

Math. Program., Ser. A
DOI 10.1007/510107-006-0050-z

FULL LENGTH PAPER

Breakpoint searching algorithms for the continuous
quadratic knapsack problem

Krzysztof C. Kiwiel

Received: 4 March 2006 / Accepted: 29 September 2006
© Springer-Verlag 2006

Abstract We give several linear time algorithms for the continuous quadratic
knapsack problem. In addition, we report cycling and wrong-convergence exam-
ples in a number of existing algorithms, and give encouraging computational
results for large-scale problems.

Keywords Nonlinear programming - Convex programming -
Quadratic programming - Separable programming - Singly constrained
quadratic program

Mathematics Subject Classification (2000) 65K05 - 90C25

1 Introduction
The continuous quadratic knapsack problem is defined by
P: min f@x):= %xTDx—aTx st. bTx= r, I<x<u, (1.1)

where x is an n-vector of variables, a,b,{,u € R*, r € R, D = diag(d) with d > 0,
so that the objective f is strictly convex. Assuming P is feasible, let x* denote
its unique solution.

Problem P has applications in resource allocation {2,3,13], hierarchical
production planning (2], network flows [26], transportation problems [9], multi-
commodity network flows [12,22,25], constrained matrix problems {10], integer

K. C. Kiwiel (&)

Systems Research Institute, Polish Academy of Sciences,
Newelska 6, 01-447, Warsaw, Poland

e-mail: kiwiel@ibspan.waw.pl

@ Springer

K. C. Kiwiel

quadratic knapsack problems [4,5], integer and continuous quadratic
optimization over submodular constraints [13), Lagrangian relaxation via sub-
gradient optimization [11], and quasi-Newton updates with bounds [7].

Specialized algorithms for P solve its dual problem by finding a Lagrange
multiplier ¢, that solves the equation g(tf) = r, where g is a monotone piece-
wise linear function with 2n breakpoints (cf Sect. 2). The earliest O(nlogn)
methods {11,12] sort the breakpoints initially, whereas the O(n) algorithms
[6,7,9,13,18,19,23] use medians of breakpoint subsets (see [1,20] for exten-
sions); (23] also proposed an approximate median version with an average-case
performance of O(n). Another class of methods with worst-case performance
of O(n?) [2,5,21,24,26,27] employs variable fixing [17].

This paper focuses on linear time algorithms for P. The existing algorithms
differ in two aspects: (1) the choice of the current breakpoint subset for which
the median is found; and (2) the updates of quantities used for evaluating the
function g at the median.

As for the first aspect, we give a breakpoint searching framework that is
conceptually simpler than those in [6,7,9,13,18,19,23]. In particular, the sim-
plest method resulting from our framework seems to be competitive in practice
with the more complex methods of [6,7] (see Sect. 10). Moreover, we show that
the remaining methods [9,13,18,19,23] may cycle on simple examples, due to
insufficient reduction of the breakpoint subsets.

Concerning the second aspect, we introduce a more refined version of the
standard g-evaluations of {6,7), and a complementary one that extends some
ideas in [9,13]; their practical performance will be discussed elsewhere [15].

The paper is organized as follows. Basic properties of P are reviewed in
Sect. 2. Our simplest algorithm is introduced in Sect. 3 together with the stan-
dard g-evaluation of [6,7]. A more refined g-evaluation is derived in Sect. 4, and
a complementary one in Sect. 5. To ease comparisons with related methods, in
Sect. 6 we state simplifications for quadratic resource allocation. Extensions of
the two median approach of [6] and the additional breakpoint removal of [7]
are discussed in Sects. 7 and 8, respectively. Section 9 discusses relations with
the methods of [9,13,18,19,23]. Finally, preliminary computational results for
large-scale problems are reported in Sect. 10.

2 Basic properties of the problem

Viewing ¢ € R as a multiplier for the equality constraint of P in (1.1), consider
the Lagrangian primal solution (the minimizer of f(x) + t(bTx—r) s.t. | < x < u)

x(t) := min{max[l,D'l(a —tb)], u} (2.1)
(where the min and max are taken componentwise), its constraint value

g0 = bTx(r) (22)

@ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

and the associated multipliers for the constraints / —x < Oand x —u < 0,
respectively,

w(ty ;= max {DI —a +1tb,0} and v(t):= max{a—th— Du,0}. (2.3)

Solving P amounts to solving g(t) = r for a multiplier lying in the optimal
dual set

wi= {eg) =1} 24)
Indeed, invoking the Karush~Kuhn-Tucker conditions for P as in
[7, Theorem 2.1}, [12, Sect. 2], {22, Sect. 2], [23, Theorem 2.1] gives the fol-
lowing result.

