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1. Introduction

The present paper is concerned with the existence and regularity of weak solutions
to a three-dimensional (3-D) Cahn-Hiliard system coupled with nonstationary elasticity.
Such system arises as a model of phase separation in a binary deformable alloy quenched
below a critical temperature. The problem under consideration has the following form:

uy — V- -Wele(u),x)=b in QT =Qx(0,T),
(11) u,t=0 = Ug, ui!t:() = Uy in Qs
u=0 in ST=5x(0,T),

xt—V-MVu=0 in QT

(1.2) xlt=0 = x0 in Q,
n-MVuy=20 on S7,

n=—=V-TVx+¢'(x) + Wy(e(u),x) in Q,

1.3
(1.3) n-I'Vx=0 on 57,

Here Q C R? is a bounded domain with a smooth boundary S, occupied by a body
in a reference configuration with constant mass density p = 1; n is the unit outward
normal to S, and T > 0 is an arbitrary fixed time. The body is a binary a — b alloy.

The unknowns are the fields u,y and x, where u : QT — R3is te displacement
vector x : Q7 — R is the order parameter (phase ratio) and p : QT — R is the
chemical potential difference between the components, shortly referred to as the chemical
potential.

The second order tensor
(Tu + (Va)T)

N[ =

e =c(u) =

denotes the linearized strain tensor.
In case of a binay a—b alloy the order parameter is related to the volumetric frac-

tion of one of the two phases, characterized by different crystalline structures of the
components, e.g. x = —1 is identified with the phase a and x = 1 with the phase b.
The function W{e(u), x) denotes the elastic energy defined by

(1.4) W(e(u),x) = %(E(u) —&(x)) - A(e(u) — &(x)).

The corresponding derivatives
We(e(u),x) = A(e(u) - &(x)),
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and

Wx(e(u),x) = —&'(x) - A(e(u) — E(x))
represent respectively the stress tensor and the elastic part of the chemical potential.
The fourth oredr tensor A = (A4;;x1) denotes a constant elasticiy tensor given by

(1.5) e(u) - Ae(u) = Mtre(u)l + 2fie(u),

where I = (§;;) is the identity tensor, and 3, /i are the Lamé constants with values within
the elasticity range (see Section 2).The form (1.5) refers to the isotropic, homogeneous

medium with the same elastic properties of the phases.
The second order tensor £(x) denotes the eigenstrain, i.e. the stress free strain

corresponding to the phase ratio y, defined by
(1.6) E(x) = (1 = z(x))Ea + 2(x)éEs,

with £,,&s denoting costant eigenstrains of the phases a,b, and z : R — [0,1] being
a sufficiently smooth interpolation function (called shape function) satisfying

(1.7) z(x)=0 for x<-1 and z(x)=1 for x>1.

Furthermore, the function ¢ : R — R denotes the chemical energy of the system
at zero stress. This function depends on temperature and is convex above a critical
temperature and a nonconvex for temperatures less than the critical one. Here we assume

it in the simplest double-well form
1
(1.8) ¥ = 71 -x)

with two minima at x = —1 and y = 1.
The second order tensors M = (M;;) and T' = (T';;) represent respectivly the mo-
bility matrix and the interfacial energy matrix. For simplicity, we shall confine ourselves

to the isotropic, homogeous situation assuming that
(1.9) M=MI T=Il, M=T=1,

with positive constants M, I’ normalized to unity.

System (1.1)—(1.3) represents respectively the linear momentum balance, the mass
balance and a generalized equation for the chemical potential. In a thermodynamical
theory due to Gurtin [Gur96] equation (1.3) is identified with a microforce balance. The
free energy density underlying system (1.1)-(1.3) has te Landau- Ginzburg-Cahn-Hilliard

form
(110) Fe(w)x Vx) = W{e(w),x) + #00 + 5Vx - TVx,
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with the three terms on the right-hand side representing respectively the elastic, chem-
ical and interfacial energy.

The remaining quantities in (1.1)~(1.3) have the following meaning: b : QT — R?
represents the external body force, and ug, 2y : @ — R3 xq : @ — R are the initial
conditions respectively for the displacement, the velocity and the order parameter.

