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1. Introduction

In this paper we are concerned with the strong solvability of a three-dimensional
(3-D) initial-boundary-value problem for hyperbolic-parabolic system arising as a model
of phase separation in deformable binary alloys. The system under consideration com-
bines the linear momentum balance, represented by the nonstationary elasticity system,
with the mass balance, described by the Cahn-Hilliard problem. We prove that such
nonlinear system has a unique strong solution in the sense that all derivatives that
appear in the equations are at least in Lj.

In the previous paper [PawZaj06b] we have proved the existence and some time reg-
ulartiy of weak solutions to such problem. The proof of the regularity result was based
on an analysis of a time-differentiated system. The analysis was performed by means of
the Faedo-Galerkin approximation and energy methods. In the present paper we prove
an additional time regularity of weak solutions by considering system twice differen-
tiated with respect to time variable. As in [PawZaj06b] we apply the Faedo-Galerkin
approximation and energy methods.

The idea of the proof of the strong solvability is based on an apparent observation
that having the weak solutions with sufficiently regular time derivatives one can look at
the hyperbolic-parabolic problem under consideration as on an elliptic system with the
right-hand side including, in addition to the nonlinear terms, all time derivatives. Then
the application of the standard elliptic regularity theory allows to deduce the existence
of solutions with further space regularity and consequently the classical solvability of
the problem.

We remark that the main difficulties in the analysis of the problem come from the
3-D setting and the hyperbolic nature of the elasticity system. In three space dimensions
the coupled system shows features that cannot be found in its one-dimensional setting
(see comments following equation (1.17) below). The classical solvability of the problem
in 1-D was proved by the authors in [PawZaj06a) by means of a method specific for the
single space dimension.

The place of our study in the present theory of the Cahn-Hilliard systems in elastic
solids is discussed in the previous paper [PawZaj06b). As mentioned there, in view of
the fact that the mechanical equilibrium is usually attained on a much faster time scale
than diffusion, in most of the literature on the subject a quasi-stationary approxima-
tion of elasticity system is assumed. At the initial stages of phase separation process,
however, the formation of the microstructure is on a very fast time scale and thus the
nonstationary elastic effects may become of importance.

The model problem under consideration has the following form:

wy ~ V- W (e(u),x)=b in QT =Q x(0,7T),
(1.1) tlimo = o, Ulimo=uy  in

u=20 on ST-—-SX(O,T),
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xi—=V -MVu=0 in QT
(1.2) Xlt=0 = X0 m Q
n-MVuy=0 on ST,

u=-V-TVx+9'(x)+W,(e(u),x) in ar,

1.3
(1:3) n-I'Vx=20 on S7.

Here ¢ R3 is a bounded domain with a smooth boundary S, occupied by a body in a
reference configuration with constant mass density ¢ = 1; n is the unit outward normal
to 5, and T > 0 is an arbitrary fixed time. The body is a binary a — b alloy.

The unknows are the fields %,y and g, where u : Q7 — R? is the displacement
vector, ¥ : T — R is the order parameter (phase ratio) and g : QT — R is the
chemical potential difference between the components, shortly referred to as the chemical

potenizal. The second order tensor
1 T
e=e(u)= E(Vu + (Vu)')

denotes the linearized strain tensor.
In case of a binary a — b alloy the order parameter is related to the volumetric

fraction of one of the two phases, characterized by different crystalline structures of the
components, e.g. ¥ = —1 is identified with the phase a and y = 1 with the phase .
The function W{(e(u), x) denotes the elastic energy defined by

(1.4 Wle().x) = 5(e() — £(x) - Ale(u) - £(0).
The corresponding derivatives
Wele(u), x) = Ae(w) — £(x))

and

Wx(e(u), x) = —&'(x) - A(e(u) — &(x))
represent respectively the stress tensor and the elastic part of the chemical potential.
The fourth order tensor A = (A,;x1) denotes a constant elasticity tensor given by

(1.5) e(u) —~ A(e(u) = Mre(u)l + 2fe(u),

where I = (6;;) is the identity tensor, and X, ii are the Lamé constants with values within
elasticity range (see Section 2). The form (1.5) refers to the isotropic, homogeneous

medium with the same elastic properties of the phases.
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The second order tensor £(x) denotes the eigenstrain, i.e. the stress free strain

corresponding to the phase ratio y, defined by
(1.6) e(x) = (1 — 2(x))Ea + 2(x)Es,

with &,,&;, denoting constant eigenstrains of the phases a,b, and z : R — [0,1] being a
sufficiently smooth interpolation function (called shape function) satisfying

(1.7) z(x)=0 for x<-1 and z(x)=1 for x>1

Furthermore, the function 3 : R — R denotes the chemical energy of the system
at zero stress. This function depends on temperature and is convex above a critical
temperature and a nonconvex for temperatures less that the critical one. Here we assume

it in the simplest double-well form
1 242
(1.8) )= 7(1-x7)

with two minima at x = —1 and x = 1.
The second order tensors M = (M;;) and T = (T';;) represent respectively the mo-
bility matrix and the interfacial energy matrix. For simplicity, we shall confine ourselves

to the isotropic, homogeneous case assuming that
(1.9) M=MI, I'=TI, M=T=1

with positive constants M, " normalized to unity.

System (1.1)-(1.3) represents respectively the linear momentum balance, the mass
balance and a generalized equation for the chemical potential. In a thermodynarmical the-
ory due to Gurtin {Gur96] equation (1.3) is identified with a microforce balance. The free
energy density underlying system (1.1)—(1.3) has the Landau-Ginzburg-Cahn-Hilliard

form
(1.10) Jle(on)y 3 V) = W(e(ar),2) +6(x) + 5V - TV

with the three terms on the right-hand side representing respectively the elastic, chem-
ical and interfacial energy.

