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Abstract. We give a proxinial bundle method for minimizing a convex function f over a convex
set C. It requires evaluating f and its subgradients with a fixed but possibly unknown accuracy € > 0.
Each iteration involves solving an unconstrained proximal subproblem and projecting a certain point
onto C. The method asymptotically finds points that are e-optimal. In Lagrangian relaxation of
convex programs, it allows for e-accurate solutions of Lagrangian subproblems and finds e-optimal
primal sofutions. For semidefinite programming problems, it extends the highly successful spectral
bundle method to the case of inexact eigenvalue computations.
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1. Introduction. We consider the convex constrained minimization problem

(1.1) fer=inf{f(u):ueC}
where C is a nonempty closed convex set in the Euclidean space R™ with inner product
{-,-) and norm |- |, and f: R™ — R is a convex function. We assume that for a fixed

accuracy tolerance e; > 0, for each v € C we can find an approzimate value f, and
an approzimate subgradient g, of f that produce the approzimate linearization of f:

(1.2) Ful) = fut{guy- —w) S F() with fulw) = fu 2 flu) — ;.

Thus f. € [f(u) — ¢5, f(u)] estimates f(u), while g, € 8¢, f(u); i.e., g is a member
of the e-subdifferential 8, f(u) := {g: f(-) 2 f(u) ~€; +{(g,- ~u)} of f at u.

Our assuniption is realistic in many applications. For instance, if f is a max-type
function of the form

(1.3) flw) = sup {Fy(w) iz € 2},

where each £, : R® — R is convex and Z is an infinite set, then it may be impossible to
compute f(u). However, if for some fixed (and possibly unknown) tolerance ¢; we can
find an €;-maximizer of (1.3), i.e., an element z, € Z satisfying F, (u) > f(u) — ey,
then we may set f, := F, (u) and take g, as any subgradient of F,, at u to satisfy
(1.2). An important special case arises in Lagrangian relazation [HUL93, Chap. XII],
[Lem01], where problem (1.1) with C' := R% is the Lagrangian dual of the primal
problem

(1.4) sup Yo(z) st Yi(z)20,i=1:n, €7,
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with Fy(u) := vo(z) + (u,9¥(z)) for ¢ := (¢1,...,¥n). Then, for each multiplier
u > 0, we need only find z, € Z such that f, = F, (y) > f(u) — € in (1.3) to
use gy = $(z,). For instance, if (1.4) is a semidefinite program (SDP) with each 1;
affine and Z the set of symmetric positive semidefinite matrices of order m with a
bounded trace, then f(u) is the maximum eigenvalue of a symmetric matrix M (u)
depending affinely on u {Tod01, sect. 6.3}, and z, can be found by computing an
approximate eigenvector corresponding to the maximum eigenvalue of M (u) via the
Lanczos method [HeK02, HeR00, Nay05).

The recent paper [Kiw06b} extended the proximal bundle methods of {Kiw90] and
[HUL93, sect. XV.3] to the inexact setting of (1.2) (see [Hin01, Kiw85, Kiw95, Mil01,
Sol03] for earlier related developments, and [Kiw05] for numerical tests). Such meth-
ods at each iteration find a trial point that minimizes over C' a polyhedral model of
f built from accumulated linearizations, stabilized by a quadratic proz term centered
at a point which is usually the best iterate found so far. Solving this subproblen
can require much work for large n even when the set C is polyhedral, including the
simplest case of C' = R%} used in Lagrangian relaxation.

