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Abstract 
We consider so-called generic combinatorial optimization problem 

defined for a finite ground set with specified positive weights of its 
elements. The set of the feasible solutions of the problem is given as 
a family of subsets of the ground set. We want to find a subset for 
which the sum of its elements is minimum among all feasible subsets. 

It is assumed that the set of the feasible solutions is fixed, but the 
weights of all elements may be perturbed simultaneously and inde­
pendently up to a given percentage of their nominał values. For such 
a model of perturbations and for an arbitrary feasible solution of the 
problem we consider so-called accuracy Junction. Its value for a given 
percentage level of weights perturbations is equal to the maximum 
relative error of this solution. 

A feasible solution is called robust for a specified maximum level of 
perturbations if the value of its accuracy function is minimum among 
all feasible solutions. The maximum percentage level of perturbations 
for which an initially optima! solution remains robust is called the 
robustness radius of this solution. 

In this paper we obtain !ower bounds for the robustness radius in 
case of single as well as multiple optima! solutions. 

Keywords: combinatorial optimization, inexact data, accuracy func­
tion, robust solutions. 



1 Introduction 

Let E = { e1 , .. . , e,.} be a finite ground set and !et for e E E, c( e) > O denotes 
the weight of element e. Consider a family :F <;;; 2E \ { 0} of nonempty subsets 
of E, called feasible solutions, and !et for XE F and c = (c(e1), ... , c(e„)JT, 

w(c, X)= L c(e) 
eEX 

denotes the weight of solution X. The generic combinatorial optimization 
problem 

v(c) = min{w(c,X): XE F} (1) 

seeks for a feasible solution of minimum weight. Various discrete optimization 
problems, like the traveling salesman problem, the minimum spanning tree 
problem, the shortest spanning tree problem, the linear 0-1 programming 
problem, can be stated in this generał form. In the following we assume that. 
the set of the feasible solutions :F is fixed, but the vector of weights c may 
be perturbed or is given with errors. Namely, we assume that c E C(c0 , 5), 
where for c0 E IR, c0 > O, and 5 E [O, 1), 

C(c0 ,ó) = {d E !Rn: lc0 - dl S: C0 • b}. 

Thus, there is some initial vector of weights c0 > O and for a given parameter 
5 E [O, 1) the maximum perturbation of any weight does not exceed 5 • 100% 
of its initial value. 

For a given feasible solution XE F and c E C(c0 ,5), the quality of this 
solution can be measured by its relative error c:(c, X), where 

( X) = w(c,X)-v(c) 
E c, v(c) . (2) 

Observe that c:(c, X) ~ O for arbitrary XE F, c E C(c0 , 5), and c:(c, X)= O 
if and only if X is an optima! solution in (1). 

For a given feasible solution XE F and 5 E (O, 1) the accuracy Junction 
a(X, 5) introduced in [3] gives the maximum value of the relative error E(c, X) 
for c E C(c0 ,5): 

a(X,5)=max{c:(c,X): cEC(c0 ,ó)}. (3) 

It is shown in [3] that for an arbitrary feasible solution X, a(X, 5) is a 
nondecreasing and convex function of 5. Also generał formulae, which allow 
to compute the value of a(X, 5), are given in (3, 4]. 
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• The accuracy function has a finite number of breakpoints in the interval 
[O, 1). If X is an optima! solution in (1), then a(X, O) = O, but when 8 
grows, then a(X, 8) may become positive, which means that X is not longer 
an optima! solution in (1) for some c E C(c0 , 8). Fl:om the practical point 
of view it is of special interest to know the first breakpoint of the accuracy 
function , corresponding to the least value of 8 for which a(X, 8) becomes 
positive. This value is called the accuracy radius of the solution X and 
formally is defined as follows : 

r 0 (X) = sup{ 8 E [O, 1) : a(X, 8) = O}. (4) 

In [4] a generał formula, which allows to find the exact value of the accuracy 
radius is given, and an approach to calculate a !ower bound for this value is 
described. 