The homogeneous boundary conditions in (1.1)~(1.3) are chosen for the sake of
simplicity. The condition (1.1)s means that the body is fixed at the boundary S, (1.2),
reflects the mass isolation at S, and (1.3), is the natural boundary condition for (1.10).

Before discussing the results of the paper let us place our study in the present theory
of Cahn-Hilliard systems in elastic solids. In recent years such systems have been the
subject of many different modelling, mathematical and numerical studies, we refer e.g.
to [MirSchim05a), [MirSchim05b)}, [BarPaw05], [PawZaj06a] for up to date references. It
is known from the materials science literature that the elastic effects have a pronounced
effect on the microstructure evolution of the phase separation process and consequently
on the resulting material properties.

The most general setting of the Cahn-Hilliard system coupled with elasticity, ac-
counting for additional anisotropic, heterogenous and kinetic effects, was derived by
Gurtin {Gur96] within the frame of his thermodynamical theory of phase transitions
based on a microforce balance. System (1.1)-(1.3) represents a simplified version of
Gurtin’s model with neglected anisotropic, heteregeneous and kinetic effects; for more
details see {BarPaw05] where the full Gurtin’s model was studied.

In view of the fact that the mechanical equilibrium is usually attained on a much
faster time scale than diffusion in most of the studies a quasi-stationary approximation of
(1.1);, obtained by neglegting the inertial term 2,;, was assumed. Various variants of the
Cahn-Hilliard system with quasi-stationary elasticity were analyzed by Garcke [Gar00],
[Gar03], [Gar05], Bonetti et al. [BCDGSS02), Carrive et al. [CMP00], [CMPR99), Mi-
ranville [Mir00], (Mir0lal, [Mir01b], [Mir03]). We underline that the results of [Gar00],
[Gar03], [BCDGSS02] included mathematically difficult case of nonhomogeneous elas-
ticity with tensor A = A(x) depending on the order parameter.

The Cahn-Hilliard system with nonstationary elasticity was studied in [Mir0la],

[BarPaw(05] where the existence and properites of weak solutions were examined, and
in [PawZaj0Ba] where the classical solvability was proved in 1-D case. It is clear that
with the quasi-stationary hypothesis the hyperbolic elasticity system is replaced by the
elliptic one and thereby the mathematical analysis becomes qualitatively different.
We point out that the study of the Cahn-Hilliard problem with nonstationary elasticity
~ apart from the mathematical interest on its own - is of special importance for the
initial stages of phase separation at which the formation of the microstructure is on
a very fast time scale.

The goal of the present paper is to prove the existence and some regularity of
weak solutions to system (1.1)-(1.3). Our ultimate aim is to obtain the existence and
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uniqueness of a strong solution to (1.1)—(1.3), i.e. such a solution that its all derivatives
appearing in the equations are at least in L;. The strong solvability theory will be
presented separately in [PawZaj06c|. It is based on the regularity results proved in the
present paper together with some additional time regularity. More precisely, having
sufficiently high time regularity we shall apply the standard elliptic regularity theory to
conclude further space regularity and consequently the classical solvability.

As was already mentioned, the strong solvability of system (1.1)—(1.3) in 1-D case was
proved in [PawZaj06a]. The strong solvability of the single Cahn-Hilliard equation in
1-D and 3-D cases was analyzed firstly by Elliott and Zheng [E1Zh86].

We point out that in three space dimensions the coupled system (1.1)-(1.3) shows
features that malke its analysis much more difficult than in one-dimensional setting.
The arguments used by the authors in the single space dimension in (PawZaj06a), based
on the space regularity of the wave equation, do not extend to the 3-D case.

The key idea of the regularity theory presented here and in the forthcoming paper
[PawZaj06c] consists in the analysis of time-differentiated versions of problem (1.1)-(1.3)
which yield solutions with sufficiently high time derivatives. The analysis is performed
with the help of the Faedo-Galerkin approximation. The procedure is straightforward
except of some difficulties of technical nature due to many nonlinear terms that appear
in the system after differentiation with respect to time variable.