This paper extends the projection-proximal method of {Kiw99] to the case of
inexact linearizations. For this method, we may regard (1.1) as an unconstrained
problem f, = inf fo with the essential objective

(1.5) fo = f+ic,

where ic is the indicator function of C (ic(u) = 0 if u € C, 0o otherwise). In its
simplest form, the method generates the trial point in two steps. The first prozimal
step minimizes a polyhedral model f of f, augmented with a quadratic proximal term
and a linearization of ic obtained at the previous iteration, to produce a linearization
of f. The second projection step minimizes over C this linearization augmented with
the proximal term; this amounts to projecting a certain point onto C to produce the
trial point and the next linearization of i¢. Thus the standard bundle subproblem
is replaced by two subproblems, where the first “unconstrained” subproblem is much
easier to solve, and the projection is straightforward if the set € is “simple.” Our
development is related to the alternating linearization approach of [KRR99], in which
the prox subproblem for the sum of two functions, such as (1.5), is approximated by
two subproblems in which the functions are alternately represented by linear models.
Our extension of [Kiw99} is natural and simple: the original method is run as
if the objective linearizations were exact until a test on predicted descent discovers
their inaccuracy; then the proximity weight is decreased to produce descent or confirm
that the current prox center is ez-optimal. We show that our method asymptotically
estimates the optimal value f, of (1.1) with accuracy ¢; and finds ¢;-optimal points.
In Lagrangian relaxation, under standard convexity and compactness assumptions on
problem (1.4) (see section 5), it finds €;-optimal primal solutions by combining partial
Lagrangian solutions, even when Lagrange multipliers don’t exist. These features
are essentially “inherited” from the inexact framework of {Kiw0Gb] (although some
technical developments are nontrivial). On the other hand, this paper reorganizes and
simplifies the convergence framework of [Kiw06b) and sheds light on several important
issues not discussed in there (such as the “true” impact of inexact evaluations, the
possible use of “more inexact” null steps, primal recovery for Lagrangian relaxation
with subgradient aggregation, and Lagrangian relaxation of equality constraints).
For the important special case where the functions 4; of the primal problem (1.4)
are affine, we show how to employ nonpolyhedral models of f. Each model has the
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form f() := sup,cz F2() stemming from (1.3), where Z is a closed convex subset
of Z. Then the proximal step can be implemented by solving a dual subproblem of
minimizing a convex quadratic function over Z (e.g., via interior-point methods when
Z is simple enough), and the projection on C := R} is trivial. Further, the dual
subproblem solutions estimate es-optimal primal solutions asymptotically as above.
In particular, our framework extends the highly successful methods of [FGRS06, sect.
3.2] and {ReS06, sect. 3| (see Remark 5.6).

Finally, for SDP (see below (1.4)) our general framework yields extensions of sev-
eral variants of the spectral bundle method [Hel03, Hel04, HeK02, HeR00, Nay99].
This method employs the nonpolyhedral models discussed above, with Z constructed
from accumulated eigenvectors of the dual objective matrix M(u). The original ver-
sion of [HeR0O] could handle only equality-constrained SDPs. Its extension [HeK02] to
inequality-constrained SDPs can be seen as a specialization of the method of {Kiw99);
this helps in distinguishing its “driving force” from “implementation details” (al-
though the latter are, of course, crucial for its performance in practice). Hence the
primal recovery result of [Hel04, Thm. 3.6] also follows from our more general re-
sults (see Theorems 3.7 and 5.2); in fact, we don’t need the assumption of [Hel04,
Thin. 3.6] that the dual problem has a solution (see Remark 5.7(i)). Our exten-
sion to the case of approximate eigenvectors (see below (1.4}) is relevant for both
theory and practice. Namely, while the existing version {HeK02| already employs ap-
proximate eigenvectors at so-called null steps (and this saves much work in practice
[Hel03, HeK02, Nay99, Nay05]), it requires exact eigenvalues at the remaining descent
steps. Our theoretical results show what to expect if approximate eigenvectors are
used at descent steps as well, thus opening room for more efficient implementations.

The paper is organized as follows. In section 2 we present our method for general
objective models. Its convergence is analyzed in section 3. Various modifications
and model choices are given in section 4. Applications to Lagrangian relaxation are
studied in section 5.

Our notation is fairly standard. Pg(u) := argming |- —u| is the projector onto
C.