The remaining quantities in (1.1)-(1.3) have the following meaning: b : Q7 — R3
represents the external body force, and wug,uy : Q —: R3 x¢ : € — R are the initial
conditions respectively for the displacement, the velocity and the order parameter.

The homogenous boundary conditions in (1.1)-(1.3) are chosen for the sake of
simplicity. The condition (1.1); means that the body is fixed at the boundary S, (1.2);
reflects the mass isolation at .9, and (1.3)s is the natural boundary condition for (1.10).
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Similarly as in [PawZaj06b], we introduce a simplified formulation of problem
(1.1)-(1.3) which result on account of the constitutive equations (1.4)-(1.6) and (1.9).
Let @ be the linear elasticity operator defined by

(1.11) u— Qu =V 4e(u) = fAu+ A+ )V(V - u).
Moreover, let us denote
(1.12) B=-A(éy—&,), D=-B:(§—¢&,), E=-B g,

where B = (B,;) is a symmetric, second order tensor and D, E are two scalars. With

such notation we have
(118) V- We(e(w),x) = V- Ae(w) = V- A(Ea + (X)(Es — &) = Qu + () BVx,
and
Wale(u),x) = 2" (x)(B - e(u) + Dz(x) + E),
so that (1.1)-(1.3) simplifies to
uy — Qu =2 (x)BVx+b in QT

(1.14) Ul=p = o, Wili=o = W in Q,

u=20 on §T,

xi—Au=0 in T,
(1.15) Xh=o=x0 in €,
n Vu=0 on 57,

p=—Ax+¢'(x) + Wyle(u),x) in Q7,

1.16
( ) n-Vx=20 on ST

with W (e(u), x) given by (1.13),.
Let us note that the combined systems (1.15) and (1.16) yield the following Cahn-

-Hilliard problem

xe+ 8% = A () + 2'0)(B - €(u) + Dz(x) + E) in Q7,

Ji=0 = X in §,
(1'17) Xle=0 = xo i
n-Vxy=0 on 57,
n.VAx =z2'(x)n V(B -e(u)) on S§7,

‘5 za06




coupled with the elasticity system (1.14). It is seen that the problems are coupled not
only through the right-hand sides but also through the boundary conditions.
Moreover, by definition (1.7) of the shape function z, the problems uncouple for y < ~1
and y > 1. As already mentioned, the boudnary coupling is characteristic for multidi-
mensional problem and does not appear in the one-dimensional setting. In fact, in 1-D
case assuming that b = 0 on S7, it follows from (1.14);, (1.14)3 and (1.17); that u,, = 0
on ST, and consequently condition (1.17) yields yzz: = 0 on ST. This fact was used
in [PawZaj06a] in the analysis of the 1-D version of problem (1.1)—(1.3).

A time-differentiated system, analysed in [PawZaj06b], was considered with the
following initial conditions corresponding respectively to w4 (0), x:(0) and p(0):

us = Qug + 2'(x0)BVxo + b(0),
(1.18) X1 = Apo,
o = —Axo +%'(xe) +2'(x0)(B - e{uo) + Dz(xo0) + F).

These conditions arise in compatibility with equations (1.14)1, (1.15); and (1.6);.
The analysis of the present paper involves twice time-differentiated system (1.14)-
—(1.16). To this purpose, in addition to (1.18), we define the initial conditions corre-

sponding respectively to w4 (0), x(0) and p,(0):

us = Quq + 2" (xo)x1BVxa + 2'(x0)BVx1 + b,(0),

X2 1= Api,
p1 = =Axy + ¥ (xo)x1 + 2" (xo)x1(B - e(ug) + Dz(xo) + E)
+ ZI(XO)(B . E(ul) + DZI(XQ)XI).

(1.19)

Expressions (1.19) arise as compatibility conditions for time-differentiated equations
(1.14),, (1.15); and (1.16);.

The paper is organized as follows: In Section 2 we present our main assumptions
and results, stated in Theorems 2.1, 2.2 and 2.3. Theorem 2.1 asserts an improved time
regularity of weak solutions to system (1.14)~(1.16), obtained by twice differentiation
with respect to time variable. Theorem 2.2 states the existence of a strong solution,
and Theorem 2.3 its uniqueness. In Section 3 we recall the existence and regularity
results proved in [PawZaj06b] by the analysis of system (1.14)—(1.16) once differentiated
with respect to time. Besides, we collect there some known results for linear elliptic
problems as well as interpolation inequalities and imbeddings used in the paper. In
Section 4 we introduce a Faedo-Galerkin approximation of the problem and study its
twice time-differentated version. The subsequent sections 5, 6 and 7 provide the proofs
respectively of Theorem 2.1, 2.2 and 2.3.

We remark that having in mind a future examination of a long time behaviour of
solutions we shall record time-dependences of various constants. The obtained regularity
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estimates turn out to depend exponentially on time, thus in the present form are not

useful for the long time analysis.
We use the following notation:

« = (z;)i=1,2,3 the material point,

_of

fi= e fi= 7 the material space and time derivatives,
i, ]
oW (e,
e = (ei)ij=123, Wele,x) = <_5(“Q> )
€15 £,7=1,2,3
_Wlex) dip(x)
I/V,x(Eax)_ Ta d)(x)‘ d'x .

For simplicity, whenever there is no danger of confusion, we omit the arguments
(£,x). The specification of tensor indices is omitted as well.
Vector- and tensor-valued mappings are denoted by bold letters.

The summation convention over repeated indices is used, ad well as the notation:
for vectors @ = (a;), & = (a;) and tensors B = (B;;), B = (Bi;), A = (Aijn1), we write

a-a=ad, B-B"—‘BijB,_,,
AB = (AijuBu), BA =(Bi;Aiju),
la} = (a;0,)'/?, |B| = (Bi; By,)""*.

