iff t E T •. Further, the set T, is nonempty, and t, µ(t), v(t)
are Lagrange multipliers of P whenever t E T •.

As in Ref. 14, we assume for simplicity that b > O, because if b; = O, X; may be
eliminated:

x7 = min { max [1;, a;/d;], u;},

whereas if b; < O, we may replace {x;, a;, b;, l;, u;} by -{x;, a;, b,, u;, I;} (in fact, this trans­
formation may be implicit).

By (2)-(3) and our assumption that b > O, each x;(t) and g(t) are continuous, piecewise
linear and nonincreasing functions of t. Hence the set T. of (5) has the form

T. = [ti,, ti.;] n JR with t'i := inf{ t: g(t) = r }, ti.; := sup{ t: g(t) = r }, (6)

with g(tt) = r if tt > -oo, g(fi.1) = r if tu < oo; clearly, g(t) > riff t < tt, g(t) < r iff
tu < t. Further, since g(t) and x(t) are nonincreasing, and x* = x(t,) for any t. E T„ we
have the following useful result (implicit in Ref. 1 and explicit in Ref. 4, Theorem 6). It
states conditions under which some of the components of x can be optimally set to their
bounds.

Theorem 2.2. Let i E JR, ft := { i : x;(i) = ł;}, fu := { i : x,(i) = u;}. Then:
(a) If g(i) 2 r, then x;(t) = l; = x: for all t 2. i and i E f 1•

(b) If g(t) '.Sr, then x;(t) =u;= x: for all t '.Si and i E fu.

- 3 -

3 Variable Fixing Algorithm

In this section we state our algorithm and discuss its simplest implementation.
At each iteration k, our algorithm partitions the variables as x = (x1,, XL., xu.), where

(h, Lk, Uk) is a partition of the set N := {l: n} such that xt = IL., xu. = uu •. Thus,
Lk is the set of variables that can be pegged to !ower bound, Uk is the set of variables
that can be pegged to upper bound, and h is the set of the remaining free variables.
After fixing XL• = IL•, xu. = uu. , we need only consider the remaining free variables x1.
in a restricted version of problem P, which is solvable in closed form. If its solution is
feasible in P, termination occurs (in fact we use a mare efficient stopping criterion based
on infeasibilities with respect to !ower and upper bounds). Otherwise, the partitioning of
the index sets is updated, so that at least one mare variable is pegged at the next iteration.

A forma! statement of the algorithm is given below.

Algorithm 3.1.
Step O. Initialization. Set 11 := N, L1 := U1 := 0, k := 1.
Step 1. Restricted subproblem solution. Find the restricted minimizer

Step 2. Feasibility check. Compute the infeasibility indicators

V k := L b;(I; - x7) , where I! := { i E h : x; '.S I;}, (8a)

Step 3.

Step 4.

Step 5.

iEik

t::.k := L b;(x7 - u;), where Ii::= { i Eh : x; 2: u;}. (Sb)
i Eli:

Stopping criterion. If V k = t::.k , reset x1k, := 11,, xju := UJ" and stop.
k k k k

Variable fixing. If vk > t::.k, set h+1 := h \ IL, Lk+l := Lk U IL, Uk+l := Uk;
if vk < 6.k , set h+1 := h \ 1;: , Lk+l := Lk, Uk+l := uk U 1;:.
Loop. Increase k by 1 and go to Step 1.

Step 1 can be implemented as follows (mare efficient implementations are discussed
later) . At Step 1, xL = IL., xt = uu •. The remaining components may be computed as

x; = (a, - tkb;)/d;, i Eh (9)

(by the form off in (1)), where tk is the Lagrange multiplier of (7) given by

tk := (La;b./d; -rk)!Lb;/d; with rk := r- L b;I; - L b,u;; (10)
i Eh iElk iELk iEUk

in other words, tk is the Lagrange multiplier of the reduced subproblem

k _ · { L (Id 2) . bT _ } x1• - argmm . 2 ,x, - a,x; . 1 XI. - rk .
iEh k

(11)

- 4 -

4 Convergence of the Variable Fixing Algorithm

Since each iteration reduces the set h, Algorithm 3.1 is finite. However, before showing
that the finał xk = x*, we must prove that the algorithm is well defined, i.e., h =J 0 at
Step 1 for all k (this condition is assumed in Ref. 1, Section 2, and implicitly in Ref. 23).