Fact 2.1 x* = x(t) iff + € T,. Further, the set T, is nonempty, and ¢, (), v(?)
are Lagrange multipliers of P whenever f € Ty.

As in [6], we assume for simplicity that & > 0, because if b; = 0, x; may
be eliminated (x} = min{max([l;, a;/d;), w;}), whereas if b; < 0, we may replace
{xi, @i, by, I, u;) by —{x;, a;, b;, uy;, 7} (in fact, this transformation may be irmplicit).

By (2.1), (2.2), the function g has the following breakpoints

(. (e —bd) . @ —widi) .
= v and ' = 5 i=1:n (2.5)

Note that ¥ < t[from /; < u; and b; > 0 in (2.5). Further, each x;(f) may be
expressed as

L if t<tf,
%ty = { (@ ~th/d; if tr<t=d, (2.6)
A if <t

Thus g(r) is a continuous, piecewise linear and nonincreasing function of ¢ (see
Fig. 1).

(@ (b)
aib;/d;

slope ~b%/d;

N

a;/d; §
N

Lcecen

: t
0 t tl
Fig. 1 a litustration of x;(1) := wmin{max[l, (@ — bi)/d;i],ui}. b llustration of bixi(f) =

min{max[b;l;, (aib; — lb,z)/dil.biui) {forbi > 0)

@ Springer

K. C. Kiwiel

Hence the optimal set T, of (2.4} is an interval (possibly infinite) of the form

Te =1,]NR with £} = inf{t:g(t) =71}, tf, :=suplt:g(t) =r},
Lty L 4 U
2.7)

withg(]) = rift; > ~o00,8(t7) = rif (], < go;clearly,g(t) > rifft <o, g0 <r
if ¢, < . Denoting the minimal and maximal breakpoints by ;. = min; fff
and /L, 1= max; ¢, we have g(t) = bTu > rforall t < 1%, g(t) = 67! < r for
allr > rmax

3 The breakpoint searching algorithm

In this section we state our algorithm and discuss its simplest implementation.

The algorithm below generates successive nondecreasing underestimates t;,
of £7 and nonincreasing overestimates ty of tf; in (2.7) by evaluating g at trial
breakpointsin (11, ty) until t7 and ty become two consecutive breakpoints; then
g is linear on [t;,ty), and ¢, is found by interpolation. Let N := {1: n} denote
the set of all variables.

Algorithm 3.1

SteP O (Jnitiation). Set To := {t/}ieny U (" }ien, T = To, {1 1= —00, tyy 1= 00,
Step 1 (Breakpoint selection). Choose a breakpoint f in 7.

SteP 2 (Computing g(1)). Calculate the constraint value g(3).

Step 3 (Optimality check). It g(§) = r, stop with £, := 1.

STEP 4 (Lower breakpoint removal). If g(f) > r,sett, =1, T:={te T:f < t].
Step 5 (Upper breakpoint removal). If g(f) < r,setty =1 T :={te T:t <).
STEP 6 (Stopping criterion). If T 3 8, go to Step 1; otherwise, stop with

ty — 1L
e =1 — ~r]— 31
ter=1p —(glrL) r]g(tu) e 31

The following comments clarify the nature of the algorithm.

Remark 3.2 (a) At each iteration in Step 2 we have #;, < 1y, T, C {t1,1y] and
fe T = Ton (11, ty) (this follows by induction from the properties of g given in

Sect. 2).
(b) To compute g(¥) efficiently, we may partition the set N into the following

sets
Le={id<u), M={itqweltd]}, U={irw=t)}), (32a)

1= { E (tp,tp)ort e (tL,tU)}, (3.2b)
which are disjoint because r;, < ry and ¢ < t,’- for all i. Further, we have

=L Ul, with Ij:={i: e, i) o= {icf ey}, (33)

_@ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

and
T = (i, U P)iers 34

hence |I| < {7T|. Thus, by (2.2), (2.6) and (3.2),

80 =D bxi)+(p—tg)+s Vielu,], (.5
iel

where

Shixin= Y. b(“')+ S b+ Y b, (3.6)

iel ielellf 4f) ielaf<t iele<tf
a; b
pi=> 2 Z and s:= D bili+ > by (37)
ieM M iel el