2. The proximal-projection bundle method. Our method generates a se-
quence of trial points {u*}2, C C for evaluating the approximate values f* := fo«,
subgradients g* := g,«, and linearizations fi := f « such that

21 Fel) = f5 (g5 —uf) < F() with fr(uh) = £F 2 f(uh) - ¢,

as stipulated in (1.2). At iteration k, the current prox (or stability) center if :=

uw*® ¢ C for some k(l) < k has the value f§ := ff(l) (usually f¥ = minf:l £2); note
that, by (2.1),

(2.2) 75 € [(55) - ¢s S8,
For a model fi < f, the next point w**+! approximately solves the prox subproblem

I

. . 1 .
(2.3) min fi(-) +ic() + | —0F
2tk
where #; > 0 is a stepsize that controls the size of Ju"“ — 11"|. To this end, two
partial linearizations of (2.3) are employed. First, replacing ¢ by its past linearization
751 < 4 in (2.3), we find its solution @**! and a linearization fi < fi such that

¢
@k+! solves (2.3) with fy, ic replaced by fi, Zg"l‘ Next, replacing f; by fx in (2.3),
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we find its solution u* and a linearization 7 ’c < ic such that u*+1 solves (2. 3) with
fr» ic veplaced by fk, 1c Due to evaluation errors, we may have f < fk( @*), in
which case the predicted descent vy := f¥ — fi(u**!) may be nonpositive; then t; is
increased and u**! is recomputed to decrease fr(u 1) until v > 0. A descent step
to aFtl :— ukJrl is taken if f5Y1 < fF — wy for a fixed & € (0,1). Otherwise, a null
step i*+1 := 4% occurs; then fk and the new linearization fiy; are used to produce
a better model Frrr = max{fx, feq1} (e, fepr = max{fr, frs1})-

Specific rules of our method will be discussed after its formal statement below.

ALGORITHM 2.1.

Step O (initialization). Select u! € C, a descent parameter £ € (0,1), a stepsize
bound i, > 0, and a stepsize t1 > b Set fo = fi (cf (2.1)), 22 == (P, —ul)
with p =0, @' := b, fli= fli= fur, o' 1= gu (cf (2.1)), i} =0, k == k(0) := 1,
=0 (k(l) — 1 will denote the iteration of the [th descent step).

Step 1 (model selection). Choose fi. : R* = R closed convex and such that

(2.4) max{fi 1, i} < fx < fo.
Step 2 (proximal point finding). Set
(5w agmin | $50) = A0 4870 + gl -
k
Gk gkl
(2.6) Fu() = @y + (pf, — @Yy with phis ———
te —Pc

Step 3 (projection). Set
: 1 1 . .
(2.7)  w**! = arg min { E() = fe() +ic() + ol — k2 } = Po(if — tkp’}),

Gk — gkt

(2.8) () = (ph - —uftY) with pfi= ——,
ty — py
Sk okl
- ut —u "
(2.9) v = fF = fu*tY), p*i= % and e 1= vy — tglpt|%

Step 4 (stopping criterion). If max{|p*|,ex} =0, stop (f¥ < f.).

Step 5 (stepsize correction). If vx < —eg, set ty, 1= 10tg, it := k, and go back to
Step 2.

Step 6 (descent test). Evaluate fE*! and gh+! (cf. (2.1)). If the descent test
holds,

(2.10) FEY < R gy,
set GFFL i= ytl pEEL o pRtl Ao g k(14 1) = k + 1, and increase [ by 1
(descent step); otherwise, set G¥+! 1= a%, fEt1 .= f& and i¥ ! := ik (null step).

Step 7 (stepsize updating). If k(! ) =k +1 (ie, after a descent step), select
kg1 = tg; otherwise, either set 41 := tx or choose txi € [tmin, tk] if iy k+l = 0.

Step 8 (loop). Increase k by 1 and go to Step 1.