Consider the following estimates of the boundary multipliers ti and ą, in (6):

t1 := sup {tj: 'vj 2': 6..j,j :S k} and tt := inf {tj: 'vj :S tij,j :S k}, (12)

with t'}, := -oo, ti := oo. Define the reduced constraint value and its linearization

gk(t) := bf.xh(t) and 9k(t) := bf.xh(t) with x(t) := D- 1 (a - tb); (13)

note that
9k(tk) = rk and xt = xh (tk)

by (9) and (11). We shall show that at Step 2

(14)

x1k(t2- 1) = min{ uh,xh(t2- 1)} and xh(tt- 1) = max{ lh,xh(tt- 1) }, (15)

9k(t1-l) 2". rk 2". 9k(tt- 1), (16)

xLk(tl- 1) =ZL.= xi. and xuk(tt- 1) =uu.= xu., (17)

XL• (tk) = lLk = Xi. and Xu• (tk) = Uu• = Xu• · (18)

Lemma 4.1. Suppose h f 0 and (15)- (17) hold at Step 2 for some k. Then:
(a) t1-I ::Ó tk ::Ó tt- l.
(b) Condition (18) holds.
(c) g(tk) - r = 'vk - 6..k.
(d) If 'v k = 6..k, then tk E T. and xk = x* after the reset of Step 3.
(e) If 'vk > tik, then (15)- (17) hold for k increased by l, and If f hat Step 4.
(f) If 'vk < tik, then (15)- (17) hold for k increased by 1, and ri: f hat Step 4.

Proof. (a) Since by assumption b, d > O in (13), 9k(t) is a decreasing function of t. Hence
tk 2". t2- 1 , since otherwise for tk < tl-1 , (14), (15), (13) and (16) would yield

rk = 9k(tk) > 9k(t2-I) 2': 9k(t1-I) 2': rk,

a contradiction. Similarly tk :S tt- 1 , since otherwise we would have the contradiction

rk 2". 9k(tt-l) 2': 9k(tt-l) > 9k(tk) = rk-

(b) This follows from (a) and (17): since x(t) is nonincreasing in (2) ,

lL• = XLk(tl- 1) 2". XLk(tk) 2". li. and uu. 2". xu.(tk) 2". xu.(tt- 1) = uu.-

(c) By (18) and (7), xLuu. = XLkuu.(tk)- Since g(tk) = bTx(tk) by (3), bTxk = r by
(7), and h =N\ (Lk U Uk) (cf. Steps O and 4), we have

g(tk) - r = L b;[x;(tk) - x:] + L b;[x;(tk) - x:) = L b;[x;(tk) - x:].
iEh

...

- 5 -

Now, by (2), (8) and (9),

and x: = l, = u, \/i E IL n I"J:. Using these relations and the definitions (8) gives

(d) Since g(tk) - r = O by (c), we have tk E T. by (5) and x(tk) = x* by Theorem
2.1. By the proof of (c), at Step 2 we have x: = x;(tk) for all i EN\ (IL U IJ:) (cf. (19)),
whereas Step 3 resets x: := x;(tk) for the remaining i E IL UIJ: (if any), so that xk = x(tk)­

(e) We have tI = tk, tt = tt-1 by (12). Since h+1 := h \ IL at Step 4, (8a) with
x1, = x!,(tk) (cf. (14)) yields :i;h+,(tk) = x1,+, > 11-+,; hence by (2) and (13),

Next, since x 1L(tk) = l1L by (19), combining (13) and (18) with (3) and (c) gives

which implies 9k+1(tk) = Tk+J + "ih - 6.k, using Lk+I := Lk U IL, Uk+I := Uk in (10). Thus
gk+1(tk) > Tk+t- Similarly, using tt = tt-1 in (15)-(16) and then (10) gives

9k+1(tt) = gk(tt) - Lb; max { /,, x,(tt)} :'S Tk - L b;l; = Tk+1-

Combining the preceding relations, we obtain (15)-(16) for k increased by 1.
Next, we have x;(tk) = l, for all i in Lk+I := Lk U IL (cf. (18), (19)), whereas g(tk) > r

by (c). Hence XLk+,(tk) = /Lk+, = xt_+, by Theorem 2.2(a), i.e., (17) holds for k increased
by 1. Since xu. (tk) = xi,. by (18), if we had IL = h, then Lk+1 U Uk = N and x(tk) = x*
combined with Theorem 2.1 and (5) would give g(tk) = T, a contradiction.