For further analysis it is convenient to introduce a simplified formulation of problem
(1.1)~(1.3) which results on account of particular constitutive equations (1.4)-(1.6) and
(1.9). Let @ be the linear elasticity operator defined by

(1.11) w Qu=V-Ae(u) = ghu+ A+ @)VV - u).
Moreover, let us denote

(1.12) B=-A(gy—&,), D=-B-(€y—~&,), E=-B-&,,

where B = (B;;) is a symmetric second order tensor, and D, E are two scalars. With
such notation we have

V- Wele(u)x) = V- Ae(u) = V- A(Ea + 2(x)(E — £))

(1.13) ,
= Qu + 2'(x)BVx,

and
W i(e(u), x) = 2'0)(B - e(u) + Dz(x) + E),
so that (1.1)—(1.3) simplifies to
wy — Qu =2'(x)BVx+b in 07,

(1.14) wlimo =g, Um0 =w1 in &,

u=20 on §7,
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xt~Op=0 in QF,
(1.15) Xl=o=x0 in £,
n.Vu=0 on ST,

f=—Ax+19'(x) + Wyle(u),x) in QT,

1.16
( ) n-Vx=20 on ST,

with W, (e(u), x) given by (1.13),.
Let us note that the combined systems (1.15) and (1.16) yield the following Cahn-

-Hilliard problem

xt+ A% = Al (x) + 2 (x)(B - e(u) + Dz(x) + E)] in QT,

=0 = i Qa

(1.17) Xlt=0 = X0 m
n-Vy=10 on ST,
n-VAax =2(x)n- V(B e(u)) on 8T,

coupled with the elasticity system (1.14). It is seen that the problems are coupled not
only through the right-hand sides but also through the boundary conditions. Moreaver,
by definition (1.7) of the shape function z, the problems uncouple for y < ~1 and y > 1.
We point out that the boundary coupling is characteristic for the multidimensional
problem and does not appear in its one-dimensional setting. In fact, in 1-D case assuming
that b = 0 on ST, it follows from (1.14)y, (1.14); and (1.17); that u,, = 0 on ST, and
consequently condition (1.17)4 yields yzzz = 0 on ST. This fact was used in [PawZaj06a)
in the analysis of the 1-D version of problem (1.1)~(1.3).

The plan of the paper is as follows: In Section 2 we present our main assumptions
and results stated in Theorems 2.1 and 2.2. Theorem 2.1 asserts the existence of a weak
solution to problem (1.1)~(1.3). Theorem 2.2 provides a time-regularity result obtained
by differentiating (1.1)-(1.3) with respect to time variable. In Section 3 we introduce
a Faedo-Galerkin approximation of (1.1)-(1.3). We derive primary energy estimates with
constants independent of approximation and time, and investigate their implications.
In Section 4 we consider a time-differentiated version of the approximate problem and
establish the first regularity estimates with constants uniform in approximation but
depending on time. The subsequent sections 5 and 6 provide the existence proofs re-
spectively of Theorems 2.1 and 2.2. The proofs are based on the previously established
uniform a priori estimates which, by standard arguments, allow to pass to the limit in
the corresponding versions of the approximate problems.

We remark that having in mind a future examination of the long time behaviour
of solutions we record time-dependences of various constants. The obtained regularity
estimates turn out to depend exponentially on time, thus in the present form are not
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useful for the long time analysis. We point out that in long-time analysis the crucial
point is to show property that if x(0) € [~1,1] then x(¢) € [-1,1] for all # > 0, in other
words that the order parameter attains physically meaningful values for all times. This
question is left open in the present paper.

We use the following notation:

T =(2i)i=123 €QC R® the material point,

dj
fi= g—f—, fi= d_]'; the material space and time derivatives,
Ti

OW (e,
e =(€ij)ij=123 Wele,x)= ( a(s.,X)) ’
w7 1,7=1,2,3

Wlex) = ~—~—~6W§i’m» ¥'(x) = ——dﬁ;X)

For simplicity, whenever there is no danger of confusion, we omit the arguments (e, x).
The specification of tensor indices is omitted as well.
Vector- and tensor-valued mappings are denoted by bold letters.