Example 
Consider an undirected graph G = (V, E), where V = {1, 2, 3, 4, 5} and 

E = {{1,2} , {l ,3},{1 ,4},{2,4},{3,4} , {3, 5},{4,5}}. 
Let F be a family of subsets of E corresponding to all spanning trees in 

G, and !et c0 = (14, 11 , 14, 15, 13, 18, 17j! be a vector of the initial weights 
of edges in G. Then the combinatorial optimization problem (1) for c = c0 

is just the minimum spanning tree problem in G. A subset of edges X = 
{ {1, 2} , {1, 3}, {3, 4}, { 4, 5}} is an optima! solution for this problem. The 
graph G and the minimum spanning tree X are shown in Figure 1. 

Figure 1: Graph G and its minimum spanning tree indicated with bold lines. 

In Figure 2 the accuracy function of the solution X is shown for 8 E 
[O, 0.5]. From this picture one can read that the solution X remains optima! 
if the maximum percentage perturbation of any weight do not exceed approx­
imately 2.8%; this value corresponds to the accuracy radius, which in this 
ca.se is equal to 1/35. For larger values of perturbations the solution X may 
become suboptimal and, for example, for 8 = 0.3, i.e., when the maximum 
perturbations of weights are equal 30% of their initial values, the maximum 
relative error of X reaches 60%. 
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Figure 2: The accuracy function of the optima! spanning tree X. 

o 
In the framework of so-called robust optimization ( see e.g. (2] ) the set 

C(c0 , ó) for a given fixed value of ó is interpreted as a set of possible scenarios. 
Then the value of a(X, ó) provides a so-called worst-case relative regret of the 
solution X over the set of possible scenarios. In the robust optimization one 
wants to find such a feasible solution, that its worst-case relative regret is 
the minimum among the feasible solutions of problem (1). Therefore we will 
consider the following function of ó E [O, 1): 

z(ó) = min a(X, ó). (5) 
XEF 

We will call this function the minimum relative regret function or - for short 
- the regret Junction. A feasible solution X will be called robust for a given 
ó E [O, 1) if and only if a(X,ó) = z(ó). 

It is obvious that the solution X E Fis robust for a given ó if a(X, ó) = O. 
Thus, if X is an optima! solution for ó = O, then it remains robust in the 
interval [O, ra(X)] . But it may be robust also for larger values of ó (see 
example below). On the other hand, a solution which is non-optima! for 
ó = O may became a robust solution for larger values of perturbations. 

If X is an optima! solution in (1) for ó = O, then the maximum value of ó 
for which X remains robust is called the robustness radius of X and denoted 
by rr(X). Formally: 

rr(X) = sup{ó E [O, 1): a(X,ó) = z(ó)}. 
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The exact value of rr(X) (or a nontrivial !ower bound on it) appears 
interesting from the practical point of view. If X is a single optima! so­
lution in (1), then rr(X) gives the maximum percentage perturbations of 
the weight coefficients, that the solution X guarantees the minimum relative 
regret among all feasible solutions. If there are multiple feasible solutions 
in (1), then an optima! solution with the largest robustness radius may be 
regarded as preferable to be implemented. In this case the value of the ro­
bustness radius provides the decision maker with an additional information, 
which allows to distinguish multiple optima! solutions from the robustness 
point of view. 

Example (continued) 
In Figure 4 the regret function for the minimum spanning tree problem 

in graph G from Figure 1 is shown. According to (5) this function is a point­
wise minimum of the accuracy functions for all spanning trees in graph G. 
In this case the regret function is determined by the following three spanning 
trees: X = { {1, 2}, {1, 3}, {3, 4}, { 4, 5}}, X' = { {1, 2}, {1, 3}, {2, 4}, { 4, 5}} 
and X" = { {l, 2}, {2, 4}, {3, 5}, { 4, 5} }; all other feasible solutions may be 
neglected in (5) . Corresponding accuracy functions for solutions X, X' and 
X" are showu in Figure 3. 