(f) The argument is symmetric to that of part (e). O

We may now state and prove our principal convergence result.

Theorem 4.1. Algorithm 3.1 is well defined and terminates with xk = x*, tk ET,.

Proof. Clearly, conditions (15)- (17) hold for k = 1. Indeed, since h = N, (15) means
limt--oox(t) = u, lim1_ 00 x(t) = l (cf. (2)), whereas for Lk = Uk = 0 and Tk = r,
(16) reduces to br u ~ r ~ br/ (feasibility). The conclusion follows from Lemma 4.1 by
induction, with parts (e) and (f) ensuring that h+1 f 0 at Step 4. O

- 6 -

5 Modifications and Relations with Other Methods

5.1 Updating and Incremental Forms

Each iteration of Algorithm 3.1 requires finding tk and xt (cf. (9)). Naw, by (10),

tk = (Pk -rk)/qk with Pk := "f:,a;b;/d;, qk := "f:,b;/d;. (20)
iEh

To save work, we may update Pk, qk and rk by using the "fixed" set Ij; := h \ h+1 in

_ """' { Z; if Ij; = Ii, Tk+I - Tk - L.., b; _ .f 1 _ _]"
U, I k - k"

iElk

This updating technique of Refs. 11 and 23 may be improved as follows.
Relations (20)-(22), (9) and (8) yield the incrementa/ multiplier formula

1 { "'h if Ij; = IL
tk+I = tk + - _ A "f 1- _]" qk+I L..l.k I k - k ·

Indeed, for 'vk > b,.k (the opposite case is similar), we have Ij; = Jf and

ąk+1fk+1 = Pk+1 - rk+1 = Pk - rk - L, a;b;/d; + L, b;l;
iEik iEll

qktk - tk "f:,b;/d; + "f:,b;[l; - (a; - tkb;)/d;]
iEIL iEik

qk+ltk + "f:,b;(l; - x7) = qk+ltk + vk.
iEll

Further, using the facts that I:;iEf. b;x} = rk, h = h+1 U Ij; and (22) in (24) yields

ąk+I (tk+I - tk) = L b;(l; - x7) = L b;l; - rk + L b;xf = -rk+I + L b;x~
iEh+1 iEh+t

for 'vk > b,.k, with I replaced by u for 'vk < b,.k· Hence we also have

tk+I = tk + ("""' . b;x7 - Tk+I) /qk+I·
~1.Eh+1

Of course, by (9), we may also update

x7+1 = x~ - (tk+1 - tk)b;/d;, i E h+1•

(21)

(22)

(23)

(24)

(25)

(26)

The incrementa] formula (23) saves work by not requiring the updates of Pk and rk.
The second formula (25) and the update (26) are listed for comparisons (cf. Section 5.8).

--

,;

- 7 -

5.2 Fixing Fewer Variables

The convergence results of Sections 3- 4 hold for the sets IL and l't replaced by their subsets

I(:= { i E h : x7 < l,} and I{ := { i E h : x7 > u,}.

However, this version is less efficient, since it may fix fewer variables per iteration.

5.3 Stopping Criteria

Note that, by (27) and (8), we have

vk = 1:,.k = o,

(27)

(28)

in which case Step 3 needn't reset xk. Further, by the proof of Lemma 4.l(e,f), if h+1 = 0,
then V k = !:,.k· Thus our stopping criterion V k = !:,.k subsumes the criteria in (28), as well
as h+1 = 0. In practice, choosing a feasibility tolerance c,0 1 2: O, we may use the stopping
criterion:

IV k - !:,.kl ~ Etol max{ 1, Ir/} or h+1 = 0;

it will guarantee termination even under roundoff error (since the set h shrinks).