The summation convention over repeated indices is used, as well as the notation:
for vectors a = (a;), @ = (a;) and tensors B = (B;;), B= (E,’j), A = (Aijrr), we write

a-a=a;a, B~B=B,'J'Eij,
AB = (A;uBrn), BA=(BijAiju),
la| = (a;a:)'?,  |B| = (By;Biy)'/.
The symbols V and V- denote the gradient and the divergence operators with respect

to the material point @. For the divergence of a tensor field we use the convention of

the contraction over the last index, e.g. V- e(z) = (&:j,;(x)).
We use the standard Sobolev spaces notation H™(2) = W*(Q) for m € N.

Besides,
H@Q)={ve H(Q): v=0on 5},

Hy(Q)={ve H¥Q): n-Vv=0on 5},

where 1 is the outward unit normal to § = 0, denote the subspaces respectively of
HY() and H*(), with the standard norms of H(2) and H*().
By bold letters we denote the spaces of vector or tensor-valued functions, e.g.

L) = (L2(Q))", H'(Q)=(H'(Q)", nel

if there is no confusion we do not specify dimension n.

Moreover, we write

lallz, ) = el llelziw) = Halllo,w + HValllz, @
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for the corresponding norms of a vector-valued function a(z) = (ai(x)); similarly for

tensor-valued functions.
As common, the symbol (-,-) denotes the scalar product in L,(£2). For simplicity,

we use the same symbol to denote scalar products in Ly(2) = (L2(2))", e.g. we write
(a,a) = /a(m)&(m)dz, (a,a) = /a,(m)&l(a:)d.r,
! !

(B,B)= /B,-J(m)é,-j(m)dx.
Q

The dual of the space V' is denoted by V', and (-,-)v v stands for the duality pairing

between V' and V.
By ¢ and ¢(T') we denote generic positive constants different in various instances, de-

pending on the data of the problem and domain 2; whenever it is of interest their
dependence on parameters is specified. The argument T indicates the time horizon de-
pendence. Moreover, é denotes a generic, sufficiently small positive constant.

2. Assumptions and main results

System (1.1)-(1.3) (in simplified form (1.14)~(1.16)) is studied under the following

assumptions:
(A1) 2 C R? is a bounded domain with the boundary S of class at least C%; T > 0 is an

arbitrary final time.
(A2) The coeflicients of the elasticity operator defined by (1.11) Q satisfy

(2.1) 2>0, 3X\4+2i>0 (elasticity range).

These two conditions assure the following:
(1) Coercivity and boundedness of the operator A

(2.2) clel? <e Ae < Eef* forall e €S2,
where §? denotes the set of symmetric second order tensors in R3, and
¢=min{3) + 22,27}, &= max{3X+ 27, 2z);

(ii) Strongellipticity of the operator @ (property holding true under weaker assumption
i > 0,242 > 0, see [PawZoch02), Section 7). Thanks to this property the following

estimate holds true (see [Nec67], Lemma 3.2):
(2.3) cllullmzio) < Qullz,) for =€ H*(Q)N Hy(R)
with constant ¢ depending on 2.
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Hence, since clearly [Qu||z,(q) < cllullmzq), it follows that the norms ([Qu||f,(q) and
1)l a0y are equivalent on H?*(2) N H(f).
The next two assumptions concern the ingredients of the free energy (see (1.10)

with T = TI)
24 He(u)yx Tx) = We(w), ) + (0 + 3 [Vx

(A3) The elastic energy W(e(u), x) is given by (1.4)—(1.6). The interpolation function
z: R - [0,1] in definition (1.6) of £(x) is at least of class C?! with the property

(1.7). Hence,
(2.5) 0<2(x)<1 and |Z'(x)<c forall xe€eR.

{A4) The chemical energy ¥(x) has the form of the standard double-well potential (1.8),

SO
(2.6) P =x"—x P'(x)=3x"-1, ¥"(x)=6x.