The symbols V and V- denote the gradient and the divergence operators with respect
to the material point x. For the divergence of a tensor field we use the convention of

the contraction over the last index, e.g. V- e(x) = (g5,;(x)).
We use the standard Sobolev spaces notation H™(Q) = W, () for m € N. Besides,

Hi()={veH(Q): v=00n S},
Hi(Q)={ve H}Q): n-Vuv=00n S},

where n is the outward unit normal to S = 9, denote the subspaces respectively of
H'(Q) and H*(Q), with the standard norms of H() and H*(Q).
By bold letters we denote the spaces of vector- or tensor-valued functions, e.g.

La(Q) = (Z(Q)), HY Q) = (H'(Q)", neEN,
if there is no confusion we do not specify dimension n. Moreover, we write
lallzan = alliz,,  lalimi@) = el + 1Val .

for the corresponding norms of a vector-valued function a(z) = (a;()); similarly for

tensor-valued functions.
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As common, the symbol (-, ) denotes the scalar product in L, (). For simplicity,
we use the same symbol to denote scalar products in L,(2) = (L2(Q2))", e.g. we write

{a,a) = /a(m)&.(m)dz3 (a,a) = /a,(m)(z,(m)dz,

Q Q

(B,B)= [ Bi(x)B,;(z)dz.
/

The dual of the space V' is denoted by V', and (-, -}y, v stands for the duality pairing

between V' and V.
By ¢ and ¢(T) we denote generic positive constants different in various instances, de-

pending on the data of the problem and domain 2; whenever it is of interest their
dependence on parameters is specified. The argument T indicates the time horizon de-
pendence. Moreover, § denotes a generic, sufficiently small positive constant.

2. Assumptions and main results

System (1.1)-(1.3) (in simplified form (1.14)-(1.16)) is studied under the following

assumptions:
(A1) © C R?is a bounded domain with the boundary S of class at least C2; T > 0 is an

arbitrary final time.
(A2) The coefficients of the elasticity operator @ defined by (1.11) satisfy

(2.1 E>0, 3X\+22>0 (elasticity range).
g

These two conditions assure the following:
(i) Coercivity and boundedness of the operator A

(2.2) clel? <e Ae < Zef? forall e S
where §? denotes the set of symmetric second order tensors in R?, and
¢ =min{3X + 27,24}, &= max{3X+ 27z,2z);

Strong ellipticity of the operator @ (property holding true under wealer assumption
iz >0, A+27 > 0, see [PawZoch02), Section 7). Thanks to this property the following
estimate holds true (see [Nec67], Lemma 3.2):

~—

(ii

(2:3) cllullrzo) < 1Qullr,@ for we HY ()N Hy(9Q)

with constant ¢ depending on 2.
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Hence, since clearly [|Qul|z,(q) < cllullg2(q), it follows that the norms {[Qu||z,(q) and
il gr2(qy are equivlaent on H*(Q)n Hi(Q).
The next two assumptions concern the ingredients of the free energy (see (1.10)

with ' =1)
(24) Fle(w)x, V) = Wi(e(w). x) + 50 + 31Vl

(A3) The elastic energy W(e(u),x) is given by (1.4)~(1.6). The interpolation function
z: R — [0,1] in definition (1.6) of &(x) is at least of class C! with the property

(1.7). Hence,
(2.5) 0<2(x)<1 and [2'(x)] <c forall y€R.

(A4) The chewmical energy (x) has the form of standard double-well potential (1.8), so
(2.6) P =2 —x P0)=3x"-1, ¥"(x)=6x

Moreover, for simplicity it is assumed that
(A5) The mobility tensor M and the interfacial tensor I' are the identities matrices
M = I,I' = I. The second order symmetric tensor B and scalars D, F are defined

in (1.12).
We note that assumptions (A3) and (A4) imply the following bounds for all e € 52

and x € R:
£001 < leal + foal S e,
00l =12'00(E — o)l < e,

(27) W(e, 20l = gele — 27 < ellel? + 1),
[Wee )| + [Wix(e, 0] < elle] + 1),
WOOLS e + 1), 1001 < el +1)

with some positive constant c.
Moreover, by the Young inequality, we have

(28)  W(e,) 2 gele —200P 2 Jelel’ = el (Ol 2 Jelel? - elleal” + &),

and

1 1
W(y) > — 4_!'
) 2 gx - ¢

This shows that free energy (2.4) satisfies the following structure condition

] =

1 1 1 _ )
fle,x, VX)) 2 ZQ’EIZ +oxt+ EIVXI2 —c(lga)? + |al?) —

(29)
>er(lel*+x* + |Vl - ¢
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with constants c; > 0 and ¢ given by

11 _ _ 1
ep=ming e o, o =c(lEl’ +1e)) ~ 7.
4 4
This bound plays the key role in the derivation of energy estimates for problem (1.1)-

—(1.3) (see Section 4).
For further purposes we recall here the following two additional properties of the

operator Q:
Q is selfadjoint on HX(Q) N H} (), ie.

(2.10) (Qu,v) = —i(Vu, Vo) = (A + BV -,V - v) = (u, Qv)
for w,v € H{(Q)N H}(Q),

— Q is positive on H2(Q) N HY(R), i.e.
(2.11) (-Qu,u) = @l Vull,@) + A+ DIV ulli @ 2 0
for e H*(Q)N H Q).

We state now the main results of the paper. The first theorem extends the regularity
result of {PawZajo6b}, Theorem 2.2.
Theorem 2.1. Improved time regularity
Let (A1)-(A5) hold, the boundary S of domain § be of class C8, and
(2.12) z:R—~[0,1] beof class C* with
o [2'0) + 12" 0l +12"(x) < ¢ forall x € R.