From Figure 4 one can see that the solution X remains robust behind its 
accuracy radius. The robustness radius of this solution is determined by the 
value of ó = ó', for which the accuracy functions of X and X' are equal. In 
our example ó' is equal approximately 0.23. This means that the solution 
X remains robust if the maximum percentage perturbation of any weight do 
not exceed approximately 23% of its nominał value. 

For larger values of ó the solution X' becomes a robust solution and it 
remains robust till approximately ó" = 0.43. For larger level of perturbations. 
again, we have a new robust solution, this time it is X" . 

o 

Calculating the exact value of the robustness radius is a difficult task. 
Therefore in the next section we give some simple bounds for the accuracy 
functions and derive corresponding bounds for the robustness radius and the 
regret function . 
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Figure 4: The regret function for the minimum spanning tree problem. 
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2 Bounds for the regret function and the ro­
bustness radius 

In (3] it is shown, that for XE :F and 6 E (O, 1) the accuracy function of X 
is expressed by the following formula: 

(X 6) = w(c0 , X) - w(c0 , Y) + 6 w(c0 , X® Y) (7) 
a ' o/N (l-6)w(c0 ,Y) ' 

where X® Y = (X U Y) \ (X n Y). It will be convenient to rewrite (7) in 
the following equivalent form: 

(X r) _ (1 + 6)w(c0 , X) - (1 - 6)w(c0 , Y) - 2 6 w(c0 , X n Y) 
a , u - max ( ) ( ) . 

YEJ' 1-6 WG°, Y 
(8) 

Lemma 1 gives an upper bound for the accuracy function of an arbitrary 
feasible solution in problem (1). 

Lemma 1 For XE :F and 6 E [O, 1), 

26 1 + 6 
a(X, 6) :=:; -r + -r · a(X, O). 

1-u 1-u 

Proof For arbitrary X, Y E :F we have w(c0 , X n Y) 2'. O and 

w(c0 ,X):::; w(c0 , Y) + w(c0 ,X) - v(c0 ). 

(9) 

Thus, after replacing in (8) w(c0 , X) with w(c0 , Y) + w(c0 , X) - v(c0 ) and 
removing 26 w(c0 , X n Y), we obtain: 

a(X, 6) :=:; { (1 + 6)w(c0 , Y) - (1 - 6)w(c0 , Y) 
max 
YEF (1 - 6)w(c0 , Y) 

+ 1+6_w(c0 ,X)-v(c0 )} 

1-6 w(c0 ,Y) 

26 1 + 6 w(c0 , X) - v(c0 ) 

--+--•max-----
1 - 6 1 - 6 YEJ' w(&, Y) 

26 1 + 6 
1 - 6 + 1 - 6 . a(X, O) . 

• 
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Corollary 1 For ó E [O, 1), 

2ó 
z(ó) :::; 1 - ó' (10) 

Proof For arbitrary X E F, a(X, O) 2: O. Moreover, if X 0 is an optima! 
solution in (1) for c = c0 , then a(X0 , O) = O. So, from the definition of the 
regret function and from (9) we have immediately 

z(ó) < min --+-- · a(X,O) = -- + -- • a(X0 ,0) = --. { 2ó 1 + ó } 2ó 1 + ó 2ó 
-x~ 1-ó 1-ó 1-ó 1-ó 1-ó 

• 
The following lemma provides a simple !ower bound for the accuracy 

function of any feasible solution X. 

Lemma 2 For XE F and ó E [O, 1), 

l+ó 
a(X, ó) 2: 1 _ ó · a(X, O). (11) 

Proof For a given solution X and arbitrary Y E F we have the following 
inequality: 

a(X, ó) > (1 + ó)w(c0 , X) - (1 - ó)w(c0 , Y) - 2ów(c0 , X n Y) 
- (1 - ó)w(c0 , Y) 

Taking Y = X 0 , where X 0 is an optima! solution for c = c0 , we have: 

a(X ó) > (1 + ó)w(c0 , X) - (1 - ó)v(c0 ) - 2ów(c0 , X n X 0 ). 

