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1. Introduction 

The present paper is concerned with the existence and regularity of weak solutions 
to a three-dimensional (3-D) Cahn-Hiliard system coupled with nonstationary elasticity. 
Such system arises as a model of phase separation in a bin ary deformable alloy quenched 
below a critical temperature. The problem under consideration has the following form: 

(1.1) 

(1.2) 

(1.3) 

Ut1-'v·W,,(c(u),x)=b lil nr=n x (O,T), 

u/t=O = Uo , Utlt=O = UJ in n, 
u = o in sr = s X (O, T), 

x, - v' · MVµ = O !Il nr, 

X/t=O = Xo ]Il n, 

n - M'vµ=O on 5r , 

µ=-V· rvx + 1/J'(x) + W,x(c(u),x) m nr, 
n · r'vx = 0 on Sr. 

Here n C JR 3 is a bounded domain with a smooth boundary S, occupied by a body 
in a reference configuration with constant mass density {! = 1; n is the unit outward 

norma! to S, and T > O is an arbitrary fixed time. The body is a binary a - b alloy. 
The unknowns are the fields u, X and µ, where u : nr --+ JR 3 is te displacement 

vector x : nr --+ JR is the order parameter (phase ratio) and µ : nr --+ JR is the 
chemical potentia! difference between the components, shortly referred to as the chemical 

potentia/. 

The second order tensor 
1 

c = c(u) = 2(Vu + ('luf) 

denotes the linearized strain tensor. 
In case of a binay a-b alloy the order parameter is related to the volurnetric frac­

tion of one of the two phases, characterized by different crystalline structures of the 
cornponents, e.g. X= -1 is identified with the phase a and x = l with the phase b. 

The function W( c( u), x) denotes the elastic energy defined by 

(1.4) 
1 

W(c(u),x) = 2(c(u)- e(x)) · A(c(u)- e(x)). 

The c.orresponding derivatives 

W,,(c(u),x) = A(c(u)- e(x)), 
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and 
W,x(e(u),x) = -e'(x) · A(e(u)- e(x)) 

represent respectively the stress tensor and the elastic part of the chemical potentia.I. 
The fourth oredr tensor A = (Aijkl) denotes a constant elasticiy tensor given by 

(1.5) e(u) f-ł Ae(u) = >.tre(u)I + 2µ,e(u) , 

where I= ( Ó;1) is the identity tensor, and>.,µ a.re the La.me constants with va.lues witrun 
the elasticity range (see Section 2).The form (1.5) refers to the isotropic, homogeneous 
medium with the same elastic properties of the phases. 

The second order tensor e(x) denotes the eigenstrain, i.e. the stress free strain 
corresponding to the phase ratio X, defined by 

(1.6) e(x) = (1 - z(x))ea + z(x)eb, 

with ea, Eb denoting costant eigenstrains of the phases a, b, and z : IR -+ [O, l] being 
a sufficiently smooth interpolation function ( called shape function) satisfying 

(1.7) z(x)=O for x::C::-1 and z(x)=l for X<:'.l. 

Furthermore, the function 'I/; : IR -+ IR denotes the chemical energy of the system 
at zero stress. This function depends on temperature and is convex above a critical 
temperature and a rionconvex for temperatures less than the critical one. Here we assume 
it in the simplest double-well form 

(1.8) 

with two minima at X= -l and X= l. 

The second order tensors M = (M;1) and r = (I';1) represent respectivly themo­
bili ty matrix and the interfacial energy matrix. For simplicity, we sha.11 confine ourselves 
to the isotropic, homogeous situation assuming that 

(1.9) M=Ml, r=I'l, M=I'=l, 

with positive constants M, I' normalized to unity. 
System (1.1)-(1.3) represents respectively the linear momentum ba.lance, the mass 

ba.lance and a generalized equation for the chemical potentia.I. In a thermodynamical 
t.heory due to Gurtin [Gur96] equation (1.3) is identified with a microforce ba.lance. The 
free energy density underlying system (1.1 )-(1.3) has te Landau-Ginzburg-Cahn-Hilliard 
form 

(1.10) 
1 

f(e(u),x, v'x) = W(e(u),x) + '1/;(x) + 2v'x · rv'x, 
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with the three terms on the right-hand side representing respectively the elastic, chem­
ical and interfacial energy. 

The remaining quantities in (1.1)-(1.3) have the following meaning: b : nr--+ IR 3 

represents the external body force , and u 0 , u 1 : l1 --+ IR3, xo : l1 --+ IR are the initial 
conditions respectively for the displacement, the velocity and the order parameter. 

The homogeneous boundary conditions in (1.1)-(1.3) are chosen for the sal,e of 
simplicity. The condition (1.1)3 means that the body is fixed at the boundary S, (1.2)3 

reflects the mass isolation at S, and (1.3)2 is the natural boundary condition for (1. 10). 
Before discussing the results of the paper Jet us place aur study in the present theory 

of Cahn-Hilliard systems in elastic solids. In recent years such systems have been the 
subject of many different modelling, mathematical and numerical studies, we refer e.g. 
to [MirSchim05a), [MirSchim05b), [BarPaw05], [PawZaj06a] for up to <late references. It 
is known from the materials science literature that the elastic effects have a pronounced 
effect on the microstructure evolution of the phase separation process and consequently 
on the resulting materiał properties. 

The most generał setting of the Cahn-Hilliard system coupled with elasticity, ac­
counting for additional anisotropic, heterogenous and kinetic effects, was derived by 
Gurtin [Gur96] within the frame of his thermodynamical theory of phase transitions 
based on a microforce balance. System (1.1 )-(1.3) represents a simplified version of 
Gurtin's model with neglected anisotropic, heteregeneous and kinetic effects; for mare 
details see [BarPaw05] where the full Gurtin's model was studied. 

In view of the fact that the mechanicaJ equilibrium is usuaJly attained on a much 
faster time scaJe than diffusion in most of the studies a quasi-stationary approximation of 
(1.1 )1 , obtained by neglegting the inertiaJ term Utt, was assumed. Various variants of the 
Cahn-Hilliard system with quasi-stationary elasticity were analyzed by Garcke [Gar00], 
[Gar03], [Gar05], Bonetti et al. [BCDGSS02), Carrive et al . [CMP00), [CMPR99), Mi­
ranville [Mir00), [Mir0la), [Mir0lb), [Mir03]. We underline that the results of [Gar00), 
[Gar03], [BCDGSS02) included mathematically difficult case of nonhomogeneous elas­
ticity with tensor A = A(x) depending on the order parameter. 

The Cahn-Hilliard system with nonstationary elasticity was studied in [Mir0la), 
[BarPaw05) where the existence and properites of wealr solutions were examined, and 
in [PawZaj06a] where the classicaJ solvability was proved in 1-D case. It is elear that 
with the quasi-stationary hypothesis the hyperbolic elasticity system is replaced by the 
elliptic one and thereby the mathematical analysis becomes qualitatively different . 
We point out that the study of the Cahn-Hilliard problem with nonstationary elasticity 
- apart from the mathematicaJ interest on its own - is of speciaJ importance for the 
initiaJ stages of phase separation at which the formation of the microstructure is on 
a very fast time scale. 

The goal of the present paper is to prove the existence and same regularity of 
weaJ, solutions to system (1.1 )-(1.3) . Our ultimate aim is to obtain the existence and 
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uniqueness of a strong solution to (1.1)- (1.3), i.e. sucha solution that its all derivatives 
appearing in the equations are at least in L 2 . The strong solvability theory will be 
presented separately in [PawZaj06c]. It is based on the regularity results proved in the 
present paper together with same additional time regularity. More precisely, having 
sufficiently high time regularity we shall apply the standard elliptic regularity theory to 
conclude further space regularity and consequently the classical solvability. 
As was already mentioned, the strong solvability of system (1.1)- (1.3) in 1-D case was 
proved in [PawZaj06a] . The strong solvability of the single Cahn-Hilliard equation in 
1-D and 3-D cases was analyzed firstly by Elliott and Zheng [E!Zh86) . 

We point out tha.t in three space dimensions the coupled system (1.1)-(1.3) shows 
features that malce its analysis much mare difficult than in one-dimensional setting. 
The arguments used by the authors in the single space dimension in [PawZaj06a), based 
on the space regularity of the wave equation, do not extend to the 3-D case. 