5.4 Illustrative Example

For future comparisons, consider the following example. Let e := (1, .. . , 1) E JR.n_

Example 5.1. For n= 2, let d = b = e, a= O, r = 1, ł = (1, -1), u= (2, O), so that
x* = (1,0) and T. = [-1,0]. Then r 1 = 1, t1 = -0.5, x1 = (0.5,0.5), V 1 = /:,. 1 = 0.5,
I; = {l}, ! 1 = {2} and Step 3 of Algorithm 3.1 resets x1 to x(tI) = x* before terminating.

5.5 Revisiting the Bitran-Hax Algorithm

The Bitran- Hax (BH for short) algorithm of Ref. 1 differs from Algorithm 3.1 in two
aspects. First, at Step 4 it replaces the condition V k < !:,.k by V k ~ !:,.k; our version is
symmetric. Second, its stopping criterion (cf. Section 5.3)

(29)

may be less efficient than our criterion Vk = !:,.k; e.g., the BH algorithm solves Example
5.1 in two iterations (with U2 = {2}, / 2 = {l}, t 2 = -1, x2 = x*). However, the case
of h+1 = 0 is not covered by the main convergence proof of Ref. l, Theorem 3; in our
setting, the second condition of (29) is redundant, as shown below.

Lemma 5.1. If (18) holds and either IL= h or r;: = h, then li. ~ xt ~ u1.­

Proof. Suppose IL = h (the case l't = h is similar). Then x1. ~ ZJ. = xI.(tk) by
(8a) and (19), x(tk) = x• by the proof of Lemma 4.l(e), whereas (7), (10) and (18) yield
bf.x7. = rk = bf.xj •. Since b > O, x7. ~ xj. and bf.x1. = bf.xj. give xt = xj.. O

- 8 -

Consequently, an equivalent version of the BH algorithm is obtained from Algorithm
3.1 by replacing the condition 'v k < !::,.k by '7 k '.'::'. !::,.k in Step 4, and Step 3 by

Step 3'. Stopping criterion. If l1. '.'::'. xj. '.'::'. uh, stop (xk = x*).

Theorem 5.1. The BH algorithm is well defined and terminates with xk = x•, tk E T •.

Proof. We only show how to modify the analysis of Section 4. In view of (28), we have
max{'v k, !::,.k} > O at Step 4, and using the fact that xf = xi(tk) for all i E N\ (I{ U I;),
we may replace part (d) of Lemma 4.1 by

(d') If h. '.'::'. xj. '.'::'. u1,, then tk ET. and xk = x* .

Next, the condition 'vk ::; !::,.k replaces 'vk < !::,.k in Lemma 4.l(f), with Lemma 5.1
showing that h+1 =/ 0. Consequently, Theorem 4.1 holds for the BH algorithm. O

The BH algorithm coincides with Algorithm 3.1 until '7 k = !::,.k occurs; then Algorithm
3.1 terminates, but the BH algorithm may go on. The following example shows that the
number of additional iterations of the BH algorithm may be quite large.

Example 5.2. For n = 2m + 1 with m 2: 1, !et d = b = e, a = O, r = O, l; = i and
U;= oo for i= 1: m, lm+l = -1, Um+I = 1, l; = -oo and u;= m + l - i for i= m + 2: n,
so that T. = {O}, x: = l; for i= 1: m, x;n+I = O, x; = U; for i= m + 2: n . Algorithm 3.1
generates t1 = O, x 1 = O, If = {l: m}, Ij = {m + 2: n}, '11 = !::,.1 = m(r;+!), terminating
with x I reset to x*. In contrast, the BH algorithm continues with 12 = {l:m + l} and
r 2 = m(r;+I), bisecting h and decreasing Tk until h = { m+ 1} and Tk = O. Our experiments
with instances having up to twenty million variables show that the BH algorithm makes
k = L!og2(n + l)J + 1 iterations; e.g., k = 20 for n= 106 + 1.