Setting I := N, p,q,s = 0 at Step 0, at Step 6 we may update /, p, ¢ and s as
follows:

forieldo
itd <tp,setI:=T\{i},s:= s+ bil;; 38)
ifty <, set Ii=T\ (i}, 5:=5+ bjuy; :
ifep, ey e (¢, 4], set 1= I\ {il,p = p + aib;/d;, q := q + b}/d;.
This update and the calculation of g(f) due to [6] require order /| < |T|
operations.)

(c) When the set T becomes empty, then [= # in (3.5), so g is linear on
[tr,ty] and (3.1) yields g(t.) = r. (Note that g(rL) and g(ty) must have been
evaluated earlier: t;; = oo would imply f; = tmax and g(t1) = bl < r, con-
tradicting g(f,) > r {cf. Step 4); similarly #; = —o0 would yield 7y = 18, and
g(ty) = bTu > r, another contradiction.) Alternatively, (3.5) with I = @ shows
that (3.1) is equivalent to

o= (p_-i-;;g (3.9)

(d) Since each iteration reduces the set 7', Algorithm 3.1 must terminate with
t, € Ty; then x* = x(¢,) (cf. Fact 2.1) is recovered via (2.1) in order n operations
[cf. (2.6)].

The choice of 7 in 7 at Step 1 is crucial for efficiency, as explained below.

Remark 3.3 (a) For an arbitrary choice of 7, Algorithm 3.1 requires order n?
operations in the worst case. The complexity can be improved to order n by
selecting 7 as the median of T, which requires order [T| operations; see, e.g.,
[8, Sect. 9.3]. Thus the complexity of each iteration is O(| 7). Since |T| is orig-
inally 2n and is at least halved at each iteration, the total work is of order
2n+n+n/2 +--- = 4n. Thus the algorithm makes O(logn) iterations in time
O(n); see, e.g., [7, p. 1438] for a more general proof.

@ Springer

K. C. Kiwief

(b) As suggested by {23], in practice it may be preferable to choose 7 in T at
random, with an expected number of iterations of O(log i) in an expected time
(O(n), which can be derived as in (8, Sect. 9.2].

We now briefly describe several useful modifications.

Remark 3.4 (a) Step 0 may set 1y, := tl. ty = th ., T = Ty N (11, ty), termi-
nating with 7, 1= ¢z if g(t,) = r, or t, := 1y if g(ty) = r, or 1, given by (3.9) if
T=10.

(b) If the set of fixed variables L™ := [i : [; == ;) is nonempty, at Step 0 we
may set [;= N\ L=, T := [tf,t;‘],-e,, replace L by L U L= in (3.2) and (3.7),
modify U and / accordingly, and terminate with any ¢, e Rif 7 = §.

(c) An extension to infinite bounds is easy, since t,[= oc0iff; = —o0, 1f = —c0
iff u; = oo. Step O may set T := (f,()iel, U {#)ieg, with I, 1, given by (3.3), termi-
nating with 1, given by (3.9) if I = . Thus infinite breakpoints are effectively
ignored.

4 More refined updates

In a simple implementation based on (3.5)-(3.8), certain sums of (3.6) are
repeated in (3.8). We now give a more refined version of Algorithm 3.1 that

eliminates these redundancies.
Our refinement consists in using the following partition of the set 7 [cf. (3.3)]

into
Tmi={ity <t <d <1y}, (4.12)
=it <y <d <) and Jo={ig < <y <d), (41b)

With [= Joy UJyUdu, &y = I UJp, Ly = Iy Uy Thus I = 01, 0y = [\], and
Ju = I, \ 1; index the middle, lower and upper breakpoints of T = [tl!],'ejmujl U
{t#}ies,u,- To shorten notation, for any subsets M, L, U of N, welet [ef. (3.7)]

. ab; . b? . .
pUD =3 ==, qln =3 sl =3 bk, su(@) =3 bun.
ieqr et " iel el :
(4.2)
Algorithm 4.1
STEP O ([nitiation). Set ¢y, := —o0, 1y =00, T = (If)ie_[muj, V] [tl‘-‘},‘ejmuju with Jp,,

Jy, Ju given by (4.1), p := p(M), q := q(M), s == s;(L) + 5,(U) with M, L, U
given by (3.2).