The key idea of the regularity theory presented here and in the forthcoming paper 
[PawZaj06c] consists in the analysis of time-differentiated versions of problem (1.1)-(1.3) 
which yield solutions with sufficiently high time derivatives. The analysis is performed 
with the help of the Faedo-Galerkin approximation. The procedure is stra.ightforward 
except of same difficulties of technical nature due to many nonlinear terms that appear 
in the system after differentiation with respect to time variable. 

For further analysis it is convenient to introduce a simplified formulation of problem 
(1.1)- (1.3) which results on account of particular constitutive equations (1.4)-(1.6) and 
(1.9). Let Q be the linear elasticity operator defined by 

(1.11) u....., Qu =V• A1c(u) = µ6.u + (>. + µ)V(V • u). 

Moreover , Jet us denote 

(1.12) B = -A(eb - e.), D = -B . (eb - e.), E = -B . e., 

where B = (B;j) is a. symmetric second order tensor, and D , E are two scalars. With 
such notation we have 

(1.13) 

and 

V• W,,(1c(u),x) =V • Ae:(u)- V• A(e. + z(x)(e: 6 - e.)) 

= Qu + z'(x)B"vx, 

W,x("( u), x) = z'(x)(B · 1c( u)+ Dz(x) + E), 

so that ( 1.1 )-( 1. 3) sim plifies to 

Utt - Qu = z'(x)B"vx + b in r;2T , 

(1.14) uk=o = uo , Utlt=O = U] 111 n, 
u=O on 5T 

' 
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(1.15) 

(1.16) 

Xt -6µ = O in D7, 

Xlt=o = Xo in n, 
n·v'µ=O on Sr , 

µ=-6x+if,'(x)+W,x(e:(u),x) m nr, 

n· v'x = 0 on Sr, 

with W,x(e:(u),x) given by (1.13)2. 
Let us note that the combined systems (1.15) and (1.16) yield the following Cahn­

-Hilliard problem 

x, + 6 2 X = t:,[ij,'(x) + z'(x)(B · e:(u) + Dz(x) + E)] m nr, 

Xlt=o = Xo in n, 
(1.17) 

n. v'x = o Sr on , 
n· v'!:,x = z'(x)n · v'(B · e:(u)) on Sr , 

coupled with the elasticity system (1.14). It is seen that the problems a.re coupled not 
only through the right-hand sides but also through the boundary conditions. Moreover, 

by definition (1.7) of the shape function z, the problems uncouple for x ::; -1 and x ;::: 1. 
We point out that the boundary coupling is characteristic for the multidimensional 

problem and does not appear in its one-dimensional setting. In fact, in 1-D case assuming 
that b = o on sr, it follows from (1.14)i, (1.14)3 and (1.17)3 that Uxx = o on sr, and 
consequently condition (1. 17)4 yields x xxx = O on sr. This fact was used in [PawZaj06a] 
in the analysis of the 1-D version of problem (1.1)-(1.3). 

The plan of the paper is as follows: In Section 2 we present our ma.in assumptions 

and results stated in Theorems 2.1 and 2.2. Theorem 2.1 asserts the existence of a wealc 
solution to problem (1.1 )-(1.3). Theorem 2.2 provides a time-regularity result obta.ined 
by differentiating (1.1)-(1.3) with respect to time variable. In Section 3 we introduce 
a Faedo-Galerkin approxirnation of (1.1 )-(1.3). We derive primary energy estimates with 
constants independent of approximation and time, and investigate their implications. 
In Section 4 we consider a time-differentiated version of the approximate problem and 
establish the first regularity estimates with constants uniform in approximation but 
depending on time. The subsequent sections 5 and 6 provide the existence proofs re­
spectively of Theorems 2.1 and 2.2. The proofs a.re based on the previously established 
uniform a priori estimates which, by standard arguments, allow to pass to the limit in 
the corresponding versions of the approximate problems. 

'Ne remark that having in rnind a future exarnination of the long time behaviour 

of solutions we record time-dependences of various constants. The obtained regularity 
estimates turn out to depend exponentially on time, thus in the present form are not 
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useful for the long time analysis. We point out that in long-time analysis the crucial 
point is to show property that if x(O) E [-1, 1] then x(t) E [-1, 1] for all t > O, in other 
words that the order parameter attains physically meaningful values for all times. This 
question is left open in the present paper. 

We use the following notation: 

a:= (x;);=1,2,a En C IR 3 the materiał point, 

f - of ft = dd'ft the materiał space and time derivatives, 
,i - ax;' 

e: = (cij)i,j=l ,2,3, W,,(e:,x) = (ć)~(e:,x)) , 
€11 i,j=l ,2,3 

W ( ) = aW(e:,x) -'·'( )= d,f;(x) 
,X e:, X 8x , 'I' X dx . 

For simplicity, whenever there is no danger of confusion, we omit the arguments (e:, x). 
The specification of tensor indices is omitted as well. 
Vector- and tensor-valued mappings are denoted by bold letters. 

The summation convention over repeated indices is used, as well as the notation: 
for vectors a= (a;), a= (a;) and tensors B = (B;j), iJ = (B;j), A= (Aijkl), we write 

AB= (Aijk/Bki), BA= (B;jAijkl), 

la/= (a;a;) 112, IBI= (B;jB;j) 112 . 

The symbols v' and v'· denote the gradient and the divergence operators with respect 
to the materiał point a:. For the divergence of a tensor field we use the convention of 

the contraction over the last index, e.g. v' · e:(a:) = (c;j,j(a:)). 
We use the standard Sobolev spaces notation Hm(n) = w2m(l1) form E N. 

Besides, 
HJ(l1) = {v E H 1 (l1): v = O on S}, 

Hi(n) = {v E H2(n): n· v'v = O on S}, 

where n is the outward unit normal to S = an, denote the subspaces respectively of 
H 1 (Q) and H 2(n), with the standard norms of H 1 (n) and H 2(n). 
By bold letters we denote the spaces of vector or tensor-valued functions, e.g. 

if there is no confusion we do not specify dimension n . 

Moreover, we write 

llal/L,(!1) =lila/ 1/i,(n), llallH 1 (!1) =li/a/ 1/L,(!1) + 11 lv'a/ 1/L,(!1) 
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for the corresponding norms of a vector-valued function a(x) = (a,(x)); similarly for 
tensor-valued functions. 

As common, the symbol (-, ·) denotes the scalar product in L 2 (n). For simplicity, 
we use the same symbol to denote scalar products in L2(fł) = (L2(fł)t, e.g. we write 

(a,ii) = j a(x)a.(x)dx, 

n 
(a,a) = J a;(x)ii;(x)dx, 

n 

(B,B) = j B,j(x)B,i(x)dx. 

n 

The dual of the space V is denoted by V', and (·, ·)v• ,v stands for the duali ty pairing 
between V' and V. 
By c and c(T) we denote generic positive constants different in various instances, de­
pending on the data of the problem and domain fł; whenever it is of interest their 
dependence on parameters is specified. The argument T inclicates the time horizon de­
pendence. Moreover, 6 denotes a generic, sufficiently small positive constant. 

2. Assumptions and main results 

System (1.1)-(1.3) (in simplified form (1.14)-(1.16)) is studied under the following 
assumptions: 

(Al) n C IR 3 is a bounded domain with the boundary Sof class at least C 2 ; T > O is an 
arbitrary finał time. 

(A2) The coefficients of the elasticity operator defined by (1.11) Q satisfy 

(2.1) µ>O, 3>. + 2µ > O (elasticity range). 

These two conditions assure the following: 
(i) Coercivity and boundedness of the operator A 

(2.2) f/e/ 2 :":: e · Ae :":: c/e/ 2 for all e E S 2 , 

where S2 denotes the set of symmetric second order tensors in IR3 , and 

f = min{3>. + 2µ, 2µ}, c = ma.x{3>. + 2µ, 2µ }; 

(ii) Strong ellipticity of the operator Q (property holding true under weal,er assumption 
µ > O, >.+2µ > O, see [PawZoch02], Section 7). Thanks to this property the following 
estimate holds true (see [Nec67], Lemma 3.2): 

(2.3) cj/ul/H'(fł) :":: 1/Qul/L,(n) for u E H2(fł) n H~(fł) 

with constant c depending on n. 

8 za04 



Hence, since clearly IIQullL,(n) ::; cilullH'(n), it follows that the norms IIQullL,(n) and 
llullH'(n) are equivalent on H 2 (0,) n H~(n). 