Moreover, let the data satisfy

be H'(0,T; H' () N H*(0,T; L,(R)),

ug € H'(Q)NH)(Q), w € H(Q)NHQ), xo0 € H*NHZ(Q),

uy € Hy(Q), xa € HAQNHY(Q), po € HHQ)NHZ(Q),

us € La(Q),  x2 € Lo(Q), i € HY(Q),

where w9, x1, o and us, x2, p1 are defined by (1.18), (1.19). Then there exist functions
{u,x, 1) such that

(2.14)
u € Lip([0. T} H*(Q) N Hy(), e € Loo(0,T; H*(Q) N Hy(Q)),

it € Loo(0,T; HY(Q)), it € Loo(0,T; La(Q)),  wurse € Lo(0, T (HL))),
X € C({0, T HY (),  xe € CP(0,T]; HY(Q)),

Xt1 € Loo(0, T; Lo()) N Lo(0, T; H{(Q)),  xwe € Lo(0, T; (HR(Q)Y),

wu € Lip(10,T]; H%(2)), e € Loo(0, T; H?\;(Q)), it € L?(QT))

(2.13)
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w(0) = ug, w0} =u1, uu(0)=1uz, Uu(0)= us,
(2.15) x(0) =xo0, xe(0)=x1, xu(0)=x2,

u(0) = po, pe(0) = pua,
which satisfy problem (1.14)-(1.16) in the sense of the identities

T T
/(umnﬂ)(H;(n))r,H},(n)df + /(Af(utt)af(ﬂ))df

0 0

T
- / () BVl + buym)dt ¥ € Lo(0,T; H()),

T T
(2.16) / Xaet: €m0y m (@) dt = /(““’Af)dt
0 0
Ve € Ly(0, T H (£)),
T T T
/(#tn()dt = ‘/(AXm )dt+/([’/’ () + Wle(u), x)],u, )dt
3 o 0

V¢ € Ly(0, T L2(52)),
where
(2.17) [Z'(x)BVx) e = =" (x)x; BVx+2" (x)xu BVx+22"(x)xe BV x:+2' (x) BVxu,
[ 00) + Wx(e(u), )] = 9" (0)xi + 9" ()xe
+2"00)xE (B - e(u) + Dz(x) + E) + 2" (X)xu(B - e(u) + Dz(x) + E)
+2"(x)xa(B - e(ue) + D' ()xe) + 2 ()(B - e(wee) + Dz"(x)x7 + D= (x)xue).
Moreover, (u, x, u) satisfy the following estimates:
el 0. 7iza00)) + (@) L0, 72220 + XN Lo (0,73 La(2n)
VXM b 0,220 + 1Vl Logary + IxellLo0,miai@)yy < o,
(2.18) lullso oz + Xl L@ ra@) < e,
[l £ogo, iz o)) + Wil Lago,mim )y < e2(T),

sl oo, myarycanyy < es(T),

Ml 0,7z ey + Htell oo,y o)) + et re o, 78000)) < es(T)
']

(2.19) Ixttcrrzqo,mimz @) + xell e 0. 7La) + ixdllzao,mim3 0

B el ro o1 m2,0) < ea(T),

Neweeell oo, cmyans + Ixellnarmzany + lpdllaary < T es(T),
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and
[Feell Lipro, m32r2 )y + et Lo, 7=y + N2eell Lo o, 7 E )
+ lleceellz oo 0,720y < ea(T),
IxlHer o, mmz o + Ixellerrzqo gy + Exellie o,
+ Ixeellz, 0,7 m2 ) F el L 0,512,y < e6(T),
liteelizocary + el oo, mcrz )y < es(T),
Newsercll 20,7 m oy < eo(T),
with positive constants cx, k= 0,1,...,9, given by
co = clfuollginys il Ixollmay 1Bl o,mr.))s erichh
ey =c(eo, ), eo(T) = e(e)T'?, ea(T) = elco, ||bllz,0m)) T2,
ea(T) = (T Er(T) + Ixallo)lexpa(T))?, a(T) = eoT® exp(cT),
es(T) = T'/?cy(T),

G2 (1) = (T2 BAT) + Il saiey + T2 T lexp(elen) T2 TN,
er(T) = T eo(T),
es(T) = TV ey (T)es(T),
co(T) = e(er T2 (D),

where

Ey(T) = T'?|Ibillz 07y + lwallzaoy + le(@n)l z,0)
Ey(T) = T*?|lbullz,cary + l[wallz @) + le(u2)|[z.c0)-

The next theorem asserts the existence of a strong solution to problem (1.14)-(1.16).

Theorem 2.2. Strong solutions
Let assumptions of Theorem 2.1 hold. then a solution (u, x, ) in Theorem 2.1 has in

addition to (2.14) the following regularity

u € Loo(0,T; H*(Q)),
(2.22) X € Loo(0,T; H*()),

€ Loo(0, T HY(Q)), e € L2(0, T3 H(Q)).
Such solution satisfies equations (1.14);, (1.15)y, (1.16), almost everywhere, boundary
conditions (1.14)3, (1.15)3, (1.16)3 and initial conditions (2.15) in the sense of appro-
priate traces. Moreover, (u, x, i) satisfy estimates (2.18)~(2.20) and

sy 0,720y < e(T),
(2.23) Il 0.7 sco)) < e3(Der(T),

el oo,z + Nl oo, 73y < co(T).

The last theorem concerns the uniqueness of the solution.
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Theorem 2.3. Uniqueness.
Let assumptions (Al)-(A5) hold,
z:R = [0,1] be of class C? with

(2.24) , ,
[0l + 12" (x)] < c for all x € R,

and (u, x, 1) be a solution of problem (1.14)-(1.16) such that
(2.25) u € Ly(0, T, Wi (), x € La(0, T Leo($0)) N L2(0, T; Wi (82))

with
el oo, mwi @) + IxlLao, 7L ) + IX)L,0.mwi ) < (D).
Then the solution (u, x, ) is unique.

Corollary 2.1. The strong solution in Theorem 2.2 is unique. The above uniqueness
result does not apply to weak solutions in Theorem 2.1 since they do not satisfy the

first regularity requirement in (2.25).