StEP 1 (Breakpoint selection). Choose a breakpoint #in T.

Step 2 (Computing g(1). Set My = (i € Jyy 1 £ <T < al), Bpi= (i€ Jp: T < 8,
My =lied,:t* <B [= fieh <, U=tliel i<,

@ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack probiem

p=p +p(Mm) +P(MI) +p(Mu) q = q+ q(Mm) + CI(M/) + q(Mu) 5
s+ 5Ly +5,(U), 60 = ¢ — 1) +3. .
Step 3 (Optimality check). If g(f) = r, stop with ¢, ;= 1.

Step 4 (Lower breakpoint removal). If g(8) > r,set ¢y, =1 T:=(te T:{ <,
pi=p+pMa),qi=q+qu), Ii:= i e i =15 = 5+ s:(L) +5u(Ip.
StEP 5 (Upper breakpomt removal) Iftg®) <rsetty =L Ti={teT:t<¥,

p=p +[J(M1) qi=q+ q(MI) Ill ={iely: t” = t],s = 5+31¢(U) +5u(1u)
STEP 6 (Stopping criterion). T # B,gotoStep 1, eise stop with z, given by (3.9).

The sums in Step 2 require a single scan of [= J,; UJ; U J,; another scan
suffices for updating Jp,, J; and J,, at Step 4 or 5 {[cf. (4.1); for brevity, explicit
updates are omitted). The work of Step 2 is comparable to that in using (3.5),
(3.6); however, relative to (3.8), Steps 4 and 5 save the work needed for (re)com-
puting the sums p(#,), (M), etc., available from Step 2. Thus the efficiency
estimates of Remark 3.3 remain valid for Algorithm 4.1. It remains to show that
the algorithm is correct.

Theorem 4.2 Algorithm 4.1 terminates with ¢, € T..

Proof To validate the calculation of g(f) at Step 2, suppose £ € (¢, ty) and (3.7)
holds (this is true initially, cf Step 0). Then (3.3) and (4.1) with ¢, < 7 < 1y
imply that Mm, M[and M“ form a partmon of M : ={iel:ff < P < t’}
w1th My = M NJ, M, M0 i, M, = Mn Jy, whereas M together with

={iel: t,’ <fBandU={iel: < ¢} form a partition of /. Hence (3.6)
and (4.2) yield

X bexiB) = p(M) — iq(ity + si(L) + su(D)
ief
= pMp) +p M) + p(¥) ~ T g(Mn) + g(M)) + q(M,)]
+.S‘[(L) +5u(U)-

Combining this with (3.5) and (3.7) shows that Step 2 computes g(7) correctly.

Thus, as long as (3.7) holds, Algorithm 4.1 may be identified with
Algorithm 3.1. We now show that (3.7) is maintained by the updates of Steps 4
and 5, using superscript * for the updated quantities, e.g., p*.

First, suppose t] = fat Step 4. Since f;, < £} and ty does not change, U* = U
by (3.2) and 7 \ I+ splits into M+ \ M and L™ \ L. The first set M+ \ M consists
ofielsuchthatsf <7 <t andt <ty <4, s0,since t < 1y Vi € 1, it coincides
with the intersection of M and (i € 7 : 1y < 1l} = J,, [c. (4.1)], which is M. The
secondset LY\ Lequals L :={iel:d <f(f =0,withL=(iel:d <]
[using ? < ty in (3.3)]. Thus M+ = MU M, with M N M, = 9, L+ = LUL
with LNL =@, Ut = U.Further, L. = Lufywith L n T = 0. Combining the
preceding relations with (3.7) and (4.2) gives p* = p(M) + p(M,) = p(M™),

= g(M) + q(b) = q(M*), 5% = s(L) + 5u(0) + 5Ly = 5,(L™) + s (U).
Thus (3.7) holds for the updated quantities.