The next two assumptions concern the ingredients of the free energy (see (1.10) 

with r = I) 

(2.4) 
1 

.f(1o( u), x, v'x) = W(1o( u), x) + ,p(x) + 2 lv'xl2-

(A3) The elastic energy W(c( u), x) is given by (1.4)-(1.6). The interpolation function 
z : JR -+ [O, 1) in definition (1.6) of e(x) is at least of class C 1 with the property 
(1. 7). Hence, 

(2.5) O::; z(x) ::; 1 and lz'(x)I ::; c for all x E JR. 

(A4) The chemical energy ,p(x) has the form of the standard double-well potential (1.8), 

SO 

(2.6) ,p'(x) = x3 - x, ,p"(x) = 3x2 - 1, ,p"'(x) = 6x. 

Moreover, for simplicity it is assumed that 
(A5) The mobility tensor M and the interfacial tensor r are the identities matrices 

M=I, r=J. 
The second order symmetric tensor Band the scalars D,E are defined in (1.12). 
We note that assumptions (A3) and (A4) imply the following bounds for all c E S2 

and XE JR: 

(2.7) 

le(x)I ::; lea I+ lebl ::; c, 

le'(x)I = lz'(x)(eb - ifa)I::; c, 

1 
IW(1o, x)I::; 2ci1o - e(x)l2 ::; c(i1ol 2 + 1), 

1w .• (1o, x)I + IW,x(1o, x)I::; c(l1ol + 1), 

l'P(x)I ::; c(x4 + 1), l'P'(x)I ::; c(lxl3 + 1) 

with same positive constant c. Moreover, by the Young inequality, we have 

(2.8) 

and 
( ) 1 4 1 

1P x ~ gX - 4· 
This shows that free energy (2.4) satisfies the following structure condition 

(2.9) 

1 1 1 1 
.f(e, X, v'x) ~ 4flcl 2 + 8x4 + 21v'xl2 - f(le.1 2 + lebl2 ) - 4 

~ c 1(l1ol2 + X4 + lv'xl 2 ) - cf 
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with constants Cf> O and c1 given by 

. { 1 1} Cf= mm 4f, 8 , 

This bound plays the key role in the derivation of energy estimates for problem (1.1 )-(1.3) 

(see Section 4). 

For further purposes we recall here the following two additional properties of the 

operator Q: 

(2.10) 

(2.11) 

Q is selfadjoint on H2(D.) n Hii(D.), 1.e. 

(Qu, v) = -µ(v'u, v'v)- (.\ + µ)(v' · u, V • v) 

= (u, Qv) for u, v E H2(D.) n Hi(n), 

-Q is positive on H 2(D.) n Hii(D.), i.e. 

(-Qu, u)= µ//v'u!ll,(o) + (.\ + P)!IV · u!ll,(o) 2". O 

for u E H2(n) n HMD.). 

·we state now the ma.in results of the paper. 

Theorem 2,1. Weak solutions 

Let assumptions (Al)-(A5) hold true. Moreover, let the data satisfy 

(2.12) 
b E L2(fl.r), 

uo E Hii(rl.), u1 E L2(fl.), Xo E H 1 (fl.) . 

Then there exist functions ( u, X, µ) such that 

(2.13) 

u E L=(O, T; Hii(fl.)), Ut E L=(O, T; L2(fl.)), Utt E L2(0, T; (Hii(D.))') , 

X E L=(O, T; H 1 (fi.)) n L2(0, T; H'f.v(D.)), Xt E L2(0, T ; (H1 (fi.))') , 

µ E L2(0,T;H 1(D.)), 

u(O) = uo, u1(0) = u1, x(O) = xo, 
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which satisfy problem (1.14)-(1.16) in the following wealc sense 

T T 

j (u,,, 1'/)(H)(fl.))' ,H)(n)dt + j (Ae( u), e( 1'/ ))dt 

o o 
T 

= j(z'(x)B'vx+b,1'/)dt 'v'1'/EL2(0,T;Hi(n)), 
o 

T T 

(2-14) j(xt,O(Hl(fl.))',H'(fl.)dt + jcvµ, W)dt = O 

o o 
Vl E L2(D, T; H1(fl.)), 

T T T 

j(µ,()dt=-j(t:,x ,()dt+ j('lf,'(x)+W,x(e(u),x),()dt 

o o o 

Moreover, (u, X,µ) satisfy a priori estimates 

/lu,l/i=(o,T,L,(n)) + 1/e( u )lli=(o,T;L,(n)J + llxlli=(o,T,L,(n)J 

+ IIVxlli=<o,T;L,<n)) + ll'v µIIL,(nTJ + llxtllL,(o,T;(H 1 (n))') ś co, 

(2.15) llul/i=(O,T;H)(fl.)) + llxlli=(O,T;H1(fl.)) Ś CJ, 

llxlli,(o,T;Hi(nJ) + 1/µlli,(o,T;H'(fl.J) ś c2(T), 

llutt/lL,(o,T;(H)(n))') ś c3(T), 

with positive constants 

co= c(/luoł1H 1 (n), llu1IIL,(n), llxollH 1(n), llb//i,(o,T;L,(fl.)),cf,cf ), 

c1 = c(co,n), c2(T) = c(c1)T112, c3(T) = c(co, llb/li,(nr))T1 l2. 

The second theorem states a time-regularity result which is concluded from a time­
-differentiated version of problem (1.14)-(1.16). 

In compatibility with equations (1.14)i, (1.15)i and (1.16)1, we de:fine the following 
initial conditions corresponding respectively to Utt(D), x,(O) and µ(O): 

u2 :=Quo+ z'(xo)B'vxo + b(O), 

(2.16) XI := !::,µo, 

µo := -!::,xo + '1/,'(xo) + z'(xo)(B · e(uo) + Dz(xo) + E). 

Theorem 2.2. Time regularity 
Let (Al)-(A5) hold, the boundary Sof domain l1 be of class C4, and 
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(2.17) 
z : IR --+ [O, 1 l be of class C 2 with 

lz'(x)I + lz"(x)I ~ c for all x E IR. 

Morever, Jet the data satisfy 

b E H 1 (0,T;L2(fl)), 

(2.18) uo E H 3 (fl) n H6([1), u1 E Hb(fl), xo E H 4 (fl) n HJ;(n), 

U2 E L2(fl), XI E L2(fl), µo E HMn). 

Then there exist functions ( u, X,µ) such that 

UE Loo(O, T; H 2(fl) n Hb(fl)), Ut E Loo(O, T; Hb(fl)), 

Utt E L 00(0, T; L2(fl)), Uttt E L2(0, T; (Hb(fl))'), 

XE C 112([0, Tj; Hj;(fl)), Xt E L00(0, T; L2(fl)) n L2(0, T; Hi;(fl)), 

(2.19) Xtt E L2(0,T; (HJ;(fl))'), 

µ E Loo(O, T; Hj;(fl)), µt E L2(flr), 

u(O) = uo, ui(O) = u 1, Utt(O) = u2, 

x(O) = Xo, x,(O) = Xi, µ(O)= µo, 

which satisfy problem (1.14)-(1.16) in the sense of the identities: 

T T 

j (u,tt, TJ)cH~(n))',H~(n)dt + j (Ae:(ut), e:( TJ))dt 
o o 

T 

= J ([z'(x)B"vxl,i + bi, TJ)dt 'v'TJ E L2(0, T; Hb(fl)), 
o 

T T 

(2·20) J (Xtt, e)(H'f.,(n))',H'j,(n)dt = j(µ,, !:,,e)dt 
o o 

ve E L2(0, T; Hj;(fl)), 
T T T 

j(µi,()dt = - j(t:,,Xt,()dt + j([,t,'(x) + W, :h(u),x)l,t,()dt 
o o o 

where 

[z'(x)B"vxl,i = z"(x)x,B"vx + z'(x)B"vxt, 

(2.21) [,,b'(x) + W,x(e:(u),x)l,, = ,t,"(x)Xt + z"(x)xi(B · e:(u) + Dz(x) + E) 

+ z'(x)(B · e:(u,) + Dz'(x)x,). 
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In addition, (u,x,µ) satisfy estimates (2.15) and 

(2.22) 

llu/lL=(o,T;H2 (S1)) + llut//L=(O,T;H1 (S1)) + /luttllL=(O,T;L 2 (S1)) ~ cs(T), 

llxllc112 (I0,TJ;Hk(n)) + llx,IIL=<o,T;L,(nJJ + llxt!IL,(o,T;Hk(nll 

+ llµIIL=(o,T;Hk(n)) ~ c4(T), 

IJu,,,IIL,(O,T;(H~(fl))') + llxttllL,(D,T;(Hk(O))') + IIµ,IIL,([JT) ~ T 112 cs(T), 

with constants 

where 

c4(T) = c(T112E1(T) + llx1IIL,(n))[expa(T)) 112, 
cs(T) = T 112 c4 (T), 

E1(T) = T 112 llb,IIL,(flT) + llu2IIL,(fl) + ł1€(u1)/IL,(S1), 
a(T) = c(co)T8 exp(cT). 