5.6 Ventura's Modification of the Bitran-Hax Algorithm

Assuming that l < u, consider the following modification of Algorithm 3.1.
Replace Step 3 by Step 3' of Section 5.5. At Step 4, if 'vk = t::,.k, set

h+1 := h \ Uk u Ii:), Lk+i := Lk u IL uk+1 := uk u Ii:;

if h+1 = 0, reset xkI' := l11, x}u := U1u and stop.
k k k k

Clearly, this modification behaves like the original version until 'v k = !::,.k occurs.

Lemma 5.2. Suppose the above modification produces 'vk = !::,.k for same k. Then
tk E T.. If (29) holds, then xk = x* upon termination; otherwise, the next iteration
terminates with tk+I = tk and xk+ I = x•. Consequently, Theorem 4.1 remains valid.

Proof. By Lemma 4.l(d), tk ET., and (29) implies xk = x• after the fina! reset, if any. If
no termination occurs, then XLk+i (tk) = lLk+i, xu•+i (tk) = uu•+i, xh+i (tk) = xt+i by (19),
and using (21) with r,; = Ik Ur;: and

rk+I = rk - L bili - L b;u;

iElf i Eli:

- 9 -

as for (24) yields
Qk+l tk+l = Qk+1 tk + '\l k - /::,.k

and hence tk+1 = tk- Thus xk1+1 = x1k by (9). Since also xkL+i = /Lk+t' xku+1 = uuk+i
k+l k+1 k+l . k+l

by (7), we get xk+l = x(tk)- Then x(tk) = x* (tk E T.) implies termination due to
l < xk+ 1 < u • h+1 - h+ 1 - h+1·

In effect, this modification may only add one (spurious) finał iteration, and it needs
the condition I < u. The method of Ref. 4, Algorithm 3 is equivalent to this modification.

5. 7 Projection Algorithm of Robinson, Jiang and Lerme

The algorithm of Ref. 23, Section 3, introduced for the special case of d = e, a = O and
extended to the generał case in Ref. 11, is related to Algorithm 3.1 as follows.

First, using the sets Ii; and If: (cf. (27)) instead of Ik and Ik, it may fix fewer variables
per iteration. Second, its stopping criterion

Ii; U If: = 0 or "ił k = !::,.k

is equivalent to "vk = !::,.k (cf. Section 5.3). Third, omitting the reset of Step 3, it may
produce wrong solutions; e.g., x 1 = (0.5, 0.5) in Example 5.1 (in its original notation, the
finał step should replace I by I\ (L'UU'); similarly in Refs. 2 and 11). Fourth, the analysis
in Ref. 23 assumes implicitly that h =f 0 at Step 1, and doesn't show that the fina! tk ET •.

5.8 Algorithms of Shar and Michelot

Consider the case where d = b = e, r > O, l = O, u; = oo, in which the solution x* of
P is the Euclidean projection of a onto the canonical simplex { x 2'. O : eT x = r}. In
this case streamlined versions of Algorithm 3.1 discussed below are more efficient than the
algorithms of Shor (Ref. 21, Eq. (4.62)) and Michelot (Ref. 22, Section 4).

Starting with 11 = N and t1 = (I:~=I a; - r)/n (cf. (10)), Algorithm 3.1 generates

xJ. = a1k - tkeJk, xtvk = O, "vk = - L x7, !::,.k = O,
iEh:x}:$0

h+1 = {i Eh: x7 > O}, tk+1 = tk + "vk/lh+tl

(cf. (23), (20)), until "vk = O. To avoid updating x\ we may use the formulae

"vk= L (tk-a;), h+1={iEh:a;>tk},
iEh:tk'?:.ai

setting xJ. = ah - tkeh, xtvk = O upon termination. Shor's algorithm (Ref. 21, Eq.
(4.62)) replaces "vk above by g(tk) - r (= "vk by Lemma 4.l(c)); note that "vk is cheaper
to compute than g(tk)-