@ Springer

K. C. Kiwiel

Next, suppose tf; = 7 at Step 5. Since 1f; < ry and 1, does not change, L+ = L
by (3.2) and 7\ J* splits into M* \ M and U+ \ U. The first set M+ \ M consists
ofi € Jsuchthats <7 <dande <ty <, s0,sincet;, < Viel,itcoincides
with the intersection of # and (i € I : <t} = J; [cf. (4.1)], which is M. The
secondset Ut \Uequals U = {iel: T <) (1 =D, withU ={iel,: T <)
{using 11 < 7in (3.3)]. Thus M* = MU M with MN ¥ =8, U = Uu U
with U N/ = @, Lt = L. Further, U = U uT, with ' n]}, = 8. Combining
the preceding relations with (3.7) and (4.2) gives p™ = p(M) +p(My) = p(M),

= qM) + q(it) = gM), st = 53(L) + 5, (U) + 54 (D) = si(LY) + 8, (U™,
Thus (3.7) holds for the updated quantities.

It follows by induction that (3.7) always holds at Steps 2 and 6.

Upon termination with T = @, ¢, € T, by Remark 3.2(c). [u]

5 Decremental updates

Algorithm 4.1 works with the quantities p = p(M), g = ¢(M), s = s;(L)+s,(U),
incrementing them when M, L and U grow. Using the set fcf. (3.2), (3.3)]

Ke={irtp <dandt’ <1y} =IUM=0LUL UM, (5.1)

we now describe a version of Algorithm 3.1 that employs the redefined
quantities

=pK), q=q(K) and s=s5/(L)+s,(U), 52
decrementing p and g when K shrinks; this idea stems from [9,13).
Algorithm 5.1
Step 0 (Initiation). Set t;, = —oo0, ty 1= 00, T = U,[-)iel, U (t#)jes, with Iy, I,

given by (3.3), set p, g, s via (5.1), (5.2) with I, M, L, U given by (3.2).

Step 1 (Breakpoint selection). Choose a breakpoint 7 in T.

Ste 2 (Computing gh).Setl = (iel:d <1 U= {iel: P<t),p:

p-py—p(l),q:=q- t](L) q(@),3 —s+sz(L)+s“(U) g = -+

Step 3 (Optimality check). If g(f) = r, stop with ¢, :=1.

STEP4 (Lower breakpoint removal). Ifg(!) >rsettp =0T ={teT:i< t)

={ich:d=0p=p-—pd)-pd) q:=q-qdl)-qd)s:
s+s1(L) +s), he=liel:i< r] I=liel i< t”]

StEP 5 (Upper breakpoint removal). Ifg(t) <rsetty: =L T:=(eT:t<Ii},
1 = {i € !u . t" = [} p=p- P(U) P(Iu)’ q=4q- l](U) _q(]u)
st=sts (O +s) =il d < Lo=liel i <)

STEP 6 (Stopping criterion). If T # 8, go toStep 1, else stop with 1, givenby (3.9).

5.

The work of Step 2 in computing p, § is proportional to (L] + |0}, whereas
that of Algorithm 4.1 is proportional to ||, with |M| + [L| + {J] =]| (cf.
the proof of Theorem 4.2). Hence again the efficiency estimates of Remark 3.3
remain valid, and we need only show that the algorithm is correct.

@_ Springer

Breakpoint searching algorithms for the continuous quadratic knapsack problem

Theorem 5.2 Algorithm 5.1 terminates with t, € T,.

Proof To validate the caiculation of g(¢) at Step 2, suppose € (¢1,ty) and (5.2)
holds (this is true initially; cf. Step 0). Using (2.6), (3.2), (3.3), (4.2), (5.1) and
(5.2), we may express g(f) =D N bixi(?) as
gh = Z bixi(D) + Z bili + Z biu; = Z bixi(D) + 5, (5.32)
ek iel el ieK
where in the notation of Step 2 (with L, ¢ K, Ln U = ¢ from ¢ < &) we
have

Z bixi(f) Z b)) + Z bil; + Z biu;

ieK iek\(Luln iel el
- [p (K\(Lufj)) _iq (K\(Lu 0))]
+si(L) + 5,00y (5.3b)

= (&) - py —pD) | - [4t — a(L) - (D) |
+si(L) +5u(0).

Relations (5.3) and (5.2) show that Step 2 computes g(?) correctly.