3. The Faedo-Galerkin approximation 

In this section we introduce a Faedo-Galerkin approximation of problem (1.1 )-(1.3) 
(in sirnplified form (1.14)-(1.16)) and derive basie energy estirnates. These estirnates are 
used to prove the existence of weak solutions in Theorern 2.1. Throughout this section 
we assurne that the dornain n has the boundary S at least of class C 2 • 

3.1. Approximation 

Let us consider the following two eigenvalue problerns 

(3.1) 
- Qvj = AjVj in n, 

V j = 0 011 s, J E N, 

where Q is the elliptic operator defined by (1.11), and 

(3 .2) 
- /':,.wj = AjWj in n, 
n· 'ilwi = O on S, j E N. 

We recall that, by virtue of the elliptic regularity theory, if the dornain n has the 
boundary of class C 1, IE N, then the solutions of (3.1) and (3.2) satisfy 
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We tah the fa.miły { v j LEN as a basis of the space Hi(n) and the fa.miły {Wj} jEN 
as a basis of the spa.ce 

H1(fł) = {w E H 2 (fl): n• 'Vw = O on S}. 

Such choice is possibłe thanks to the following properties of (3.1) and (3.2). On account 
of (2.10) we have 

(3.3) 

.\;(v;,vj) = (-Qv;,vj) 

= µ('Vv;, 'Vvj) +(>.+µ)('V· v;, 'V· vj) 

=(v;,-Qvj)=.\j(v;,vj) for i,jEN. 

Identities (3.3) show, by the Poincare-Friedrichs inequality, that the family { v j} jEN is 
orthogonal in H 1 (fl) and L 2 (fl) scalar products. 

We shall assume that v j are normalized so that ( v;, v;) = 1. Thereby the basis { v j} jEN 
becomes orthonormaJ in L 2 (fl) and orthogonaJ in H 1 (fl) scaJar products. 

(3.4) 

and 

Similarly, the fa.miły {wj}jEN satisfies 

.\;(w;, Wj)= (-ti.w;, Wj)= ('vw;, 'vwj) 

= (w;,-ti.wj) = Aj(w;, Wj), 

.\;.\j(w;,wj) = (ti.w;,ti.wj) for i,j EN. 

Hence, by the Poincare inequaJity, it follows that the fa.miły {Wj} jEN is orthogonaJ in 

H 2 (fl), H 1 (Q) and L2 (fl) scaJar products. 

We normaJize Wj so that ( w;, w;) = 1. Then the basis {Wj} jEN becomes orthonormaJ in 
L 2(l1) and orthogonal in H 1(l1) and H 2 (fl) scaJar products. 

Furthermore, we assume without loss of generaJity that w1 = 1. 
For m E N we denote by 

Vom = span{v1, ... , Vm} and Vm = span{w1, ... , wm} 

the finite dimensional subspaces, respectively of Hi(n) and H'j,{fl), spanned by { v 1 , ••• 

.. ,,vm} and {w1, .. ,,wm}, 
Now, Jet us introduce the following approximation of problem (1.14)-(1.16): For 

any m E N find a triple of functions ( um, xm, µm) of the form 

(3.5) i=l 
m 

µm(:v,t) = Ld;"(t)w;(:v), 
i=l 

14 

i=l 

1a04 



: 

with e;"(t), c;"(t), d;"(t) being determined so that 

(u;';,v1) + (Ae(um),e(v1)) = (z'(xm)BVxm + b,v1), 

(x;",w1) + (Vµm, Vw1) = O, 
(3.6) 

(µm,wj) = -(t>xm,wj) + (IP'(xm) + W,x(e(um),xm),wi), j = 1, ... ,m, 

um(O) = ur, u;"(O) = uj_", Xm(O) = xr, 

where u 0 , u;" E Vom and Xo E Vm are the projections respectively of uo, u1 and Xo 
satisfying for m -; oo 

(3. 7) 

u;;'-; Uo strongly in HMn), 
uj_" _, u 1 strongly in L2(f!), 

x;:1 -+ Xo strongly in H 1(0). 

Clearly, (3.6) can be expressed as a system of first order ordinary differential equations 
for the coefficients ( e;", ... , e;;: ), ( ej".1 , ••• , e;;:, 1 ), ( c;", ... , c;;:), with the right-hand si des 
being by assumptions continuous functions of their arguments. Thus (3.6) has a solution 
!ocal in time on an interval [O, Tml, Tm >O.The uniform in ma priori estimates proved 
in lemmas below show that Tm = T, i.e. (3.6) has a solution on the interval [O, TJ. 

3.2. Energy estimates 

Lemma 3.1. Let (Al)-(A5) hold and the data satisfy 

(3.8) uo E HJ(f!), u1 E L2(f!), Xo E H 1(f!), b E L1(0, T; L2(f!)) . 

Then a solution (um,Xm,µm) to problem (3.6) satisfies the following uniform estimate 

(3.9) 
llu;"lli=(O,T;L,(fl)) + lle(u m)IIL=(O,T;L,(fl)) + llxm IIL=(O,T;L,(fl)) 

+ IIVxmlli=(O,T;L,(fl)) + IIVµmllL,(flT)::; co, 

with the constant 

Proof. We derive energy identity for system (3.6). Firstly, !et us note that, according 
to (1.13), 

z'(x)BVx =-V· A(ea + z(x)(eb - ea)), 

thus an equivalent form of (3 .6)1 is 

(3 .10) 
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Testing (3.10) by u;"(t) (i.e. multiplying by e'J'(i) and summing over j from j = 1 to 
j = m) gives 

(3.11) 

Further, testing (3.6)2 by µm yields 

(3.12) 

Finally, testing (3.6) 3 by - x;"(t) and integrating by parts, leads to 

Summing up (3.11), (3.12) and (3.13) we arrive at the following energy identity 

}ft j lu'('l 2 dx + ft j [ W(e(um), xm) + 1/>(xm) + }l'vxml] dx 

(3.14) 
n n 

+ j l'vµml2dx = j b · u'('dx. 
n n 

Integration of (3.14) over (O, t) gives 

}jlu'('l2dx+ j f(e(um),Xm,'vxm)dx+ j l'vµml 2dxdt' 

(3.15) 
n n n• 

= }jlu'{'l2 dx+ j f(e(u;;'),x;;','vx;;')dx+ j b-u';dxdt', 
n n n• 

with f(e, X, 'vx) defined by (2.4). Now, bearing in mind that f(e, X, 'vx) satisfies the 
structure condition (2.9), we can estimate the left-hand side of (3.15) from helow by 

Further, in view of growth conditions (2. 7) and the convergences (3. 7), we have 

j f(e(u;;'),x;;', 'vx;;')dx :S c(lle(uo)IIŁ,tn) + llxollL(n) + ll'v'xolli,,(n) + 1). 
n 

Thus the sum of the first two terms on the right-hand side of (3.15) is bounded from 

ahove by a constant depending on llxollH'(fl), lluollH'(fl) and lluJ!IL,(fl)· 
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.. 

Finally, estimating the third term on the right-hand side of (3.15) by 

I j b · u;:'dxdt'/ Ś llu;:'IIL=(o,t;L,(n)llblli1 (0,t;L,(O)) 
n• 

Ś illu;:'IIL(o,t;L,(O)J + llbllL(o,t;L,(O))• 

we arrive a.t the following uniform in m estimate 

(3.16) 
illu:"lli,(n) + c1(1łe(um)lli,,(n) + llx,;.111.(n) + ll'vxmlli,,(n)) 

+ ll'vµmlli,,(O') ś c for t E (O,T], 

with constant c depending only on lluollH'(O), 1łu1IIL,(O), llxollH'(O), llbllL,(O,t;L,(O)) 
and c1. This proves the assertion. O 

3.3. Further estimates 

Clearly, (3.9) implies that 

(3.17) 

with constant 

Hence, by the Sobolev imbedding, 

(3.18) 

C1 = c(co, n). 