Alternatively, starting with 11 = N, t1 = (I:~=l a; - r)/n, x1 = a - t1e and using

h+1 = {i Eh: x7 > O}, tk+I = tk + (L xf - r)!lh+1L
iEh+1

- 10 -

(cf. (25)-(26)) until xj. 2: O (i.e., 'vk =Oby (8a)), we recover amore efficient version of
Michelot's algorithm (Ref. 22, Section 4); the original version employs h+1 = {i E h :
x} 2: O} (i.e., I{ instead of Ił; cf. Section 5.3),

5.9 Recovering all Lagrange Multipliers

Once Algorithm 3.1 terminates, the following results may be used for recovering all La­
grange multipliers of P. By (2)-(3), the function g has the following breakpoints

t\ := (a; - l;d;)/b;, tf := (a; - u;d;)/b;, i = 1: n.

Lemma 5.3. Let

I.:= {i: x; E (ł;,u;)}, L. :={i: x; = ł;}, U.:= {i: x: = u;}.

Then:
(a) If I. f 0, then T. = {t.}, where t. = (a; - dix:)/bi Vi EI •.
(b) If I.= 0, then T. = [tL te,,] n IR, where ti, = max;eL.\U. tł, ą, = min;eU.\L. tf.
(c) Upon termination in Step 3, !et

1: := h \ U! urn L: := Lk u 1!, u: := uk u Ii:,

Then
I!= I., L: CL., u: C U.,

L: u u:= L. u u., L: n u: CL. n u.= {i: tj= t~}.

(30)

(d) t, µ, v are Lagrange multipliers of P iff t ET.,µ= µ(t) + .\, v = v(t) +.,\for some
.,\ 2: O with .,\T(u - l) = O; in particular, .,\=O if l < u.

Proof. (a,b) These foilow from (2) and the fact that t ET. iff x(t) = x* (Theorem 2.1).
(c) We have l1: < x}: < u1: by (8), whereas the proof of Lemma 4.l(c,d) yields

xk = x* = x(tk), xL:(tk) = lL:, xu:(tk) = uu:, h = N\(LkUUk) , Since 1; = N\(L:uu;),
the conclusion foilows from the fact that {i: li= u;}= {i: tj= t~} by (30).

(d) This follows from (4), Theorem 2.1 and the KKT conditions. D

Lemma 5.3(c) extends easily to all algorithms of Sections 5.5- 5.8.

6 N umerical Results

We report here on our experience with Algorithm 3.1 and Kiwiel's breakpoint searching
method of Ref. 19. Both methods were programmed in Fortran 77 and run on a notebook
PC (Pentium M 755 2 GHz, 1.5 GB RAM) under MS Windows XP. For Algorithm 3.1,
the set h was maintained as a linked list; instead of maintaining Lk and Uk, the finał

- 11 -

x(tk) and g(tk) were computed directly. For Kiwiel's method, we used the median finding
routine of Ref. 25.

Our test problems were randomly generated with n ranging between 50000 and 2000000.
As in Ref. 10 (Section 2), all parameters were distributed uniformly in the intervals of the
following three problem classes:

(i) uncorrelated: a;, b; , d; E (10, 25];
(ii) weakly correlated: b; E (10, 25], a;, d; E (b; - 5, b; + 5];
(iii) strongly correlated: b; E (10, 25], a; = d; = b; + 5;

further, ł;, u; E (1, 15], i E N, r E [brl, bT u]. For each problem size, 20 instances were
generated in each class.

Table 1 reports the average, maximum and minimum run times of Algorithm 3.1 in
seconds over the 20 instances for each of the listed problem sizes and classes. The run
times grow linearly with the problem size.

Table 2 gives the rnn times of Kiwiel's method. Again, the rnn times grow linearly
with the problem size. Kiwiel's method is slower than Algorithm 3.1 by about 14% on
average, but its rnn times are more stable. The relatively good performance of Kiwiel's
method is due to the high efficiency of the median finding routine of Ref. 25.

To save space, we only add that Ref. 19 showed that the methods of Refs. 13- 14 were
slower than Kiwiel's method by about 21 % and 23%, respectively; in other words, they
were slower than Algorithm 3.1 by about 39%.