Moreover, for simplicity it is assumed that
(A5) The mobility tensor M and the interfacial tensor I' are the identities matrices

M=I1,T=1
The second order symmetric tensor B and the scalars D, E are defined in (1.12).
We note that assumptions (A3) and (A4) imply the following bounds for all € € §*

and y € R:
EOOI S HEal + & S ¢
€00l = 12" ()& = Ea)l S e,

27) [W(e, 01 < 3ol = E00P < e(fef? + 1),
[We(e, ) + 1Wx(e, x)f < c(le] + 1),
O < e(x* +1), 0 < eflxl® +1)

with some positive constant ¢. Moreover, by the Young inequality, we have
1 TSR ST T SN TPINT S S =12 4 =2
(28)  Wie,x) 2 sele — (0P 2 jelel ~ 2ele(O 2 gelel? ~ (2l + (&7),

and
1 1

>yt - 2
w(x)_sx 1

This shows that free energy (2.4) satisfies the following structure condition

o JEnTNE e+ g 4 5IVN —ollel + ) - g
2 cs(lel? + x* + [Vx[?) —
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with constants ¢; > 0 and c'f given by

. J1 1 L _ 1
cs=min{3ng} o =ceaP + o)~
This bound plays the key role in the derivation of energy estimates for problem (1.1)-(1.3)

(see Section 4).
For further purposes we recall here the following two additional properties of the

operator Q:
(2.10) Q is selfadjoint on H(Q) N HY(Q), i.e.
(Qu,v) = —a(Vu,Vv) = (A + B)}(V - u,V - o)
=(u,Qv) for wu,v € HY Q)N H(N),
(2.11) —Q is positive on H}(Q) N H (), i.e.

(—Qu,u) = Al[Vau|}, ) + (A + DIV - ulfl,q) >0
for we HYQ)N HYQ).

We state now the main results of the paper.

Theorem 2.1. Weak solutions
Let assumptions (A1)-(A5) hold true. Moreover, let the data satisfy

b e Ly(Q7),

(2.12) ) )
uo € Hy(Q), uy € Ly(Q), xo € H(Q).

Then there exist functions (u, x, ) such that

€ Loo(0,T; Hy (), e € Loo(0,T; La()),  wee € Lo(0, 75 (HH ('),
X € Loo(0, T3 HY () N L0, T; HY(),  xx € Lo(0,T5 (H' (D)),

€ Ly(0,T; HY(Q)),

u(0) = ug, u4(0) =121, x(0)= xo.

(2.13)
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which satisfy problem (1.14)-(1.16) in the following weak sense
T T
/(utt,n)(ﬂg(m)fﬂg(n)dt + /(AE(")»E(W))dt
0 0

T
= /(z’(x)BVx +b,m)dt Vn € Ly(0,T; Hy()),

T
(214) / X, E)rrea)y, H!(n)df+/(‘7#,v~f
0
VE € Ly(0,T; H (),
T T T

Jtcrae=- / (D Ot + / () + Wo(e (), x), )t
V] 0 Q

V¢ € Ly(0, T; L2(9)).

Moreover, (u, x,u) satisfy a priori estimates

el oo, 7:22(00) + €@ L0 0,7:8202)) + XN Lea 0, L0 (2))

FIVX Lo, 120 + IV e po@7) + Xl 20,7083 20y < o

(2.15) leellz o co.msmcayy + Xl 2o, mmr )y < e,

iz, 0. a3, + oo, mm @) < e2(T),

uall L, @y < es(T),
with positive constants

o = c|wollzrr ays N wallzacays Ixollmr @y, (80 Ly o, 7m0y s €5, <)

a = cfco, ), (T) = c(er)TV?, es(T) = e(co, |1bllpocar)) T2

The second theorem states a time-regularity result which is concluded from a time-

-differentiated version of problem (1.14)-(1.16).
In compatibility with equations (1.14);, (1.15); and (1.16);, we define the following

initial conditions corresponding respectively to u(0), x:(0) and u(0):

ug 1= Qug + 2'(x0)BVxo + 6(0),

(2.16) x1 = Apo,
o 1= ~Axo + %' (x0) + 2'(x0)(B - e(wo) + Dz(x0) + E).