Further, since um = O on ST, it follows from (3.9) by Korn's inequality that 

(3.19) 

We note that setting Wj= 1 in (3.6)2 (admissible by assumption) yields 

(3.20) :!_ J xmdx = O, 
dt 

n 
which shows that the mea.n value of xm is preserved 

j xm(t)dx = j x;;'dx for t E [O, TJ. 
n n 

This property will be used in later analysis. We remark also that thanks to (3.20) 
structure condition (2.9) on f( e, X, 'vx) could be in fact repalced by a weaker one 

f(e,x, 'vx) ~ c1(lel 2 + l'vxl 2 ) - c1. 
In such a case, by the Poincare inequality, estimate ll'vxllL=(o ,T;L,(O)) '.','. c0 would still 
guarantee bounds (3.17) and (3.18) with a constant c = c(c0, n, fn xodx). 

On the basis of (3.9) and (3.18) we derive an additional estimate on µm. 
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Lemma 3.2. Let assumptions of Lemma 3.1 be satisfied. Then, fort E (O, Tl, 

(3.21) 

with constant • 

Proof. Setting Wj= l n (3.6) 3 (admissible by assumption) it follows that 

j µmdx = j[,f/(xm) + W,x(e(um),Xm))dx. 

n n 

Hence, using growth conditions (2. 7) and estima.tes (3.9), (3.18) we obtain 

(3.22) I j µmdx/ ::O: c j(lxl 3 + je:(u)I + l)dx ::0: c(c1) for a.a. t E (O, TJ . 

n n 

Consequently, by the Poincare inequality, estima.tes (3.9) and (3.22) imply that 

This shows (3.21) . o 
By virtue of Lemma 3.2 we can deduce further estirnates on xm. 

Lemma 3.3. Let assumptions of Lemma 3.1 hold. Then, for t E (O, T], 

(3.23) 

Proof. In view of (3.2), identity (3.6)3 irnplies that 

Testing the above equality by xm(t) and integra.ting with respect to t yields 

t t 

j j(6.xm)2dxdt 1 = - j j µmó.xmdxdt' 

o n o n 
t 

+ j j[,f/(xm) + W,x(e(um),xm))ó.xmdxdt'. e 
o n 
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Now, using the Cauchy-Schwartz inequality, and then growth conditions (2. 7) and esti­
mates (3.9), (3.18), (3.21) , we obta.in 

(3.24) 
ll6xmlli,(n•):::; llµmllL,(fl') + 11,t,'(xm)IIL,(fl') + IIW,x(e(um),xm)IIL,(fł') 
:::; llµmllL,(fl') + ct 112 (łlx11L(o,t;L,(fl)) + lle(um)IIL=(O,t;L,(fl)) + 1):::; c2(t). 

On account of the ellipticity property of the Laplace operator (see e.g. [LU73], Chap. 
III. 8) we have 

(3.25) llxmllH'(fl):::; c(116xmllL,(fl) + I J xmdx/). 
n 

Hence, by (3.24) , (3.20) and the convergences (3.7)3 , we conclude (3.23). o 
Using standard duality arguments we shall estimate also time derivatives u'f: and 

x;". 

Lemma 3.4. Let assumptions of Lemma 3.1 hold, and b E L 2 (0T). Then, fort E (O, Tj, 

(3.26) 

where L2(0, t; (H 1 (O))') 

Ilu;'.',, lli,(o,t;(H~(n))') :::; c3(t), 

llx::'lli,<o,,;(H'<nJ)') ::::= co, 

Proof. For TJ E L2 (0, T; HJ(O)), we test (3.6)1 by T/m = pmT/, where pm denotes the 
projection defined by 

m 

(3.27) pmT/ = L(TJ,v;)v;. 
i=l 

Then, using the Cauchy-Schwartz inequality, and recalling estimate (3.9), we obtain 

t t 

I j (u;'.'1,,TJ)dt'/ = I j( u;'.'1,,PmTJ)dt'/ 
o o 

t 

= I j[-(Ae(um),e(PmTJ)) + (z'(xm)B'v'xm + b, PmTJ)]dt'/ 
o 

:::; c[lle(um)IIL,(fl 1)ll'v' pmT/IIL,(fl') + (ll'v'xmllL,(fl') + llbllL,(n 1))IIPmTJIIL,(fl 1 )) 

:::; c(cot 112 + llbllL,(fl'))IIPmTJlli,(o,t;H'(n)) 

:::; c3(t)ł1TJIIL,(O,t;H1 (fi)) for all T/ E L2(0 , t; Hl(O)). 

19 za0-4 



This shows (3.26) 1 . Simila.rly, for ( E L2(0, T; H 1 (!1)), we test (3.6)2 by 

(3.28) em= pme = I:((,w;)w;, 
i=l 

to obtain 
t t t 

I j(x;;' , e)dt'I = I j(x;;',Pme)dt'I = IJ(vµm, 'v'Pm()dt'I 
o o o 

:S 1i'v'µmlli,(n 1 )IIVPm(IIL,(n1 ) :S coll(lli,(o ,t;H 1 (n)) , 

where in the last inequality we used (3.9). This implies (3.26)2 and completes the proof. 
D 

4. Time regularity estimates 

In this section we derive uniform in m time-regula.rity estimates for solutions of 
approximate system (3.6). These estimates result from time-differentiated version of 
(3.6) and lead to the existence result of Theorem 2.2. Throughout this section we assume 
that the domain !1 has the bounda.ry S of class C4 • 

Let us differentiate system (3.6)1-(3.6)3 with respect to t and rewrite it in the 

following form: 

(u;';,, vj) + (A(e(u;"), e(v;)) = ([z'(xm)BVxmJ., + b,, v;), 

( 4.1) 
(x;';,w;)-(µ;",f1w;) = O, 

(µ;",w;)= -(f1x;",w;) + ([1/,'(xm) + W,x(e(um),xm)J,, ,w;), 

j = l, ... ,m, 

where the e:>qilicit expressions for [z'(x)BVxJ,, and [1/,'(x) + W,x(e(u),x)l,, are given 
in (2.21). The above system is considered with the initial conditions 

um(O) = u;{', u;"(O) = uf', xm(O) = Xo, 

u;';(O) = u2, x;"(O) = xf", µm(O) = µ;{', 
( 4.2) 

where u 2 E V om and xl", µ;{' E Vm a.re the projections respectively of the data u2, Xi 

and µ 0 , defined in (2.16) . 
'0/e assume that the following convergences in the strong sense are satisfied: 

u;{'-, u 0 in H 3(!1) n H~(!1), uf'-, u 1 in H~(!1), 

( 4.3) x;;' -ł Xo in H4(!1) n H'f.,(!1), U2 -ł U2 in L2(!1), 

xl" _, x1 in L2(!1), µ;{' _, µo in H'f.,(!1) . 
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4.1. The basie estimate 

Lemma 4.1. Let (Al)-(A5) hold, the boundary of the domain fl be of class C4, the 

function z : IR_, [O, 1] be of class C2 with property (2.17) and the data satisfy (2.18). 
Then a solution ( um, xm, µm) of approximate problem (3.6) satisfies system (4.1) with 
initial conditions ( 4.2). Jvforeover, ( um, xm, µm) satisfy the estimates in Lemmas 3.1-3.4, 

and 

( 4.4) 
Ilu;:\, li L=(D,t;L,(!'l)) + llur,' IIL=(O,t;H' (!'l)) ::::; cs(t), 

llx::'IIL=(O,t;L,(!'l)) + llx::'IIL,(O,t;H;.,(!'l))::::; c4(t) 

fort E (O,T], with constants c4(t),cs(t) (independent ofm) given by 

where 

c4(t) = c(t 112 E1 (t) + //x1 //i , (n))[exp a(t)] 112, 
cs(t) = t 112 c4(t), 

E1(t) = t 1I2Jlbi,JIL,(!'l') + 1łu2IIL,(!'l) + llio(u!)IIL,(!'l), 

a(t) = c(c0 )t8 exp(ct). 