As for the earlier computational comparisons of Refs. 4 and 23, we reca!I from Sections
5.6- 5.7 that the variable fixing methods of Ref. 4, Algorithm 3 and Ref. 23, Section 3 are
close to Algorithm 3.1. On the other hand, the breakpoint searching methods of Ref. 4,
Algorithm 3 and Ref. 16, tested in Ref. 23, are quite similar to Kiwiel's method, whereas
the O(nlogn) sorting-based method of Ref. 6 is clearly less efficient even for moderate
values of n (see Refs. 4 and 11). With these similarities in mind, our results confirm
the main finding of Refs. 4 and 23 that the variable fixing methods are faster than the
breakpoint searching methods; however, the performance gap becomes quite small (14%
on average) when a state-of-the-art median finding routine is used.

- 12 -

References

1. B!TRAN, G . R ., and HAX, A. C., Disaggregation and Resource Allocation Using
Convex Knapsack Problems with Bounded Variables, Management Science, Vol. 27,
pp. 431- 441, 1981.

2. BRETTHAUER, K. M ., and SHETTY, B., Quadratic Resource Allocation with Gener­
alized Upper Bounds, Operational Research Letters, Vol. 20, pp. 51- 57, 1997.

3. HOCHBAUM, D. S ., and HONG, S. P., About Strongly Polynomial Time Algorithms
for Quadratic Optimization over Submodular Constraints, Mathematical Program­
ming, Vol. 69, pp. 269- 309, 1995.

4. VENTURA, J. A., Computational Development of a Lagrangian Dual Approach for
Quadratic Networks, Networks, Vol. 21, pp. 469- 485, 1991.

5. COSARES, S., and HOCHBAUM, D . S., Strongly Polynomial Algorithms for the
Quadratic Transportation Problem with a Fixed Number of Sources, Mathematics of
Operations Research, Vol. 19, pp. 94- 111, 1994.

6. HELGASON, K ., KENNINGTON, J., and LALL, H., A polynomially Bounded Algorithm
for a Singly Constrained Quadratic Program, Mathematical Programming, Vol. 18, pp.
338- 343, 1980.

7. NIELSEN, S. S., and ZENIOS, S. A., Massively Parallel Algorithms for Singly Con­
strained Convex Programs, ORSA Journal on Computing, Vol. 4, pp. 166-181, 1992.

8. SHETTY, B. , and MUTHUKRISHNAN, R., A Parallel Projection for the Multicommod­
ity Network Model, Journal of the Operational Research Society, Vol. 41, pp. 837- 842,
1990.

9. CoTTLE, R. W., DUVALL, S. G., and ZIKAN, K ., A Lagrangean Relaxation Algo­
rithm for the Constrained Matrix Problem, Naval Research Logistics Quarterly, Vol.
33, pp. 55- 76, 1986.

10. BRETTHAUER, K. M ., SHETTY, B., and SYAM, S., A Branch and Bound Algorithm
for Integer Quadratic Knapsack Problems, O_RSA Journal on Computing, Vol. 7, pp.
109- 116, 1995.

11. BRETTHAUER, K. M ., SHETTY, B., and SYAM, S., A Projection Method for the
Integer Quadratic Knapsack Problem, Journal of the Operational Research Society,
Vol. 47, pp. 457- 462, 1996.

12. HELD, M ., WOLFE, P. , and CROWDER, H. P ., Validation of Subgradient Optimiza­
tion, Mathematical Programming, Vol. 6, 62- 88, 1974.

13. CALAMAI, P . H., and MORE, J . J., Quasi-Newton Updates with Bounds, SIAM
Journal on Numerical Analysis, Vol. 24, pp. 1434- 1441, 1987~

14. BRUCKER, P., An O(n) Algorithm for Quadratic Knapsack Problems, Operations
Research Letters, Vol. 3, pp. 163- 166, 1984.

- 13 -

15. MACULAN, N., and DE PAULA, JR., G. G., A Linear-time Median-finding Algorithm
for Projecting a Vector on the Simplex of Rn, Operations Research Letters, Vol. 8, pp.
219-222, 1989.