' - (1 - ó)v(G°) 

Replacing w(c0 , X n X 0 ) with v(c0 ) = w(c0 , X 0 ) 2: w(c0 , X n X 0 ) we obtain: 

a(X,ó) 
(1 + ó)w(c0 , X) - (1 - ó)v(c0 ) - 2óv(c0 ) 

2: (1 - ó)v(c0 ) 

1 + Ó w(c0 , X) - v(c0 ) 

1 - ó · v(c0 ) 

l+ó 
1 _ ó · a(X, O). 
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Assume now that X 0 is a single optima! solution in problem (1) for c = c0 , 

and Jet a1 > O denotes the relative error of the second-best solution in this 
problem. If we know the exact value of a1 or some positive ]ower bound for 
a1 , then the bounds for the accuracy function provided by Lemma 1 and 
Lemma 2 allow to calculate a !ower bound for the robustness radius of X 0 • 

The following fact holds: 

Theorem 1 ff X 0 is a single optima/ solution in problem (l) for c = c0 , and 
a1 = a(X 1,0), where X 1 is a second-best solution in (l), then 

if a1 < l, 

otherwise. 
(12) 

Proof Consider the following two convex functions of 5 on the interval [O, 1): 
f'(5) = 12_!6 , which - according to Lemma 1 - is an upper bound on a(X0 ,5) 

and f" ( 5) = :~: · a1 , which - according to Lemma 2 - is a !ower bo und on 
a(X1, 5). From Lemma 2 it follows, that f" provides also a !ower bound 
for the accuracy function of any feasible solution Y EF\ {X0 }. Thus, the 
solution X 0 remain robust for all such 5 E [O, 1) that f'(5) :S f"(5). If a1 2'. 1, 
then this inequality holds for any 5 E [O, 1) which means that ,,-r(X0 ) = l. 

For a1 < 1 the inequality f'(5) :S f"(5) is valid for 5 :S ~ and this value 
provides a !ower bound on the robustness radius of X 0 • • 

Consider now the case when there are multiple optima! solutions in prob­
lem (1). Let n, where IOI = p > l, denote the set of all optima! solutions in 
problem (1) for c = c0 and Jet 

b=min{w(c0 ,X): XEF\O}-v(c0 ). 

All of the solutions belonging to n give the same optima! objective value for 
5 = O, but they may differ from the robustness point of view. It is obvious 
that any solution in n is robust for 5 = O, but an interesting question arises, 
how to select an optima! solution which remains robust in some neighborhood 
of 5 = O. 

From the formula (7) on the accuracy function it follows directly that 
for any XE n we have a(X,5) = O for 5 = O, and a(X,5) > O for 5 > O. 
Moreover, the following lemma states that for some neighborhood of 5 = 
O the accuracy function of any solution belonging to n depends only on 
other solutions from this set, and does not depend on any feasible solution 
belonging to the set F \ n. 
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Lemma 3 For XE n and 8 :S 8' = b/d, where d = min{w(c0 , E), v(c0 )+ 
maxYEF\!l w(c0 , Y)}, 

28 28 . 0 

a(X, 8) = (l- 8) - (l- 8)v(co) ·r~gw(c , XnY). (13) 

Proof For arbitrary XE n and Y E .F\D we have w(c0 ,Y)-w(c0 ,X) 2:: b 
and w(c0 , X ® Y) :S d, which implies that for 8 :S 8' the following inequality 
holds: 

w(c0 , X) - w(c0 , Y) + 8w(c0 , X ® Y) :SO. 