3. Auxiliary results

In this section we recall first the existence and regularity results for system (1.14)-
~(1.16), proved in [PawZaj06b]. Besides, we collect some known results for linear elliptic
problems as well as some interpolation inequalities and imbeddings which are used in

the paper.
The first result concerns the existence of weak solutions bo (1.14)-(1.16).

Theorem 3.1. [PawZajo6b] Weak solutions
Let assumptions (Al1)-(A5) hold true. Moreover, let the data satisfy

be L,(QT),

(3.1) . ,
ug € Hy(R), wuy € Lo(R), xo0€ H'(R).
Then there exist functions (u, x, p) such that

1w € Loe(0. T Ho(), we € Loo(0,T; L2(Q)),  ww € Ly(0,T; (HYN))'),
(32) X € Loo(0, T; HY () N Lo(0,T; HG(Q)),  x¢ € L2(0,T; (H'(R))),
B € La(0,T; H' (Q)),

(33) u(0) = uo, w(0) =, x(0)=xo,
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which satisfy system (1.14)-(1.16) in the sense of the identities

T T
/(uzt,ﬂ)m;(n))',H‘ﬂ(n)df + /(146-‘(“)’5(17))”-71f
0

0

T
= [CC0BYx +bmit vn € (0, HY@)
0

T
(3.4) (x0, E)(mr )y, @) dE + /(V/h Vé)dt =0
1]

O\‘ﬂ

Vé € Ly(0,T; H' (),
T

T
(10t = =[x, e + [ 00+ Watetu), 0,00

0

o\k}

Moreover, (u,x, ) satisfy a priori estimates (2.18) with constants cg, c1,co(T), c3(T)
specified in (2.21).
The second theorem states time regularity wheich follows from time-differentiated
system (1.14)—(1.16)
Theorem 3.2. [PawZaj 06b] Time regularity
Let (A1)-(A5) hold, the boundary S of domain § be of class C*, and
z: R —+]0,1] be of class C? with

(3.5) , "
12" + 2" (00 € e for all x € R.

Moreover, let the data satisfy
b e H'(0,T; L1(Q)),

(3.6) wy € H'(Q)NHNQ), u1€ H(Q), xo€ H(Q)NHE(Q),
g € La(R), 1 € La(Q), po € Hy(Q).

Then there exist functions (u, x, i) such that

w € Loo(0,T; HA Q)N Hy()), w4 € Loo(0,T; HY(S)),
Uy € Loo(0, T3 L2(2)),  wae € Lo(0, T (HL(Q)),
(3.7) x € CYP([0, T HH (D), Xt € Loo(0,T; La()) N Lo(0, T; HA (),
xu € Lo(0,T; (Hy (),
(€ Loo(0, T; HY (), pe € L2(Q7),

14 2506




w(0) = up, w(0) = 1wy, we(0) = u,,
x(0) = xo, x1(0) = x1, 1(0) = po,
which satisfy problem (1.14)-(1.16) in the sense of the identities

T T

/<utrt,77)(H3(ﬂ))’,H“](Q)dt + /(Af(ut)-.f(ﬂ))di

0 0

T
- /([z’(x)BVX]’, +bom)dt ¥ € Ly(0, T; HA(S)),

0
T T

(39) /(xﬂ,ﬁ)(H,-z(m)'.H,%(mdf = /(“hAf)‘”
¥ [

[ul
vs € (0, T; H%(ﬂ))

/ (e, )l = / (Axe, C)dt + / (9 () + Wa(e(), x))r Ot

(3.8

V(¢ € L0, T, L;(Q)),

where
[Z'(X)BVxle = "(x)x:BVx + 2 (x)BVxu,

(3.10) (' (0) + Ws(e(u), X)L = %" (0xe + 2" (xx( B - e(w) + Dz(x) + E)

+2' (x)(B - e(us) + D2' (xX)xt)-
Moreover, (u,x, ) satisfy a priori estimates (2.18) and (2.19) with constanst cg,ci,
c2(T),¢3(T), ca(T) and ¢cs(T') specified in (2.21).

We recall now a standard elliptic regularity result for the problem

Ax=1Ff in Q,
n-Vx=0 on 5
Lemma 3.1. (see e.g. [LM72a] I, Chap. 2) Let Q C R® be a domain with boundary §
of class C*H, 1 > 0 integer, f € HY(R), fn fdz = 0 and y € Ly(Q)). Then solutions of
problem (3.11) satisfy the inequality

(3.12) Ixlfrrerry < clifllmia) + Ixl.))-

(3.11)

The next result states the elliptic regularity for the system
Qu=7f in Q,

(3.13)

u=20 on 3,

with the elliptic operator Q defined by (1.11). The lemma presented below is a par-
ticular case of general results due to Lions-Magenes [LionsMag72) I, Chap. 2 (see also
Solonnikov [Sol66), §2, Thm. 2.2 for L, approach).
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Lemma 3.2. Let Q C R3 be a domain with boundary S of class C**!, 1 > 0 integer,
the coeffcients of the operator Q satisfy i > 0, A + 2 > 0. Moreover, let f € H'()
and u € Lo(§2). Then solutions of problem (3.13) satisly the inequality

(3.14) el 2410y < clif ey + ez @))-

For the case f € Lqo(Q) we recall also the following result due to Nedas (see [Nec67],
Lemma 3.2):
Lemma 3.3. Let $2 C R? be a domain with boundary § of class C*, i > 0, A+2a > 0,
f € Ly(Q). then for solutions of problem (3.13) the following estimate holds
(3.15) lullm2) < ellfilra@)-

Next, we recall the Gagliardo-Nirenberg inequality (see e.g. [BIN96], Chap. III, Sec.
15).
Lemma 3.4. Let Q C R™ n > 1, be a bounded domain with a smooth boundary.
Then, for any u € W},(§2) N L,, (), there exist two positive constants c1,cy such that
the following inequality holds:

(3.16) > 1Dl < allelyfoy (D0 1D, @) + exllellz, @),

laf=r |af=t

provided the conditions
1<pupa,p<oo, 0<r<i, ¢g>0,
E—r:(l—ﬂ)i-l—@(i——l), T<o<a,
p P D2 )

with the following exception:

ifl<py<oo,l~r—2=0,p= oo, then (3.16) does not hold for § = 1.