Several comments on the method are in order. Step 1 may choose the simplest
model fi = max{fi_1, fx}; more efficient choices are given in section 4.4. For a
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polyhedral model fi, subproblem (2.5) can be handled via simple QP solvers [Kiw86};
in contrast, the more difficult subproblem (2.3) employed in [Kiw06b] requires more
sophisticated solvers even for a polyhedral set C' [Kiw94]. The projection of (2.7) is
easily found if the set C' is “simple” (e.g., the Cartesian product of boxes, simplices,

and ellipsoids).

We now use the relations of Steps 2 and 3 to derive an optimality estimate, which
involves the aggregate linearization fé = fr + ié and the optimality measure
(2.11) Vi 1= max{[p"[, ex + (2%, 4%},

LEMMA 2.2. (1) The vectors p’jﬁ and pf defined in (2.6) and (2.8) are in fact
subgradients,

(2.12) P e 0f(@*tY) and pf € Bic(uftl),
and the linearizations fi and 75 defined in (2.6) and (2.8) provide the minorizations
(2.13) fe < feo <o, and fE=f+iE < fo

(ii) The aggregate subgradient p* defined in (2.9) and the linearization f% above

satisfy

(2.14) p*=pk+pk = -

(2.15) fg() — fk(uk+1) + (pk, L uk+1)‘

(iii) The predicted descent vy and the aggregate linearization error ex of (2.9)
satisfy

(2.16) ve = tep" P +ex and e = fl—'f — fg(ﬂ")

iv) The aggregale linearization f& is ezpressed in terms of p* and e as follows:
9 c P

(217) e (0 = 08 = FEC) < fo ()

(v) The optimality measure Vi of (2.11) satisfies Vi < max{|p®|,ex}(1 + |i*])
and
(2.18) fE<fow) +Vi(L+ [ul)  for all u.

(vi) We have v > —e & t|p*|¥Y2 > —ex & v 2 tk]p"|2/2. Moreover, vy > €,
—ex < €5, and

£ |12
(2.19) vg > ma.x{ kl;; ' ,Jek]} if vk > —ex,
90\ /2
(2.20) Vi < max { (—%) ,vk} (L+1a*)) if vk 2 —ex,

2€f 12
(2.21) Vi < (t—k-) (1 + 18 ) if Uk < —€-
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Proof (i) By (2.5)~(2.6), the optimality condition (using Vit ' = pé‘l; cf. (2.8))
ok
—w

) 3 N G+
0&ogf(utt!) = 0fu(@* ) +p& + ———
3

and the equality fi(a¥*?) = fi(2F*1) yield pk € 9fi(4¥*!) and fi < fi. By (2.7)-
(2.8),

= Ofu (") =7}

wktl gk
0 € 0¢ (") = pf + Bic(uH) + ———— = Gic(u") - 1l
K

(using Vfi = p§) and 25 (u*+1) = ic(uFF1) = 0 give p§ € Bic(wh ) and 75 < ic.
Combining both minorizations, we obtain that fi +7%% < fx +ic < fo by (2.4) and
(1.5). ~ B
(ii) Use the linearity of f& = fi +7&, (2.6), (2.8) with 7% (u**1) =0, and (2.9).

(iii) Rewrite (2.9), using the fact that f&(@*) = fu(u**1) + te|p*[?, by (ii).

(iv) We have f¥ — e, = fE(4*) by (iii), and fE is affine by (ii) and minorizes fo
by (i).
(v) Use the Cauchy-Schwarz inequality in the definition (2.11) and in (iv).