But this means that then the maximum over the set Fin (7) can be replaced 
with the maximum over the set n. Thus , for arbitrnry X E r1 nnrl li :S li' . 

a(X,8) 
w(c0 , X) - w(c0 , Y) + 8w(c0 , X ® Y) 

max-"--C--,-----'-~---'-~~'---~ 
YEF (1 - 8)w(c0 , Y) 

w(c0 , X) - w(c0 , Y) + 8w(c0 , X® Y) 
max -"-~--C-~---'-~~'---~ 
YE!l (1 - 8)w(c0 , Y) 

8w(c0 ,X ® Y) 
max~-'---~~ 
Yen (1 - 8)v(ca) 

( :) ( ) ·maxw(c0 ,X®Y) 1 - u V c0 YE!l 

( :) ( ) ·max(w(c0 ,X)+w(c0 ,Y)-2w(c0 , XnY)) 
1 - u V c0 YE!l 

( : 8) ( ) • (v(c0 ) - min w(c0 , X n Y)) 1 - u V c0 YE!l 
28 28 . 0 

-( ") - ( ") ( ) •mmw(c ,XnY). 1 - u 1 - u V c0 YE!l 

• 
Lemma 3 allows to formulate a necessary condition for a solution from the 

set n to be robust in the neighborhood of 8 = O. Directly from the definition 
of the regret function and from (13) we have the following corollary: 

Corollary 2 ff an optima/ solution X 0 E n remains robust in same neigh­
borhood of 8 = O, then the following condition must hold: 

min w(c0 , X 0 n Y) = max min w(c0 ,X n Y). 
YE!l XE!l YE!l 

(14) 
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Proof A solution X 0 E Fis robust for a given 8 E [O, 1) if and only 
if a(X0 , 8) = z(8) = minxeF a(X, 8). When for X 0 E n the condition (14) 
does not hold, i.e., minven w(c0 , X 0 n Y) < maxxen minven w(c0 , X n Y), 
then for 8 > O it follows from (13) that 

a(X0 , 8) > min a(X, 8) 2'. min a(X, 8) 
xen XeF 

and therefore X 0 is not a robust solution. 

• 
Next we will show that the condition (14) is also a sufflcient condition 

for the robustness of X 0 in some neighborhood of 8 = O and we will give a 
corresponding !ower bound for the robustness radius of X 0 • Observe that if 
we know all of the p elements of the set n, then such a robust solution can be 
selected in O(p2 ) calculations of weights w(c0 , X n Y) for X, Y E n, followed 
by O(p2) comparisons. 

The following theorem is an analogue of Theorem 1 for the case of multiple 
optima! solutions. 

Theorem 2 I/ X 0 E n and X 0 satisfies the condition (14), then 

rr(X 0 ) 2'. min{8',8"}, 

where 

and 

i/ b < v(c0 ). 

otherwise, 

~= b . 
min{w(c0 , E), v(c0 ) + maxxeF\n w(c0 , X)} 

(15) 

Proof From Lemma 1 we have that for 8 E [O, 1) the function /'(8) = /!_6 
provides an upper bound for a(X0 , 8), and from Lemma 2 it follows that 
/"(8) = ~~i · v(~0 ) is a !ower bound on a(Y, 8) for any Y E F \ n. But for 
8 < 8', /'(8)::; /"(8), which implies that then a(X0 , 8)::; minveF\n a(Y, 8). 

If, moreover, X 0 satisfies (14), then from Lemma 3 it follows that for 
8 < 811 , a(X0 ,8)::; minvena(Y,8). Thus, for 8 < min{8',8"} the inequality 
a(X0 , 8) ::; minveF a(Y, 8) is valid, which means that X 0 is a robust solution 
on the interval [0,min{8', 8"}) and (15) holds. 

• 
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3 Conclusions 

In this paper we consider the generic combinatorial optimization problem 
with inexact data. It is assumed that any coefficient in the objective function 
may differ from their nominał value by at most a given percentage ó • 100%. 
Thus, in the framework of so-called robust optimization with interval data, 
the parameter ó E [O, 1) determines a particular set of scenarios. 

We exploit previous results concerning the accuracy function to derive 
!ower bounds for perturbations, for which a given optima! solution, obtained 
for nominał parameters, remains robust. 
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