Theorem 2.2. Time regularity
Let (A1)~(A5) hold, the boundary S of domain Q be of class C*, and
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z: R = [0,1) be of class C? with

(2.17)

12'(x)] + 12" (x)| < c for all x € R.
Morever, let the data satisfy

be H'(0,T; Ly (),
(2.18) wo € HA(Q)NHQ), ui € HY(Q), xo € HYQ)NHHQ),

uz € Ly(R), x1 € L), po € HY(Q).
Then there exist functions (u, x, 1) such that

u € Loo(0, T, HX(Q)NH(Q)), 1w € Loo(0, T; Hy(Q)),

Uy € Loo(0,T; L2(Q)),  weae € L2(0,T5 (Hg(Q))'),

x € CV2(0, TH HE(Q)),  xe € Lao(0, T Lo(2)) N La(0, T; HR (),
(2.19) Xu € La(0, T3 (HR (D)),

p€ Loo(0, T HR(Q),  px € Lo(QT),

u(0) = up, ue(0) =1, uu(0)=u,,

x(0) = xo, x1(0) =x1, u(0) = po,
which satisfy problem (1.14)—(1.16) in the sense of the identities:

T T
[ty + [ et

0

/([z (x)BVx]: +by,n)dt ¥n € Ly(0,T; HY(Q)),

T
(2.20) / Xt )2 @)y, 12 ()4t = /(,u:,Aﬁ
]
VE € L,(0,T; HY(Q)),
T T T
/ (1, ()t = — / (Bxor ()it + / (9 00) + W), x)) o O
0 0 0

V( € Lo(0,T; Ly(Q)),
where
[2'(X)BVxle = 2"(x)x:BVx + 2" (x) BV x1,
(2.21) ['(x) + Wx(e(u), ) = ¥" ()xe + 2" (x)x:(B - e(w) + D2(x) + E)
+ 2/ (x)(B - e(u1) + D' (x)xz)-
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In addition, (u, x, i) satisfy estimates (2.15) and

(0,75 (0,T5 00 (0,751 =c »
Nl o, mmz@)y + lwdloe o) + Lo 0,750,y € es(T)
(222) lIxllerraqoaym @) + IxellLwomLa) + Xl 2o 0,703,020

' 14l Lo (0,752, (2) S €a(T),

Hewssell Lo, muaraanyy + [xellzoomaz@nn + ludl,@ry < TV2es(T),
with constants
ca(T) = (T * Er(T) + lIxalla())lexp a(T))' /2,
es(T) = T cy(T),

where
Ei(T) = T2 ||by g, 0my + Huzllz, ) + lle(ua) ||z, q)

a(T) = c(co)T® exp(cT).

3. The Faedo-Galerkin approximation

In this section we introduce a Faedo-Galerkin approximation of problem (1.1)—(1.3)
(in simplified form (1.14)~(1.16)) and derive basic energy estimates. These estimates are
used to prove the existence of weak solutions in Theorem 2.1. Throughout this section
we assume that the domain Q has the boundary S at least of class C2.

3.1. Approximation

Let us consider the following two eigenvalue problems

- Qu; = Ajv; in Q,

(3.1) )
v; =0 on 9, j€N,
where @ is the elliptic operator defined by (1.11), and

~ Aw; = Ajw; in £,

(3.2) .
n-Vw; =0 on 5, jeN

We recall that, by virtue of the elliptic regularity theory, if the domain 2 has the
boundary of class C!, I € N, then the solutions of (3.1) and (3.2) satisfy

v; € H(), w;e H'(Q).
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We take the family {v;},en as a basis of the space H () and the family {w;]);en
iti E

as a basis of the space
HYy () ={we HYN):n - Vw=0on §}.

Such choice is possible thanks to the following properties of (3.1) and (3.2). On account
of (2.10) we have

/\,'('U,‘,‘U_;') = (—Qvi!vj)
(3.3) = Wi, To;) + (A4 BT v, V- 0)
= (v;,—Qu;) = Aj(vi,v;) for 4,5 €N.