(vi) The equivalences follow from the expression of vy = t|p*|2 + & in (iii); in
particular, vy > €x. Next, by (2.16), (2.13), and (2.2) with fc(a*) = f(4*) (4% € ©),
we have

—ek = fE(0¥) ~ fi < fold®) — f§ = f(a¥) ~ i < e

Finally, to obtain the bounds {2.19)-(2.21), use the equivalences together with the
facts that vy > €, —€x < €5 and the bound on V) from assertion (v). 0

The optimality estimate (2.18) justifies the stopping criterion of Step 4: V, =0
yields f¥ < inf fo = f.; thus, the point 4* is e;-optimal; ie., f(2*) < f. + e by
(2.2). In the case of exact evaluations (ef = 0), we have vy > € > 0 by Lemma
2.2(vi), Step 5 is redundant, and Algorithm 2.1 becomes essentially that of [Kiw99,
Alg. 3.1]. When inexactness is discovered via vy < —ex, the stepsize ty is increased
to produce descent or confirm that @* is e;-optimal. Namely, when 4* is bounded in
(2.21), increasing t) drives Vj to 0, so that f¥ < f, asymptotically. Whenever t; is
increased at Step 5, the stepsize indicator i¥ # O prevents Step 7 from decreasing t;.
after null steps until the next descent step occnrs (cf. Step 6). Otherwise, decreasing
ty at Step 7 aims at collecting more local information about f at null steps.

We now show that an infinite cycle between Steps 2 and 5 means that 4F is
€s-optimal.

LEMMA 2.3. If an infinite cycle between Steps 2 and 5 occurs, then f¥ < f, and
Vk — 0.
Proof. At Step 5 during the cycle the facts that Vi, < (2e7/tx)Y/2(1 + |4¥|) by
(2.21) and tx T oo as the cycle continues give Vi — 0, so that f¥ < inf fo = f. by
(2.18). 0

3. Convergence. In view of Lemma 2.3, we may suppose that the algorithm
neither terminates nor cycles infinitely between Steps 2 and 5 (otherwise 4* is es-
optimal). At Step 6, we have u*+! € C and v > 0 (by (2.19), since max{|p*|, &} > 0
at Step 4), so that 4**! € C and FE*t! < f¥ for all k. We shall show that the
asymptotic value f&° := limy f} satisfies f$° < f.. As in [Kiw99, sect. 4], we assume
that the model subgradients p‘j‘l € 8fy(a**1) in (2.12) satisfy

(3.1) {p%} is bounded if {u*} is bounded.
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It will be seen in Remark 4.4 that typical models fi satisfy this condition automati-

cally.
We first consider the case where only finitely many descent steps occur. After

the last descent step, only null steps occur, and the sequence {tx} eventually becomes
monotone, since once Step 5 increases iy, Step 7 can’t decrease ¢ti; thus the limit
too 1= limy £x exists. We deal with the cases of to, = co in Lemma 3.1 and to, < o0

in Lemma 3.2 below. - ~
LEMMA 3.1. Suppose there ezists k& such that only null steps occur for all k > k,

and te i= limg ty = co. Let K :={k >k :txyy > tx}. Then Vi K0 at Step 5.
Proof At iteration k € K, before Step 5 increases t, for the last time, we have
Vie < (2€5 /te)V/2(1 + |@¥]) by (2.21); consequently, tx — oo gives Vi X0 a
LEMMA 3.2. Suppose there exists k such that, for all k > k, only null steps occur
and Step 5 doesn’t increase tx. Then V. — 0.
Proof. First, using partial linearizations of subproblems (2.5) and (2.7), we show
that their optimal values dJ’f‘(ﬁ"“) < ¢E (u**+1!) are nondecreasing and bounded above.