The next is the following imbedding result (see e.g. [BIN96], Chap. I1I, Sec. 10):

Lemma 3.5. Let @ C R™ n > 1, be a bounded domain satisfying the cone property.

Let
n n\l1 o

1<p<g<oo, %=<———>~+*<1,
P q

and u € W)(§2). Then D%u € L,(€), and
(3.17) ID*ulfr oy < €Dl @) + ce*|lullL, (@)

for any ¢ € (0, ho), where hy is the height of the cone.

For later purposes we prepare also a lemma which states the imbedding
Lo(0,T5 Ly(2)) € Loo(0,T; La(2)) N Lo (0, T; WE(Q)).
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Lemma 3.6. Let v € Loo(0,T; Lo(82)) N Lo(0, T; W4 (82)) where @ C R3 is a bounded
domain with a smooth boundary. Then there exist positive constants ¢y, ¢y such that

-2/
(3.18) el zgg0,752,000) < el G rnacan IVl ko Fpoc
+ c2llullgqo. L2050

where real numbers p, q are subject to the conditions

<1, =+

2 3 g
q 2p ¢

3
.19 0< = —.
(3.19) < :
Proof. According to the interpolation inequality (3.16), we have
(3.20) Nl 0) < exllelly; oy NVl Zec) + callullLaay,

with @ satisfying

3 3
WV _—— — < g <1,
(3.21) f=—3, @d 05021

From (3.20) it folows that

T y
lellz,0,mi1,000) < @ </ el Il 52 o ) +eallullz 0, 1iL0 ()
(3.22) !

T
1/q
- g
< allulli o miea00) (/ ||V“'||Li(mdt) + eallullz 0,7z
0

Hence, setting g = 2, that is § = 2/q, we conclude from (3.21) and (3.22) the assertion

of the lemma. O

4. The Faedo-Galerkin approximation

In this section we introduce first Faedo-Galerkin approximations of problem (1.14)-
—(1.16) and its time-differentated form. Next, we recall from [PawZaj06b] the main a pri-
ori estimates for these approximations. After such preparations we proceed to the main
part of the present paper, namely the examination of an approximation corresponding

to twice time-differentated problem.
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4.1. Approximation
We consider the following two eigenvalue problems
- ij = )\A,-v] in Q,

(4.1) .
v; =0 on 8§, jeN,

where @ is the elliptic operator defined by (1.11), and
— Aw; = Aw; in Q,

(42) J e ‘

n-Vw; =0 on S, j€eN

We recall that, by virtue of the elliptic regularity theory, if the domain © has the
boundary of class C!, I € N, then the solutions of (4.1) and (4.2) satisfy
(4.3) v; € H(Q), w, e H(Q).

As shown in [PawZaj06b), after normalization, the family {v;};en forms a basis of the
space H}(Q), orthonormal in L2(Q) and orthogonal in H'() scalar products.
The family {w;} en forms a basis of the space

H%(Q)={w e H*(Q):n-Vw=0o0n S},

and after normalization becomes orthonormal in Ly(Q), and orthogonal in H'(Q) and
H?(Q) scalar products. Furthermore, we assume without loss of generality that w, = 1.
For m € N we denote by

Vom = span{vy,...,v,n} and Vo, =span{wi,...,wm)

the finite dimensional subspaces, respectively of H{(Q) and H%(Q), spanned by

{v1,...,vm} and {w1,..., wm}.
We intoduce the following Faedo-Galerkin approximation of (1.14)-(1.16): For any
m € N find a triple of functions (™, x™, z™) of the form

m m
u™ (e, t) = Z {(Hvi(x), x"(=,t)= Zc (Dwi(z),
=1 =1

(4.4)
um(z, 1) de(i w;i(x

with e (t), ¢*(1), d"(t) being determined so that

(ufy,v;) + (Ae(u™),e(v;)) = (' (x™)BVX™ + b,v;),

Oa™s WJ)+(V# Vuw;) =0,

(u™wy) = =(Ax™, ;) 4+ (B'(X™) + Wle(u™), x™),w5), 7=1,...,m,
u™(0) = ug’, (0) uy, x™(0) = xa

(4.5)
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where ul', u" € Vom and xg' € Vin are the projections respectively of wg, w1 and yo

satisfying for m — oo

ul' — uy strongly in H(Q),
(4.6) ul" — uy strongly in Lo(§2),
Xt — xo strongly in H'().

A Faedo-Galerkin approximation corresponding to time-differentiated system (1.14)-
~(1.16), studied in [PawZaj06b], is

(ufinv) + (Ae(ul),e(vy)) = (['(x™)BVX" Lt + b, v;),
(47 (xiewy) = (e dwy) =0,
(ufywy) = (=Axi"wy) + (B (™) + Wile(w™) x ™oy wy)y j=1,000,m,

where the explicit forms of [z'(x)B Vx| and [¢'(x)+ W,y (e(w), x)},« are given in (3.10).
System (4.7) is considered with the initial conditions

u™(0) =ug', w(0) =", x™(0) = xo,

(48) m m m m m m
uip(0) =u3", x7(O)=x7", u™(0)=ug,

where 7" € Von, xT", 48" € Vi are the projections respectively of u2, x1 and po defined
in (1.18), and such that the following convergences in the strong sense hold:

ul' — wo in H¥*(Q)NH(Q), ul — uy in H(Q),
(4.9) W xo i HYQ)NHYQ),  ul —up in Ly(Q),
X7 —x1 in La(92), ud — uoin Hi(Q)