Identities (3.3) show, by the Poincaré-Friedrichs inequality, that the family {v;};en is

orthogonal in () and L,(Q) scalar products.
We shall assume that v; are normalized so that (v;,v;) = 1. Thereby the basis {v;}en

becomes orthonormal in Lz(Q) and orthogonal in H'(Q) scalar products.
Similarly, the family {w;},en satisfies

(3'4) /\,-(w,-,w_,-) = (—Aw,,wj) = (Vw,-, ij)
= (wi, —8wj) = Aj(wi, w;),

and
/\,‘/\J'(w,',’wj) = (Aw,-,ij) for 7,7 € N.
Hence, by the Poincaré inequality, it follows that the family {w;},en is orthogonal in
HY(Q), HY(Q) and L2(Q) scalar products.
We normalize w; so that (w;, w;) = 1. Then the basis {w;}jen becomes orthonormal in
L2(R) and orthogonal in H!(Q) and H?(Q2) scalar products.
Furthermore, we assume without loss of generality that w, = 1,
For m € N we denote by

Vom =span{vi,...,vm} and V, =span{w;,...,wm}

the finite dimensional subspaces, respectively of H(Q) and H%/(Q), spanned by {vy,...
cesVp ) oand {wy,.. ., wm}.

Now, let us introduce the following approximation of problem (1.14)-(1.16): For
any m € N find a triple of functions (u™, x™, u™) of the form

m m

wn(z, ) =Y el(tviz), x™(=,0) = I(twi(e),

=1 =]

w(,d) = A Ewile),

=1
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with e*(t), ¢(t), d7*(¢) being determined so that

(ug,v;)+ (Ae(u™),e(v;)) = (2'(X™)BVX™ + b, v;),
(X:nv wj) + (vlu‘mv vwi) =9,
(B™ wy) = ~(Ax™,w5) + (w’(Xm) + Wole(u™), x™)w;i), j=1,...,m,

u™(0) =ug', uwi(0) =", x"(0)=xq,

(3.6)

where ', ul* € Vo, and x§* € Vi are the projections respectively of wg,u; and xo

satisfying for m — oo
ul® — ug strongly in H}(Q),
(3.7) ul® — u; strongly in L2(81),
X — xo strongly in H1(£2).

Clearly, (3.6) can be expressed as a system of first order ordinary differential equations
for the coefficients (e]*,...,em), (1%, em 1), (7. .-, cin), with the right-hand sides
being by assumptions continuous functions of their arguments. Thus (3.6) has a solution
local in time on an interval [0, T}, ], T > 0. The uniform in m a priori estimates proved
in lemmas below show that Tp = T, i.e. (3.6) has a solution on the interval [0, T).

3.2. Energy estimates

Lemma 3.1. Let (A1)-(A5) hold and the data satisfy
(3.8) ug € Hy(Q), w1 € La(Q), x0 € H'(Q), b€ Ly(0,T;L2(RQ)).
Then a solution (u™,x™, u™) to problem (3.6) satisfles the following uniform estimate

N 0. 72200) + NE(u™ M Lo (0,7:8200)) F X ™ | Lew (0,7 La(2)

(3.9) i~ -
VX ™ e 0,120 + VBT 25 07) < co,
with the constant

co = co(fluollms ) Mallza @y Ixollzrgays 161, (0,720 020)5 €54 €% )-

Proof. We derive energy identity for system (3.6). Firstly, let us note that, according

to (1.13),
Z(x)BVy =~V - A(ea + 2(x)(Eb — &4)),

thus an equivalent form of (3.6); is
(3.10) (uig,v;) + (We(e(u™), x™),e(v;)) = (b,v;).
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Testing (8.10) by ui*(¢) (i.e. multiplying by e]*(¢) and summing over j from j = 1 to

Jj = m) gives

1d

Edt”ut ”L,(m + (We(e(u™),x™) e(ui")) = (b,uy").

(3.11)
Further, testing (3.6); by u™ yields

(3-12) ™) V™ (e = 0

Finally, testing (3.6); by — xJ*(¢) and integrating by parts, leads to

(813) (") 4 T HVx"‘I!L,(n) + (@' (x™) + Wxle(u™),x™),x7") = 0.

Summing up (3.11), (3.12) and (3.13) we arrive at the following energy identity

1d 2 d m m m 1 m

i [ e [t am) 4 0m) + S0 do
(3.14)
[V,umlzd:r:/b-u;"dz.