Fix k > k. By the definitions in (2.5)~(2.6), we have fi(a**!) = fi(a**+1) and
(2) @ = axgmin { 350) o= ful) 4770 + gl -~ )
from Vd_)’}(ﬁ"“) = 0. Since qbf is quadratic and qﬁ (@*+H1) = ¢}(ﬁk+1), by Taylor’s
expansion
(3.3) FEC) = G + 5] - —aF
Similarly, by the definitions in (2.7)-(2.8), we have 75 (u**+1) = ic(uf*1) =g,
(34 WA~ asgmin { 50 1= () + () + gl -~
(35) FE0) = B 4 o] -~

Next, to bound the objective values of the linearized subproblems (3.2) and (3.4) from
above, we use the minorizations fi < fc and i’é’l,i*cl < i of (2.13) with 4* € C:

(36&) ¢l}(ak+l) + 71}_,(]11’:+1 _ ak[Q — (57(11") < f(ﬂk)
(3.6b) BE(A) 4 [kt — P = BE(@Y) < £(2¥),

where the equalities stem from (3.3) and (3.5). Due to the minorization 75! < i,
the objectives of subproblems (3.2) and (2.7) satisfy q?} < ¢%. On the other hand,
since ¥+ = 4%, ty 11 < tg (cf Step 7), and fi < fry1 by (2.4), the objectives of (3.4)
and the next subproblem (2.5) satisfy ¢ < qﬁ’j“. Altogether, by (3.3) and (3.5), we
see that

(3.72) B + ghlu T R = ) < (b,
(37b) ¢lé(uk+l) + 1 ,uk+2 k+1|2 — &é(ﬂk+2) < ¢I;+l(ﬂk+2)'

In particular, the inequalities ¢% (i*+1) < ¢f(u**+1) < G (5*+2) imply that the non-
decreasing sequences {qﬁf "“ Vresi and {@&(uFt1)}, 55, which are bounded above
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by (3.6) with &% = @ for all k > &, must have a commeon limit, say ¢ < f(ﬁ’:‘).
Moreover, since the stepsizes satisfy t, <ty for all k > k, we deduce from the bounds
(3.6)~(3.7) that

(3.8) SE(EY), GE W) B, TR 0,

and the sequences {#**'} and {u**'} are bounded. Then the sequence {pk} is
bounded by (3.1), and the sequence {g*} is bounded as well, since g* € 0., f(u*)
by (2.1), whereas the mapping 9., f is locally bounded [HUL93, sect. XI.4.1].

We now show that the approzimation error & := f¥+* — fi(uk+1) vanishes. Using
the form (2.1) of fr41, the minorization fr4; < ka of (2.4), the Cauchy-Schwarz
inequality, and the optimal values of subproblems (2.5) and (2.7) with 4% = i* for
k > k, we estimate

& 1= f“f+l _ f‘k(uk+1) fl.+1(uk+2) fk(uk+l) + (gk+1,uk+l _ ﬂk+2>
< fk+l(ﬂk+2) _ fk( k+1 + |gk+1“uk+1 _ ﬂk+2l
(3.9) = ¢?+1(ﬁk+2) _ ¢(k}(uk+l) F Ap — T (TR g bt

where Ay, = [uFfl - AE]2/2tk — |akt? — A‘_‘[Z/2tk+1. To see that Ay — 0, note that

Jak+? ~E|2 = juftt - ﬂktz 4 kT gkt R ) + R B
[kt — ﬁ7'| is bounded, @2 — u**! — 0 by (3.8), and tmin < tes1 < & for k > k
by Step 7. These properties also give 7% (*2) — 0, since by (2.8) and the Cauchy—
Schwarz inequality, we have

(2] < Ipkllatt? — | with |p&l <ttt - @4/uc + [P,

where {p}} is bounded. Hence, using (3.8) and the boundedness of {g**1} in (3.9)
yields Timy & < 0. On the other hand, for & > k the null step condition fEAL >
f¥ — ruy gives

&= [£57 = 5] 4[5 = Fulw*)] > ~svn+ 0p = (1= K)o 20,

where k < 1 by Step 0; we conclude that & — 0 and vy — 0. Finally, since vy — 0,
tk > twmin (cf. Step 7), and @* = &* for k > k, we have Vi, — 0 by (2.20). D

‘We may now finish the case of infinitely many consecutive null steps.