4.2. The energy and time-regularity estimates
It has been proved in [PawZaj06b] (see Lemmas 4.1~4.4) that under assumptions
in Theorem 3.2 a solution (u™,x™,u™) of system (4.7), (4.8) satisfies the following

uniform (in m) energy estimates

[l ”Lm(O,T;L;(Q)) + ”E(um)“Lm(O,T;L;(Q)) + ”Xm“Lm(o,T;L,,(Q))
FUVX™ W Lwwtomiz2(02) F WV I na@my + (X8 200,750 ) S €05
(4.10) 1" |2 o 0, 7m3 )y + X Low 0,712 (1)) S 1,
™ Loz, ) F e nao.m) < e2(f),
Mol Laco ey < ca(t) for t€(0,T],
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and time-regularity estimates
™ o,umz@y) + 1 o o)y + 1uie e 0,62.00) < cs(t),
0
1) ™ Iz o, 2, 23y + IXE N e 0,6:22000) + UXE W La00, 602 )
F 1™ w0, umz @) + 1l e 0 < eald),
e ooy + ||XT¢/||L,(0,1-,(H§,(Q))/) <t eq(t)
for ¢ € (0, T), with positive constants independent of m, given by
@y 1Bl Ly 0,200 €5, €%),s

co = collluoll g iays 1)) 2.0 llxo
a1 = c(co, ), ea(t) = c(en)t'?, ea(t) = c(co, bl pyan))t %
ca(t) = (P Er(t) + lxallLyco))lexp a(2))/?,  a(t) = cot® exp(et),
es(t) = t1/%eq(t),

(4.12)

where
By(t) = ¥ ||bulpycan) + uallzae) + He(w)ll.c)-

4.3. The improved time-regularity estimates

In this section we assume that the boundary § of domain Q is at least of class C8. We
introduce a Faedo-Galerkin approximation corresponding to twice time-differentiated

system:

(ufie, v;) + (Ae(uy) e(v;)) = ([2'(x™)BVX" [t + bu,v5),
(4.13) (xftows) ~ (uif, Dw;) =0,

(riws) = —(Axig wy) + ([ (™) + Wle(w™) X ws)y 5 =1,...,m,
where the explicit forms of [2/(x)BVx] .« and ['(x) + W y(e(), x)] 0 are given in
(2.17). System (4.13) is considered with the initial conditions

u™(0) =ug', u(0)=w", Xx™(0)=xq",
(4.14) wp(0)=wuy', x{0)=x7", w™(0) = ug's
w7 (0) =u, x7(0)=x7 w0)=pl"
where uf’, ul, ul*, v € Vonm, ¢, X7 x25 48t #7° € Vi are the projections of the

corresponding data, with ue, x1, o and ug, X2, #1 defined in (1.18), (1.19).
We assume that the following convergences in the strong sense are satisfied:

ul* = ug in H'(Q)n HYQ), wlt —wy in HY(Q) N HQ),
¥ = o in HE(Q)NHEQ),  ul' - wuy in HYQ),

(418) P o in BN BRQ), - po in HYQ)0HR(R),
ul — uy in Lo(Q), X378 — x2 in L(Q),
Wt = in HY(Q),
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Consequently, (6.1) follows.
From (6.2), by the Sobolev imbedding, it follows that

(6.4) ez o, 7m2 ) + lle(ullzamy < e2(T).

With estimate (6.4) we are ready to prove a regularity of x.
Lemma 6.2. Let assumptions of Theorem 2.1 hold. Then sclutions x of (1.16), treated
as an elliptic system

Ax = —p+ ' (x) + Wile(w),x) in QT

6.5
6:5) n-Vy=20 on ST,

satisfy x € Loo(0,T; HY(Y)), and

(6.6) Il Lo, 400 < 3 (Ter(T).

Proof. Due to the elliptic regularity (see Lemma 3.1) we have

X1 L oo o, 75 119 02))

6.7
(©0 el =+ 9" (x) + Wixlelw), x)Lwo,mmr @) + IxlLwo,mai@)) = Re.

Takin into account that
[ (x) + W(e(u), xX)]ez = " ()X + 9" (x)xz2
+ 2" (X)x3(B - e(u) + Dz(x) + E)
+ 2" (X)[xz3 (B - e(u) + Dz(x) + E) + 2x2((B - e(w)): + D2'(x)x2)]
+2' (OB - e(w))sz + D2"(x)x% + D2'(x)x22),
recalling assumptions on ¢ and z (see (2.6), (2.12)}, and using estimates (2.19), and
(6.4), we obtain
(6.8)
V2[5 (x) + Wi (e(w), X)) 2 (0,73 L2(0))
el VP + (3 + DIV + [VxPle(u)] + VX + Vxe(w)]
+1VxIIVe(w)] + Ve (@)l 1o 0,750202))
< Xl @ IVXIL L o, rz, @) T (XN T (@) + DIV XN Lo 0,752
+ “E(u)”LN(QT)HVX”%DG(O,T;LAQ)) + IV 0,700
F €@ Lo @ IV X Low 0. 7:8202)) + IV X Lo (0,73 20t | VE(@) | Les0, 7524 ()
+1V2e(w)l Len 0,782 (20)]
< e[e}(T) + (ea(T) + Dea(T) + ea(T)ei (T) + c3(T)
+ cr(Tea(T) + ea(Ter (T) + ex(T))
< ei(TYer(T).
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Besides, estimates (2.19), imply that

fl' () + Wi (e(w), X Lo 0,73 L2000 € ca(T),
(6.9) il 0,2y < ca(T),
Xl asco,7 200y < ca(T)-

Thus, it follows from (6.8) and (6.9) that
Re < (T)er(T) + eo(T) < 4(T)en(T)

which shows estimate (6.6). This completes the proof of the lemma.
The next lemma proves regularity of p.
Lemma 6.3. Let assumptions of Theorem 2.1 hold. Then solutions p of (1.15), treated

as an elliptic system

Ap=yx in QT
(6.10) e .
n-Vu=0 on S,

satisfy p € Loo(0,T; H*(Q)), pe € L2(0, T; H*(R)), and
(6.11) 4l 2 oo o7 m2c0)y + el oo, mag0)) < co(T).