Q

Q/ |
/

Integration of (3.14) over (0,1) gives

/M"lzdz +/f(s(u'"), yVx™ d1+/|vum|2d:rdt'

(3.15)
/‘|u1 |2d:c+/f(e (ug), xo', Vxa' )d:c+/b udzdt,

with f(e,x, Vy) defined by (2.4). Now, bearing in mind that f(e, x, Vx) satisfies the
structure condition (2.9), we can estimate the left-hand side of (3.15) from below by

1
5”“?‘”%,(9) + Cf(”*:(“m)”f:a(n) + ”Xm||4Lq(n) + ”va”%z(Q)) + ||V#m”12:,(m) —C
Further, in view of growth conditions (2.7) and the convergences (3.7), we have

/f(E(ua"), xo:Vxo)dz < C(HE(UO)“%,(Q) + ”X0”24(17) + ||VX0“%,(Q) +1).

Thus the sum of the first two terms on the right-hand side of (3.15) is bounded from
above by a constant depending on ||X0]]H1(ﬂ), ”ug”H‘l(Q) and ||u1”1;2(g).

16 2204



Finally, estimating the third term on the right-hand side of (3.15) by

#/b'u?dzdt’ SHuf e @sza@ Pl onz,@)
nt

1 m
< Z“u" Him(o.t;Lz(n)) + ||b“i‘(0yt;h(m)7
we arrive at the following uniform in m estimate
1 m
(3.16) Pl iz, + erlle@™ L@ + IX™ 2@ + VX z00)
+ ”V”m”%;(ﬂ‘) <c¢ for te(0,T],

with constant ¢ depending only on ||uellgi(n), |(u1||Lz(m, Ixollz(ay, 18llz, 0,625
and ¢. This proves the assertion. O

3.3. Further estimates
Clearly, (3.9) implies that

(3.17) IX™ N Lwwto, iz < €1
with constant
c1 = c(co, §2).
Hence, by the Sobolev imbedding,
(3.18) HX™ N Laato, 760 < €1
Further, since 4™ = 0 on S7, it follows from (3.9) by Korn’s inequality that
(3.19) 1™ (| L oo, 720 )  €1-
We note that setting w; = 1 in (3.6), (admissible by assumption) yields
d
3.20 2 ymdz =0,
(3.20) % [xmds
)

which shows that the mean value of x™ is preserved

/x’"(t)a’z =/x{,"dz for t€[0,T).
Q Q

This property will be used in later analysis. We remark also that thanks to (3.20)
structure condition (2.9) on f(e, x, Vx) could be in fact repalced by a weaker one

ey x:Vx) 2 cs(lef* + VX)) = .

In such a case, by the Poincaré inequality, estimate Vx|l (0,7:L,(2)) < co would still
guarantee bounds (3.17) and (3.18) with a constant ¢ = c(co, 2, [, xodz).
On the basis of (3.9) and (3.18) we derive an additional estimate on u™.
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Lemma 3.2. Let assumptions of Lemma 3.1 be satisfied. Then, for ¢ € (0, T},
(3.21) ™ 20,6500 S e2(?)

with constant
ca(t) = eyt

Proof. Setting w; = 1 n (3.6)3 (admissible by assumption) it follows that
Jumde = [6m) + Wtetumy .
Q Q

Hence, using growth conditions (2.7) and estimates (3.9), (3.18) we obtain

(3.22) l/ymd:c < c/(|xl3 + le(u)] + 1)dz < c(c1) for a.a. t € (0,T].
Q Q

Consequently, by the Poincaré inequality, estimates (3.9) and (3.22) imply that

Hee™ 1 y00y < lIVET a0 +C[j (/,umd:v> zalt’J]/2
5 h

< ceo +e(e)t? < ea(t).

This shows (3.21).
By virtue of Lemma 3.2 we can deduce further estimates on y™.

Lemma 3.3. Let assumptions of Lemma 3.1 hold. Then, for t € (0, T},

(3.23) X" N ia(0.672 2)) < c2(i).

Proof. In view of (3.2), identity (3.6); implies that
(1™, Awy) = (—Ax™, Aw;) + (B'(X™) + W x(e(u™), X™), Aw;).

Testing the above equality by ¥™(¢) and integrating with respect to t yields

t

1
//(Ax"‘)zdzdt' = —//,umAx’"dzdt'
Q !

0

" / 9/ [ (X™) + W (e (u™), ™) Ax™ dadt'
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