LEMMA 3.3. Suppose that there exists k such that only null steps occur for all
k> k Let K :={k >k :ty41 >t} if ty — 00, K 1= {k : k > k} otherwise. Then

Ve £o.
Proof. Steps 5-7 ensure that the sequence {f;} is monotone for large k. We have
Ve o from either Lemma 3.1 if to, = 00, or Lemma 3.2 if ¢, < co. 0

It remains to analyze the case of infinitely many descent steps.

LEMMA 3.4. Suppose that infinitely many descent steps occur and f§° = limy, f¥ >
—oo. Let K = {k: f5t < f5}. Then limy g Vi = 0. Moreover, if {u"} is bounded,
then Vi —) 0.

Proof. We have 0 < rvp < f5— f5*1if k e K, f5*! = f% otherwise (see Step 6).
Thus Y, x sve < fi — f3° < 0o gives vy %, 0 and hence €, ti|p|? ) by (2.19)
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and [p¥| &, 0, using tx > tmn (cf. Step 7). For k € K, 45! ~ 4% = —4,p* by (2.9),
so

[ 2 ~ o = b {eelp®)? - 2005, %)}

Sum up and use the facts that 45+! = 4% if k ¢ K, Doker tk 2 2 oper tmin = 00 to
get

— e ok
T (I = 2,9} >0

(since otherwise |ii*|? —+ —oo, which is impossible). Combining this with t;[p¥]? 25 0
gives lim,c (p*, 1*) < 0. Since also ey, [p*| LN 0, we have limy ¢ ;e Vi = 0 by (2.11).

If {4i*} is bounded, using e, |p¥| %40 in Lemma 2.2(v) gives Vj Ko 0

‘We may now state and prove our principal result.

TueoreM 3.5. (i) We have f§ | f° < f., and additionally lim, Vi = 0 if
fo > —o0.

(if) fu < lim, f(2%) < Ty f(3%) < f2° +¢5.

Proof The inequalities in (ii) stem from the facts that f, = infc f, {2*} € C,
and f(4*) < f& 4 ef for all k by (2.2). By (ii), if f$° = —oo, then f. = —oo in (i).
Hence, suppose f. > —oco. Then f§° > f, —e; > —oo by (ii). We have lim;, V4 =0
by Lemma 3.3 in the case of finitely many descent steps, or by Lemma 3.4 otherwise.
Finally, using lim, Vi = 0 in the estimate (2.18) gives f£° < inf fc = f,. 0]

It is instructive to examine the assumptions of the preceding results.

Hemark 3.6. (i) Inspection of the preceding proofs reveals that Theorem 3.5
requires only convexity and finiteness of f on C, and local boundedness of the ap-
proximate subgradient mapping u — gu of f on C (see below (3.8)). In particular, it
suffices to assume that f is finite convex on a neighborhood of C.

(ii) The requirement max{fx_1, fr} < fr of (2.4) is needed only after null steps
in the proof of Lemma 3.2. After a descent step (when k = k(I)), Step 1 may take
any fi < fo.

We now show that for exact evaluations (¢; = 0), our algorithm has the usual
strong convergence properties of typical bundle methods. Instead of requiring that
infg tr > tmin > 0, as before, we give more general stepsize conditions in the theorem
below.

THEOREM 3.7. Suppose that ¢; = 0. Let U, := Argming f denote the (possibly
empty) solution set of problem (1.1). Then we have the following statements:

(i) If only | < oo descent steps occur and tx | too > 0, then &*® € U, and
Vk — 0.
(ii) Assuming that infinitely many descent steps occur, suppose that Dker tk =
oo for K := {k : f(i**') < f(@*)}. Then f(2*) | f.. Moreover, we have the
following.
(a) Let & := f(&**!) ~ fe(2*H ) for k € K. If U, # 0 and 3", g trée < 00
(e.g., supgeyc tie < 00), then i* — 4 € U,, and V; 20 infrep b > 0.
(b) If Us = 0, then |&*} — oo.