Proof. On account of the elliptic regularity (see Lemma 3.1) it follows that solutions u«

of (6.10) satisfy

e Lo 0,20y < eUixtll Lo 0.2y + il Losio,130000))) = Ra,

(6.12)
el zaommayy < clilxalloagomme@) + el a0, 1i02c0))) = Ra.

By virtue of estimates (2.19)73, (2.20)2, we have

Ry < c(ce(T) + T 2es(T)) < c6(T),

which shows (6.11). O
Lemmas 6.1-6.3 imply regularity statements (2.22), (2.23). Thereby the proof of

Theorem 2.2 is completed. 0
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7. Praof of Theorem 2.3

Let (wq,x1,11) and (w2, X2, #2) be two solutions of problem (1.14)-(1.16) corre-
sponding to the same data. Subtracting the corresponding equations and denoting

U=wuy—uyy, H=x1-x2, M=y1—pa
we obtain the following system for (U, H, M):

Uy — QU = (' (x1) — 2'(x2))BVx:1 + 2 (x2)BVH in Q7

(7.1) Ulyeg =0 in
U=0 on ST,

H —AM =0 in 9T,
(7.2) Hli=o =0 in Q,
n-VM =10 on ST,

M= —-AH+4" (x1) =9 (x2) + (' (x1) — 2 (x2))(B - e(ur)
(7.3) +Dz(x;)+E)+z’(xg)(B-s(U)+D(z(X1) — z(x2)) in QT,
n VH =0 on ST.

Multiplying (7.1); by U, integrating over 2 and by parts, using boundary condition
(7.1)3, yields

Do) —

%[/ U |2 dz +/As(U) e(U)dz
Q

(7.4) ¢

= /(z"(x,)HBVX] + 2'(x2)BVH) - Udz = Ry,
Q

where x. € (x1, x2). By assumption (2.24) on z, the right-hand side of (7.4) is estimated
with the help of the Hélder inequality by

By < el H Lo IVxilos WUl a0y + WV H | 2y U el 2 0))-

Hence,

d 2
. U Dy + Q/ Ac(U) - €(U)da]

< el H | zslVxilizea) + IVH | py@) Ul Ly0) = Re.
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Now, multiplying (7.2); by H, integrating over §2, and twice by parts, taking into account

boundary conditions (7.2)3, (7.3)s, we obtain
1d 2
Q Q

Finally, multiplying (7.3); by AH and integrating over 1, in view of assumptions on

and z, gives

/JMAHd.r = —/(AH)Zda:-I—/H(Xf +x1x2+ x2 - 1)AHdz
Q )

(77) +/Z“(X,)H(BE’(’U])‘FDZ(X])‘FE)AHdT

Q
+ / Z'(x2)(B - e(U) + D' (x.)H)AHda,
Q

where x. € (x1,x2). Consequently, combining (7.6) and (7.7), it follows that

%%/H”I+/(AH)2“=/H(X3 +xix2 + X2 — )AHdz
Q Y] Q
+/z”(X*)H(B ~E('U,1)-|— DZ(X1)+E)AHd.T
Q
+/z'(X2)(B -e(U) + Dz'(x.,)H)AHdz = R;.
19

Estimating the right-hand side of (7.8) with the help of the Young inequality (using

assumptions on z) by

Ry < 6 /(AH)Zdz + C(l/él)[ /]{2()(‘11 +x5 4 D)dz + /H?(]s(ulﬂ2 + 1)dz
Q Q Q

+ /(|5(U)P + Hz)dz}
Q
with 6; > 0, and then choosing 6, sufficiently small, we obtain

d
QEHHHZL,(Q) +IAH|T, @
(7.9) < el(lxalil oy + Ixalli oy + el ) + DIHNZ, 0
+ HE(U)N%;(Q))]v
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Hence, taking into account that

/Hdz:O for t € (0,7,
o

it follows by virtue of the ellipticity property of the Laplace operator that

d
—H 2 " 2
(7.10) dt NH WL ) + 1EH 2
< c(“x,“‘im(n) + |1X2“4Lm(ﬂ) + “E(ul)“%m(n) + l)“H”Z,,(Q) 4+ ”E(U)”%;(ﬂ))'
Now, we apply the Young inequality to the right-hand side of (7.5)
R, < JQ(HH“is(ﬂ) + HVH”%z(Q)) + c(l/&)(“vmﬂis(m + l)”Ut”;,,(m

where é; > 0, and then sum up (7.5) and (7.10). As a result, choosing é, sufficiently
small so that the term 52(“H”2LS(Q) + HVH”%Q(Q)) is absorbed by || H||32(qy, we arrive
at the inequality

%(”Ut”%,(m ez 0 + 1H T, 0) + 1 H G2
(7.11) < el(xallie oy + lIx2lli o oy + le(e)llT o ) + DIHN 0
e a0y + VX174 0y + DIV Z,00):
Denoting

D) = (Ul + [ AS) - £(U)s + 1HI 0
Q

and
p(t) = elllxillz oy + Ixell T + He(ulTo @) + VX1 Ty + 1),

it follows from (7.11) that
d 2
D(E) + |y < POD(),

Hence, by the Gronwall lemma,
i
D(t) < D(0)exp /p(t')dt'.
0

Since D(0) = 0 and, by assumption (2.25), fotp(t’)dt' < ¢(T) < oo, we conclude that
WU 17y + le@IEeq) + HH | ) < D) =0 for te€0,T],

that is U = 0 and H = 0 in Q7. Besides, from (7.3); it follows immediately that M = 0
in Q7. Therehy the proof is completed. (]
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