Proof. In the first step we estirnate u;" in terms of the L 2 (0, t; H 2(fl)) - norm of x;". 
Testing (4.1)! by uri(t), we obtain 

1~ j(/uri/ 2 + io(u;") · Aio(u;"))dx = j([z'(xm)Bv'xml,t +bi)· u;';dx. 
!'l !'l 

Hence, by the Cauchy-Schwartz inequality, 

1 d [(! )1/2]2 2 dt (/u;'; /2 + io( u;")· Aio(u;" ))dx 

!'l 

( ) 
1/2( ) 1/2 

::::; c j((x;")2/Vxm/ 2 + /Vx;"/ 2 + lbi/ 2 )dx j(/uri/2 + io(u;") · Aio(u;"))dx , 
!'l !'l 

SO 
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Integrating ( 4.5) with respect to t and using the coercivity of A (see (2.2)), it fellows 
that 
( 4.6) 

j(lu';;l 2 + ie(u;")l2)dx ś C [ j ( J ((x';:) 2 l'vxm1 2 + l'vx';:1 2 + lb,, l2 )dx y12 
dtf 

n o n 

+ j(lu';;(O)j2 + je(u;"(O))l2)dx 
n 

ś et j((x';:)2l'vxm12 + l'vx';:l 2 )dxdt' + c(E{"(t))2 , 

n• 

where 

E{"(t) := t112 llb,!IL,(Il') + //u;"//L,(Il) + lle:-(u;")!IL,(Il)· 
Clearly, due to convergences ( 4.3), E;:"(t) ś cE1 (t). 
We shall estimate the first two terms on the right-hand side of (4.6). On account of 
Lemma 3.1, we obta.in 

(4.7) 

t 

j(x';:)2/'vxm/2 dxdt' Ś s~p J /'vxml 2 dx J llx'::IIL(rl)dt' 
n• n o 

t 

ś co j llx'::IIL(n)dt' = fi. 
o 

Now, applying the interpolation inequality (see e.q. [BIN96], Chap. III, Sec. 10) 

llx:" IIL=(Il) Ś €l-x, ll'v2x:"IIL,(Il) + C€-x, llx:" l!L,(Il) 

with x 1 = 3/4, € > O, and setting ó1 = e: 114, yields 

t t 

(4.8) Ii ś ó1 j 1ł'v2 x';:lli,(n)dt' + c(c1)ó13 j llx'::111,(n)dt'. 
o o 

Similarly, 

t t 

(4.9) j !'vx';:! 2dxdt' ś ó2 j 1ł'v 2 x';:lli,(n)dt' + có21 j llx';:111,(n)dt', 
n• o o 

where the interpolation inequality 

ll'vx:"IIL,(Il) Ś €l-x, ll'v2x;" IIL,(Il) + C€-x, llx:"IIL,(Il) 

with x 2 = 1/2, € > O and ó2 = €112, was applied. 
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Using ( 4. 7)-( 4.9) in ( 4.6) yields 

t 

j ( /u;';'/ 2 + /e-(u;")l2)dx '.S ct(81 + 82) j l!'v2x::'111,(n)dt' 
n o 

t 

+ c(co)t(8;- 3 + 821) j llx::'IIŁ,(n)dt' + c(E1(t))2. 
o 

Hence, a.ssuming 81 = 82 and choosing 8 = ct81 we arrive at the estimate 

!lu;';' 111,(n) + !le-( u;" )111,(n) 
t t 

(4.10) :::; 8 j ll'v2x::'111,(n)dt' + c(l/8,co,t) j llx::'111,(n)dt' 
o o 

+ c(E1 (t))2 for t E (O, Tl, 

where 
c(l/8,co,t) = c(co)8- 3t4, 8 > O (arbitrary). 

In the second step we consider system (4.1)2, (4.l)a which on account of (3.2) can 
be rewritten in the form of the following equation: 

(4.11) (x;';',wj) = -(6.x;" ,6.wj) + ([,j,'(xm) + W,x(e-(um),Xm)l,t,6Wj)-

Testing (4.11) by x;"(t) gives 

ift j(x;") 2 dx + j(6.x;") 2 dx = j[,t,'(xm) + W,x(e-(um),xm)],16.x;"dx. 
n n n 

Hence, by the Young inequality, it follows that 

ft j(x;")2dx + j(6.x;")2dx:::; jW(xm) + W,x(e-(um),xm)l~tdx 

(4.12) 
n n n 

'.SC jr(xm)4(x':')2 + (x';')21e-(um)l2 + (x;")2 + /e-(u;")l 2 ]dx, 
n 

where in the la.st inequality we used identity (2.21)2 and the a.ssumptions on ,j, and z. 
Let us examine the first two terms on the right-hand side of ( 4.12). Using the Holder 

inequality and then recalling estimate (3.18), we obtain 

(4.13) 
j(xm)4 (x;")2d:r;:::; S~Pllxmlli.(n)IIX:"lli.(n) 
n 

:::; c1 llx:"lli.(n) '.S 831i'v2x:"lll,(n) + c(l/83)llx:"IIL(nJ, 83 > O, 

where in the la.st line an interpolation inequality was used. 
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Similarly, an applica.tion of the Holder inequality, estimate (3.9) and an interpolation 
inequality to the second term on the right-hand side of (4 .12) yields 

j(x';')2/e:(um)/2 dx :S: s~p 1/e:(um)I/Ł,(n)I/X':'I/L(n) 
n ( 4.14) 

:S: col/x';'IIL(n) 

:S: ó4/l'v2 x;"l/i,(n) + c(l/ó4)l/x';'IIL (n) , Ó4 > O. 

Now, using the inequality 

(4.15) 

which holds true because fn x'('dx = O (see (3.20)), applying (4.13) and (4 .14) in (4.12), 
and choosing ó3 , ó4 sufficiently small, we conclude that 

(4.16) ~llx':'IIL(n) + 1/x';'lli~(n) :S: c(l/x':'IIL(n) + l/e:(u';'/11,(nJl• 

At this point we a.pply estimate ( 4.10) to the second term on the right-hand side of 
( 4.16). This leads to 

~llx'Z'IIL<n) + llx'Z'lli~<n) 
t t 

(4.i7) :S: cl/x:"IIŁ.(n) + ó j l/'v2x;:'l/i,(n)dt' + c(co)ó-3 t4 j l/x;:'/11,(n)dt' 
o o 

+c(E1(t)) 2 for tE(O,T]. 

Multiplying ( 4.17) by e-ct, integrating with respect to t, and using that on account of 

(4.3), /lxil/L,(fl) :S: cl/x11/L,(fl), we arrive at 

t t t 1 

e-ct 1/x;"(t)I/L(n) + j e-ct' 1/x;:'(t')lli~(n)dt' :S: ó j e- ct' j l/'v 2 x~(t")/IŁ,(n)dt" dt' 
o o o 

t t' t 

+ c(co)ó-3 f (t')4e-ct' j l/x~(t")/11,(n)dt"dt' + c j e-ct'(E1(t'))2dt' + l/x1/IŁ.(n) · 
o o o 

Hence, 

t t 

l/x;"(t)/11,(n) + j 1/x;:'(t')lli~(n)dt' :S: ótect j 1/x;:'(t')lli~(n)dt' 

( 4.18) 
o o 

t 

+ c(co)ó-3 t 5 ect j 1/x;:'(t')I/L(n)dt' + ctec'(E1(t))2 +ectl/X11/L(n)· 
o 
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Choosing E, = C 1 e-ct /2, we obtain 

t 

llx;"(t)IIL(n) + j llx;'.'(t')llh<n)dt' 
o 

t 

~ c(co)t8 ect j llx;'.'(t')IIL(n)dt' + ctect(E1(t))2 + ectllx1 IIL(n)· 
o 

Now, the application of the Gronwall lemma yields 

t 

( 4.19) 

llx;"(t)IIL<n) + j llx;'.'(t')llt;,<nidt' 
o 

~ c(t(E1(t))2 + llx1 IIL,(n))exp(ct + c(co)t 8 exp(ct)) 

~ c;(t) for a.a. t E (O, TJ. 