Proof. Since €; = 0, Step 5 is inactive, and Algorithm 2.1 fits the framework of
[Kiw99, Alg. 3.1]. For ! /5 oo, the conclusion follows from Lemma 3.2 and Theorem
3.5. For | = o0, combine [Kiw99, Thm. 4.4] and the proof of Lemma 3.4. a
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4. Maodifications.

4.1. Looping between subproblems. To obtain a wore accurate solution to
the prox subproblem (2.3), we may cycle between subproblems (2.5) and (2.7}, up-
dating their data as if null steps occur without changing the model f;. Specifically,
for a given subproblem accuracy threshold K € (0,1), suppose that the following step
is inserted after Step 5.

Step 5’ (subproblem accuracy test). If

(41) Felw ) > 15— ko,

set 75 '(-) == 2(-), pi~ ! := pk and go back to Step 2.
We now give two motivations for the test (4.1) written as (cf. (2.9))

& = fu@*) = fu(w* ) > (1 - R)ve.

First, when & is small relative to v, fi is correctly approximated by fi, so the loop
can be broken. Second, since fi < fi (Lemma 2.2(i)) in (2.7), by standard arguments
[Kiw99, p. 145], the distance from u**! to the prox solution of (2.3) is at most /2t¢.

The analysis of this modification is given in the following remarks.

Remark 4.1. (i) For any k, each execution of Steps 2 through 5’ is called a loop.
First, suppose that finitely many loops occur for each k. By its proof, Lemma 2.2
holds at Step 4 for the current quantities. This suffices for the proofs of Lemmas 2.3,
3.1, and 3.4, whereas the proofs of Lemma 3.3 and Theorem 3.5 will go through once
Lemma 3.2 is established. The proof of Lemma 3.2 is modified as follows. For each
k > k, (3.6) and (3.7a) hold at each loop, and (3.7b) holds for the final loop. For any
preceding loop, letting 5%} and ¢ . stand for @*+! and ¢k produced by Step 2 on
the next loop, use the minorization fi < fi of (2.13) in subproblems (3.4) and (2.7)
to get ¢k < ¢'f‘,next and, by (3.5),

(42) $E(uF) b fardd — uF TP = G (R < B nexe (i )-

Then, replacing (3.7b) by (4.2) for all noufinal loops, we deduce that the optimal
values ¢k (¥71) < ¢%(u**!) can’t decrease during the loops or when k grows; hence
(3.8) and the boundedness of {@**1} and {u**!} follow as before. For the rest of the
proof, let @%*2 in (3.9) stand for the point produced by Step 2 on the first loop at
iteration k + 1, and argue as before.

(ii) Next, suppose that infinitely many loops occur at iteration k = k, for some
EIf Step 5 drives ¢, to oo, fg < f, and Vi — 0 by the proof of Lemma 2.3. Hence
we may assume that Step 5 doesn’t increase ty at all. To show that Vi, — 0 (in
which case f[‘ < f. by (2.18)), we suppose that the subdifferential 8f is locally
bounded, and we use a subgradient mapping C > u — §, € Bfk(u)‘ Consider the
following modification of Algorithm 2.1. Starting from the first loop at iteration
k = k, omit Step 5; at Step 6 set f¥t! := fi(ub*1), g5 = g4, and Kk 1= &
at Step 7, set tpy1 = fx; finally, when Step 1 is reached, set fy := fr_,. This
modification only translates loops into additional iterations with a constant model
fe = fi; in particular, only null steps occur, becanse the descent test (2.10) can’t
hold with f¥+1 := f,(u**!) and « := & due to the model test (4.1). Further, the
“new” linearization fiy1(:) i= fFt1 4 (gF+1,. — u**1) satisfies friy < fry1. Hence,
to get Vi, — 0, we may nse the proof of Lemma 3.2, obtaining boundedness of {p'f‘},
{g"*'} from the boundedness of {@*+1}, {u**1} and the local boundedness of df.









