16. PARDALOS, P . M ., and KovooR, N., An Algorithmfor a Singly Constrained Class of
Quadratic Programs Subject to Upper and Lower Bounds, Mathematical Programming,
Vol. 46, pp. 321-328, 1990.

17. MACULAN, N., MINOUX, M., and PLATEAU, G., An O(n) Algorithmfor Projecting a
Vector on the lntersection of a Hyperplane and Ri, RAIRO Recherche Operationelle,
Vol. 31, pp. 7-16, 1997.

18. MACULAN, N., SANTIAGO, C. P., MACAMBIRA, E . M., and JARDIM, M. H. C.,
An O(n) Algorithm for Projecting a Vector on the lntersection of a Hyperplane and a
Box in Rn, Journal of Optimization Theory and Applications, Vol. 117, pp. 553-574,
2003.

19. KIWIEL, K. C., On Linear Time Algorithms for the Continuous Quadratic Knapsack
Problem, Journal of Optimization Theory and Applications, Vol. 133, 2007. To appear.

20. BITRAN, G. R., and HAX, A. C., On the Solution of Convex Knapsack Problems
with Bounded Variables, Survey of Mathematical Programming, Vol. 1, Edited by
A. Prekopa, North-Holland- Akademiai Kiadó, Amsterdam-Budapest, pp. 357-367,
1979.

21. SHOR, N. Z., Minimization Methods for Non-Differentiable Functions, Naukova
Dumka, Kiev, 1979 (in Russian); English translation Springer-Verlag, Berlin, 1985.

22. MJCHELOT, C., A Finite Algorithm for Finding the Projection of a Point Onto the
Canonical Simplex of Rn, Journal of Optimization Theory and Applications, Vol. 50,
pp. 195-200, 1986.

23. ROBINSON, A. G., JIANG, N., and LERME, C. S., On the Continuous Quadratic
Knapsack Problem, Mathematical Programming, Vol. 55, pp. 99- 108, 1992.

24. Luss, H., and GUPTA, S. K., Allocation of Effort Resources among Competing Ac­
tivities, Operations Research, Vol. 23, pp. 360-366, 1975.

25. KIWIEL, K. C., On Floyd and Rivest's SELECT Algorithm, Theoretical Computer
Science, Vol. 347, pp. 214- 238, 2005.

- 14 -

List of Tables

Table 1. Run times of Algorithm 3.1 (sec).

Table 2. Run times of the Kiwiel breakpoint searching algorithm (sec).

- 15 -

Table 1: Run times of Algorithm 3.1 (sec).

Uncorrelated Weakly Correlated Strongly Correlated Overall
n avg 1nax min avg max min avg max min avg max min

50000 0.02 0.02 O.Ol 0.02 0.02 O.Ol 0.02 0.02 O.Ol 0.02 0.02 O.Ol
100000 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.04
500000 0.25 0.28 0.22 0.24 0.27 0.22 0.23 0.25 0.20 0.24 0.28 0.20

1000000 0.50 0.55 0.45 0.48 0.55 0.44 0.48 0.50 0.44 0.49 0.55 0.44
1500000 0.72 0.83 0.59 0.72 0.81 0.66 0.71 0.75 0.58 0.72 0.83 0.58
2000000 0.97 1.08 0.88 0.94 1.04 0.78 0.95 1.00 0.88 0.95 1.08 0.78

- 16 -

Table 2: Run times of the Kiwiel breakpoint searching algorithm (sec) .

U ncorrelated Weakly Correlated Strongly Correlated Overall
n avg max min avg max min avg max min avg max min

50000 0.02 0.08 0.02 0.02 0.03 0.02 0.03 0.05 0.02 0.02 0.08 0.02
100000 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05
500000 0.27 0.28 0.25 0.27 0.28 0.26 0.27 0.28 0.26 0.27 0.28 0.25

1000000 0.53 0.55 0.51 0.54 0.55 0.51 0.54 0.55 0.52 0.54 0.55 0.51
1500000 0.80 0.82 0.76 0.80 0.82 0.77 0.80 0.82 0.77 0.80 0.82 0.76
2000000 1.08 1.09 1.02 1.08 1.10 1.02 1.08 1.09 1.03 1.08 1.10 1.02