This proves estimate (4.4)2. Applying (4.19) in (4.10) and setting there E, =twe con­
clude, by virtue of Korn 's inequality, estimate ( 4.4 )i . Thereby the proof is completed. 
o 

4.2. Further estimates 

Firstly, we note that in view of the inequality 

t 1/2 
lxxx(t)- Xxx(t')I ~ lt-t'l112 (J x;,,xxdt") , 

,, 

estimate ( 4.4)2 implies that xm E C112([0, TJ; HJ.,(!1)), and 

( 4.20) 

Next, we prove the following 

Lemma 4.2. Let assumptions of Lemma 4.1 hold. Then, fort E (O, Tl, 

( 4.21) 

Proof. Using (3.1) we rewrite (3.6)1 in the form 
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Testing this equality by um(t) gives 

Hence, using the Cauchy-Schwartz inequality and then recalling estimates (3.9) and 
( 4.4)1 , we obta.in 

11Qum/lL=(O,t;L,(S1)) ś c(llu;?,,IIL=(O,t;L,(S1)) + ll'vxmlli=(O,t;L,(S1)) 

+ llbllL=(o,t;L, (fł))) ś c(c5(t) +co+ 1) ś c5(t). 

This, by the ellipticity property of Q (see (2.3)), implies ( 4.21 ). 
The next result provides an a.dditional regularity estimate for µm . 

Len.una 4.3. Under assumptions of Lemma 4.1, 

( 4.22) 
Jjµm IIL=(O,t;Ht(n)) Ś c4(t), 

llµ;?lłi,(n') ś t 112c5(t), t E (O,T]. 

Proof. Using (3.2) we rewrite identity (3.6)2 in the form 

Testing thls equality by µm(t) and using the Cauchy-Schwartz inequality yields 

lll>µmllL,(fł) ś llx:"IIL,(fl) for a.a. t E (O, TJ. 

Consequently, due to estimate ( 4.4 )2 , 

( 4.23) 

o 

Thus, recalling bound (3.22) on the mean value of µm, estimate ( 4.22)1 follows from 
(4.23) on account of the ellipticity property of the Laplace operator. 

To show (4.22)2 we test identity (4.1)3 by µ;"(t). Then, with the help of the 
Cauchy-Schwartz inequality, it follows that 

The second term on the right-hand side of ( 4.24) can be estimated with the help of 
bounds (4.12)-(4.14) (with Ó3 = ó4 = 1) in the proof of Lemma 4.1. Consequently, we 
obta.in 

llµ;"IIL,(n•) ś c(lll>x;"/IL,(n') + IIV2x:"IIL,(S1') + llx:"IIL,(n•J 
+ lle(u;")IIL,(fl')) Ś c(c4(t) + t 112 c5(t)) ś t 112 c5(t), 

where in the last line Lemma 4.1 was used. This completes the proof. 
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Finally, we estimate time derivatives u;';, and x!.'i. 

Lemma 4.4. Under assumptions of Lemma 4.1, 

(4.25) 
I/u;?,,,, 1/i,(o,t;(Hl(n))') :=::: t 112 cs(t), 

llx;?,, lli,(o,t;(HJ.,(n))') ::; t112cs(t), t E (O, TJ. 

Proof. We proceed similarly as in Lemma 3.4. For TJ E L2(0, T; H6(f1)) we test (4.1) 1 

by TJm = pmTJ, where the projectin pm is defined by (3.27). Then 

t t 

/ j ( u;?1,,,, TJ)dt' I = I/ {-(Ac( u;?), c(PmTJ)) + ([z'(xm )Bv'xm + b],,,, pm71)}dt 1 I 
o o 

:=; c[llc( u;? )IIL,(n•) llv" pmTJIIL,(n•) 

+ (llx;?v"xm IIL,({l') + llv"x;? IIL,(!1') + 1/b,, IIL,(!1') )IIPmTJIIL,(n•)l• 

Hence, recalling Lemmas 3.1, 4.1, and the estimate 

it follows that 

t 

I j(u;?,,,,,TJ)dt'/ :=; c(t112cs(t) + C4(t) + llb,,IIL,(!1'))IIPmTJlli,(o,t;H'(!1)) 
o 

:=; t112 cs(t)IITJIIL,(o,t;H'(!1)) for all TJ E L2(0, t; H6(f1)). 

This shows ( 4.25)1. Similarly, for any ~ E L2(0, T; H'j.,(f!)), testing (4.1)2 by (m = pm~, 
where the projection pm is defined by (3.28), we obtain 

t t 

I j(x;?,,,Odt'/ = I j(µ;?,/::,.Pm0dt'/::::: llµ:?lli,(!1')11/::,.Pm~lli,(!1') 
o o 

:=::: t112cs(t)ll~lli,(o,,;HJ.,(!1)), 

where in the last inequality Lemma 4.3 was applied. This shows (4.25) 2 . o 
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5. Proof of Theorem 2.1 

From Lemmas 3.2-3.4 it follows that there exists a triple (u,x,µ) with 

UE Loo(O, T; HW"!)), u, E Loo(O, T; L2(l1)), Utt E L2(0, T; (Hi(n))'), 

(5.1) XE L00 (0, T; H 1 (fi)) n L2(0, T; H},(lt)), Xt E L2(0, T; (H 1 (fi))'), 

µ E L2(0, T;H 1(l1)), 

and a subsequence of solutions (um,Xm,µm) to problem (3.6) (which we still denote by 

the same indices) such that as m---+ oo: 

(5.2) 

um ---tu weakly-* in Loo(O,T;H~(Q)), 

u;"---+u, weakly-* in L 00(0,T;L2(l1)), 

u;'; ---t Utt weakly in L2(0, T; (Hi(n))'), 

Xm ---+ X weakly - * in L00(0, T; H 1 (fi)) and 

weakly in L2(0, T; H'j,(lt)), 

x;" ---+ x, weakly in L2(0, T; (H 1 (fi))'), 

µm ---t µ weakly in L2(0, T; H 1 (fi)). 

Using the compactness results (see e.g. Lions [Lions69), Simon [Sim87], Sec. 8) it follows 
that for a subsequence (still denoted by the same indices) 

um---+ u strongly in L2 (0, T; Lq(lt)) n C([O, T); Lq(lt)), q < 6, 

and a.e. in nT, 
(5.3) u;" ---+ u, strongly in C([O, TJ; (Hi(l1))'), 

Hence, 

Xm ---+ X strongly in L2(0, T; H 1 (fi)) n C([O, TJ; L2(l1)) 

and a..e. in nT. 

um(O) =u;;'---+ u(O) strongly in Lq(lt), q < 6, 

u;"(O) = u;" ---+ u,(O) strongly in (Hi(n))', 
xm(O) = x;;' -> x(O) strongly in L2(l1), 

what together with convergences (3.7) implies that 

(5.4) u(O) = uo, u,(O) = u1, x(O) = Xo-

The relations (5.1) and (5.4) imply assertion (2.13) of the theorem. 
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Now, !et us introduce the following weak formulation of (3.6): 

T T 

/ (u'(;, TI\H~(f'I))' ,H~(n)dt + J ( Ac:( um ), c:( T/ ))dt 
o o 

T 

= j(z'(xm)B'vxm + b, r,)dt v'ri E L2(0, T;Vom), 
o 

T T 

(5.5) j(x'/' , 0(H'(f'l))',H'(f'l)dt + j('vµm , 'v0dt = O 

o o 

v'( E L2(0, T;Vm ), 
T T T 

j(µm,()dt = - j(!::.xm,()dt + j(,t,'(xm) + W,x(c:(um),xm),()dt 
o o o 

To pass to the limit m ---+ oo in identities (5.5) we follow the standard procedure (see 
e.g. Lions-Magenes [LionsMag72]). Namely, we fix m = m.0 E N in the spaces of test 
functions T/, (, ( and take subsequences (5.2) with m 2". mo, Clearly, by virtue of the 
weak convergences (5.2), the linear terms in (5.5) converge to the corresponding limits. 
Thus, it remains to exarnine the convergence of the nonlinear terms z' (xm )B'v xm and 
,t,'(xm) + W,x(c:(um),xm). 