Thus, as long as (5.2) holds, Algorithm 5.1 may be identified with Algo-
rithm 3.1. We now show that (5.2) is maintained by the updates of Steps 4 and
5, using superscript * for the updated quantities, e.g,, pt

First, suppose ¢ = fat Step 4. Let L= (i e I : t} < t} Then K = Kt Ul
with K* = {i:7 < d and ¢ < 1) and K* N L = @ by (5.1) and (3.3), whereas
the partition (3. 2)yields LUU =N\ Kand LY UU+* =N\ K+ with Ut = U
andLnU =@,s0 Lt = LUL with L nL = 0. Further, . = LUI, with
Lnk=9at Step 2. Combmmg the preceding relations with (3.2) and the
rules of Step 4 gives p* = p(K) — p(L) = p(K*), ¢* = q(K) - q(L) = q(K*),
5T = 5i(L) +5,(U) +55(L) = 5;(L*) +5,(U"). Thus (5.2) holds for the updated
quantities.

Next, suppose &, = fat Step 5. Let [:={i € [, : T <). Then K = Kt u U/
with Kt ={i: 1, <t and ¢ < i) and Kt N U = @ by (5.1) and (3.3), whereas
the partition (3. 2) ylelds LUU=N\Kand LY UU* =N\K*withL* =L
andUr‘lL~(ZJ so Ut = UU U with UN U = @. Further, U = U U, with
UﬂI,, = at Step 2.

Combining the preceding relations with (5.2) and the rules of Step 5 gives

pt=pK)—pl) = pK*), q* = q(K) - q(l)) = q(K*), s* = s;(L) +5,(U) +
si(U) = si(L*) + 5,(U™). Thus (5.2) holds for the updated quantities.

Thus, by induction, (5.2} always holds at Steps 2 and 6.

When T = (t,!),-el, U {t#}ie1, becomes empty, I; = I, = @. Then (3.3) and (5.1)
show that (5.2) with K = M reduces to (3.7),s0 t. € 7, by Remark 3.2(c). 0

@ Springer

K. C. Kiwiel

Remark 5.3 An asymmetric version of Algorithm 5.1 is obtained by replacing
L with [= {iel: tf < 1} at Steps 2 and 4 with i/ omitted; alternatively
we may replace U by U= fiel i< 4}, omitting p(?u), etc. In fact both
replacements may be used whenever / < u [since (5.3b) with £, U replaced by
L, Uonlyneeds LN U = 0].

6 Simplifications for quadratic resource allocation

The quadratic resource allocation (QRA) problem is a special instance of P
with ; = 0 and «; = oo for all i. In this case Algorithm 4.1 simplifies as follows

(cf. Remark 3.4(c)).

Algorithm 6.1 (for QRA: /; =0,u; = coVie N)

StEp 0 (Initiation). Set ty, := —co, ty i= 00,1 =N, T = (tf)ieN,p =0,q:=0,
5:=0.

STEP 1 (Breakpoint selection). Choose a breakpoint 7 in 7.

STEP 2 (Computmg g).SetM:={iel:i< i), b = p+pi), § = g+q(in),
g =p—14.) .

STEP 3 (0pumalzty check). If g(t) = r, slop with 7, = I,

Step 4 (Lower breakpomt removal). If g(t) > r,settp =1, T:={te T:1 <1,
Ii={iel:i<t i)

SteP S (Upper breakpoint removal). M g(}) < r,setty =1, T:=(teT:t <1,
pi=p,q:=§1:={iel:t<i.

STEP 6 (Stopping criterion). If T # @,go to Step 1, else stop with . given by (3.9).

In a parallel development, also Algorithm 5.1 may be simplified as follows.

Algorithm 6.2 (for QRA:; =0,u; =coVie N)

Step 0 (Initiation). Set 1y, := —o0, 1y 1= 00,1 := N, T = {tllien, p := p(V),
g:=qg{N),s:=0. A

Step 1 (Breakpoint selection). Choose a breakpoint ¢ in 7.

STEP 2 (Computmgg(t)) SetLi=(iel:d <8, p=p—pl),§:=q-qgd),
gD =p—1ig.))

Step 3 (Optzmahty check). If g(t) = r, stop with £, := 1.

StEp 4 (Lower breakpoint removal). 1£g@) > r,set 1y =1, T:=(te T:1 <1},
I=(iel:d=Wp=p-pd,q:=4-qb, [.—[lEl:;(fl)

SteP 5 (Upper breakpomt removal). If g(i) < r,setty =1, T:=(te T 1 <1,
I={iel:d <.

STEP 6 (Stopping criterion). If T # @,gotoStep 1, else stop with ¢, given by (3.9).

Note the complementary features of both algorithms, which also appear in
their modifications discussed below.

@ Springer