Recalling the growth conditions (2. 7), and using the energy bounds (3.9), (3.18), it 
follows that 

llz'(xm)B'vxmllL=(O,T;L,(f'I)) ~ cll'vxmllL= (O,T;L,(f'I)) ~ cco, 

(5.6) 11,t,'(xm)IIL=(O,T;L,(f'I)) ~ c(llxmllL(o,T;L,(f'I) + 1) ~ c(c1), 

IIW,x(c:(um) ,xm)IIL=(O,T;L,(f'I)) ~ c(llc:(um)IIL=(O,T;L,(!1)) + 1) ~ c(co) , 

Thanks to these uniform in m estimates and the pointwise convergences (5.3) we can a.p­
ply the standard nonlinear convergence lemma (see Lions [Lions69], Chapter 1, Lemma 
1.3) to conclude that 
(5. 7) 
z'(xm)B'vxm---+ z(x)B'vx wea.kly-• m Loo(0,T;L2(fl)), 

,t,'(xm)=(xm)3 -xm---+x3 -x=if;(x) wealdy-• in L00 (0,T;L2(fl)), 

W,x(c:(um), xm) = z'(xm)(B · c:(um) + Dz(xm) + E)---+ 

z'(x)(B · c:( u)+ Dz(x) + E) = W,x(c:( u), x) wealdy -• m L 00 (0, T; L2(fl)). 

Consequently, passing to the limit in (5.5) for a subsequence mo ~ m ---+ oo, we conclude 
that the identities in Theorem 2.1 are satisfied for all test fucntions T/ E L2 (0, T; Vom 0 ), 
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( E L2(0, T; Vm 0 ) and ( E L2(0, T; Vm 0 ). N ext, passing to the limit mo -+ oo, we arrive 
by density arguments at identities (2.14). Clearly, a priori estimates (2.15) are the 
consequences of the uniform estimates in Lemmas 3.1-3.4 and the wealc convergences 
(5.2). This proves the theorem. O 

6. Proof of Theorem 2.2 

From Lemma.s 3.1-3.4 and 4.1-4.4 it follows that there exists a triple ( u, X,µ) with 

u E L=(O, T; H 2(f!) n H~(f!)), Ut E L=(O, T; H1(f!)), 

Utt E L=(o, T; L2(f!)), Uttt E L2(0, T; (Hi(n))'), 

(6.1) XE c 1 l 2([0, TJ; Hiv(f!)), Xt E L=(O, T; L2(f!)) n L2(0, T; HJ,(f!)), 

Xtt E L2(0, T; (HJ_(f!))'), 

µ E L=(O, T; HJ_(f!)), µ, E L2(f!r), 

and a subsequence of solutions (um,Xm,µm) to problem (3.6) (which we stili denote by 
the same indices) such that as m-+ oo: 

um-+u wealcly - . in L=(O, T; H 2(f!)), 

u;n--+ Ut wealcly - . in L=(O, T; H 1(f!)), 

U~---+ Utt weakly - . m L=(O, T; L2(f!)), 

u"Z:t--+ Uttt wealcly in L2(0,T;(HMf!))'), 

(6.2) 
Xm-+ X wealcly - • in L=(O, T; H'J,(f!)), 

x;" -+ Xt wealcly - • in L=(O, T; L2(f!)) and 

wealcly in L2(0, T; H'J.(f!)), 

x;'; -+ Xtt wealcly in L2(0, T; (HJ_(f!))'), 

µm-+ µ wealcly -• in L=(O,T;HJ_(f!)), 
m µt -+ µ, wealcly in L2(f!). 

Using the compactness results [Sim87J it follows that for a subsequence (stili denoted 
by the same in di ces) 

urn--+ u strongly in L2(0, T; H~(f!)) n C([O, T[; L 2(f!)) 

and a.e. in nr, 

u;n-+ Ut strongly in L2(f!r) n C([O, TJ; L2(f!)) 

(6.3) and a.e. in f!r 
' 

u;';--+ Utt strongly in C([O, TJ; (HMf!))'), 

Xm-+ X strongly in L2(0, T; H 1 (f!)) n C([O, TJ; H 1 (f!)) 

and a.e. in nr, 
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Hence, 

x;" -----+ x, strongly in L2(0, T; H 1 (l1)) n C([O, TJ; (Hi(l1))') 

and a.e. in nr, 
µm -----+ µ strongly in L2 (0, T; H 1 (fl)) n C([O, Tj; H1(l1)) 

and a.e. in nr. 

um(o) =u[{'-----+ u(O) strongly in H~(l1), 

u;"(O) =u;"-----+ u,(O) strongly in L2(fl), 

u~(O) = u~ -----+ u«(O) strongly in (H~(fl))', 

xm(o) = x[{' -----+ x(O) strongly in Hl (l1), 

x;"(O) = x;" -----+ x,(O) strongly in (HF,(fł))', 

µm(o) =µ[{'-----+µ(O) strongly in Hl (l1), 

wha.t together with convergences ( 4.3) implies that 

(6.4) 
u(O) = uo, 

x(O) = xo, 

u,(O) = u 1 , u«(O) = u2, 

x,(O) = X1, µ(O) = µo, 

The relations (6.1) and (6.4) imply assertion (2.19) of the theorem. 

(6.5) 

We introduce now the following wea.k formulation of system ( 4.1 ): 

r r 

j (u'::,,, TJ)(HJ(n))' ,H)(rl)di + j (Ae(u'('), E:(TJ))di 
o o 

r 
= j([z'(xm)BVxm],,+b,,11)dt 'v'TJEL2(0,T;Vom), 

o 
r r 

jcx'::.,Ow;.,(n))',H'f.,(n) = Jcµ,,ti0dt V( E L2(0,T;Vm), 
o o 
r r r 

j(µ'(', ()di= - j(tix'(', ()di+ j(['if;'(xm) + W,x(e(um), xm)],,, ()dt 
o o o 

V( E L2(0, T; Vm), 

V·le pass to the limit m -----+ oo in a similar fashion as in the proof of Theorem 2.1. Clearly, 
due to the wea.k convergences (6.2), all linear terms in identities (6.5) converge to the 

corresponding limits. It remains to examine the convergence of the nonlinear terms 

[z'(xm )BVxm]., and [1,b'(xm) + W,x( e( um ), xm )),, whose explicit expressions are given 

in (2.21 ). 
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Recalling assumptions on z,,/; and using Lemmas 3.1, 4.1 we obtain the following 
bounds (these bounds can be also directly concluded from the proofs of Lemmas 4.3, 
4.4): 

(6.6) 

ll[z'(xm)B'vxml.tllL,(OT)::; c(llx;"'vxmllL,(nT) + ll'vx;"IIL,(nT)) 

::; c(llx;"lli,(o,T;Loo(O))ll'vxmllioo(O,T;L,(n)) + ll'vx;"IIL,(OT)) 
::; c(co + l)c4 (T), 

ll[,/;'(xm)l.dli,cnT)::; cll((xm)2 + l)x:"IIL,(OT) 

::; c(llxm IIL(o,T;L,(O)) llx;" IIL,(O,T;Loo(n) + llx:"lli,(nT)) 
::; c(ct + l)c4(T), 

ll[W,x(e( um ), Xm )J.dlL,(nT) 

::; c(llx;"e(um)IIL,(nTJ + llx:"IIL,(nTJ + lle(u;")IIL,(nT)) 

::; c(llx:"IIL,(O,T;Loo(n))lle(um)llioo(O,T;L,(n)) + llx:"IIL,(OT) 

+ lle(u;")IIL,(OT))::; c(co + l)c4(T) + cs(T). 

Thanks to these uniform in m bounds and the pointwise convergences (6.3) we can a.pply 
the nonlinear convergence lemma (see [Lions69], Chap. 1, Lemma 1.3) to conclude that 

[z'(xm)B'vxml,t = z"(xm)x;" B'vxm + z'(xm)B'vx;" 

---t z"(x)xtB'vx + z'(x)B'vxt = [z'(x)B'vxl,t weakly in L2(nr), 

[,p'(xm)J,t = (3(xm)2 - l)x;" ---t (3x2 - l)Xt = [,/;'(x)],t wealdy in L2(nr), 

(6.7) [W,x(e(um),xm)l,t = z"(xm)x;"(B · e(um) + Dz(xm) + E) 

+ z'(xm)(B · e(u;") + Dz'(xm)x;") 

__, z"(x)Xt(B · e(u) + Dz(x) + E) 

+ z'(x)(B · e(ut) + Dz'(x)Xt) = [W,x(e(u), xl,1 weakly in L2(nr). 

In view of (6. 7), passing to the limit m ---t oo in identities (6.5) we conclude (2.20). 
We also note that a priori estimates (2.22) result immediately from the estimates in 
Lemmas 3.1-4.3, 4.1-4.4 and the weak convergences (6.2). this completes the proof of 
the theorem. O 
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