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Abstract

We give a proximal bundle method for constrained convex optimization. It only
requires evaluating the problem functions and their subgradients with an unknown
accuracy €. Employing a combination of the classic method of centers’ improvement
function with an exact penalty function, it does not need a feasible starting point.
It asymptotically finds points with at least e-optimal objective values that are e-
feasible. When applied to the solution of LP programs via column generation, it
allows for e-accurate solutions of column generation subproblems.

Key words. Nondifferentiable optimization, convex programming, proximal
bundle methods, approximate subgradients, column generation.

1 Introduction
We are concerned with the solution of the following convex programuming problem
for=1nf{ f(u): h(u) <0, ueC}, (1.1)

where ' is a closed convex set in the Euclidean space IR™ with inner product {-,-) and
norm |- |, f and h are convex real-valued functions, and there exists a Slater point

€ ' such that A(@) < 0. (1.2)

Further, we assunie that for fixed (and possibly unknown) accuracy tolerances ¢s, ¢, > 0,
tor each w € ¢ we can find approzimate values [, hy and approximate subgradients gy, gy
that produce the approzimate linearizations of f and h:

fu() = fu + (g}tv T U> < f() with fu(u) = fu > f(u) —€f <1-35‘-)

ho(0) = hy + (g, —u) < h() with A (u) = h, > h(u) — ¢, (1.3b)
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Thus f, € [f(u) — ¢, f(u)] estimates f(u), while g} € O, f(u), L.e., g} is a member of
O ) = {9 J() = J(w) —¢f +{g,- — )},

the es-subdifferential of f at wu; similar relations hold for / replaced by 5.

This paper modifies the phase 1 - phase 2 method of centers of [I{iw85, §5.7] and
extends it to approximate linearizations. We first discuss the exact case of ¢ = ¢, = 0.
For an infeasible starting poiut, in phase 1 this method reduces the constraint violation
while keeping the objective increase as small as possible; this is reasonable especially if
the starting point is close to a solution. Once a teasible point is found, in phase 2 the
method reduces the objective while maintaining feasibility. Both phases employ the same
improvement function, and each iterate solves a subproblem with f and h approximated
via accumulated linearizations, stabilized by a quadratic term centered at the best point
found so far. For phase 1, the analysis of (Kiw85, §5.7] established optimality of all cluster
points of the iterates, without discussing their existence. A nontrivial sufficient condition
for their existence was recently given in [SaS05, Prop. 4.3(ii)] for a modified variant. We
show that this condition may be expected to hold only if problem (1.1) has a Lagrange
multiplier 7 < 1 (cf. Rem. 3.11(ii)), and we extend this condition to ji > 1 by combining
the standard improvement function with an exact penalty function for penalty parameters
¢ > ji— 1. In effect, our results (cf. Thms. 3.6, 3.7 and 3.10) extend the main convergence
results of [Kiw85, Thm. 5.7.4] and [SaS05, Thms. 4.4-4.5]. It is crucial for large-scale
implementations that our results hold for various aggregation schemes that control the
size of each quadratic programming (QP) subproblem, including the scheines of [Kiw85,
§5.7] and [SaS05] (see Rem. 4.1).

Our combination of improvement and penalty functions with suitable penalty para-
meter updates seems to be necessary for our extension to inexact evaluations (otherwise,
the method could jam at phase 1 when the standard improvement function can’t be re-
duced by more than max{ey, e,} for the tolerances ¢y, €, of (1.3)). Our method generates
iterates in the set C', having f-values of at most f, +¢; and h-values of at niost €, asymp-
totically (cf. Thms. 3.6-3.8), without any additional boundedness assumptions (such as
boundedness of the feasible set, or the sufficient conditions discussed above). In a sense,
this is the strongest convergence result one could hope for. Qur algorithmic constructions
and analysis combine the inexact linearization framework of [Kiw06¢] (in a simplified ver-
sion that highlights its crucial ingredients; cf. [Kiw06d)) with fairly intricate properties of
improvement and penalty functions which have not been used so far in bundle methods.

As for other bundle methods, we note that the exact penalty function methods of
[Kiw87, IKiw91] require additionally that the set (" be bounded, and may converge slowly
when their penalty parameter estimates are too high. The level methods of [LNN95] (also
see [Kiw95, F4b00, BTNO5]) need boundedness of the set C' as well. Similar boundedness
assumptions are employed in the filter methods of [F1L99, KRSS05). Except for [Fab00}, all
these methods work with exact linearizations. We show elsewhere how to handle inexact
linearizations in an exact penalty method [Kiw06b] and a filter method [I{iw06a], the latter
being based on the present paper.

Our work was partly motivated by possible applications in column generation ap-
proaches to integer programming problems [LiD04], which lead to linear programming
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(LP) problems with huge nunbers of columns. When the dual LP problems can be formu-
lated as (1.1) (cf. [BLM*05, LuD04, Sav97]), our approach allows for ej-accurate solutions
of column generation subproblems, as well as for recovering approximate solutions to the
primal problems. (See [Kiw05) for related developments and numerical results.)

The paper is organized as follows. In §2, after reviewing basic properties of penalty
and improvement functions, we present ouwr bundle method. Its convergence is analyzed
in §3. Several modifications are given in §4. Applications to column generation for LP

programs are studied in §5.

2 The proximal bundle method of centers

2.1 Lagrange multipliers and exact penalties

We first recall some basic duality results for problem (1.1) (cf. [Ber99, §§5.1 and 5.3]).
Cousider the Lagrangian L(-; ) = f(-) + ph(-) with @ € IR, the dual function q(p) =

infe L(+; i) and the dual problem g, 1= supg, ¢ of (1.1). Under our assumptions, f, = q.. If

fe > —o0, the dual optimal set M = Arg maxg, ¢ is nonempty and compact, and consists

of Lagrange multipliers y > 0 such that q(p) = f.; it fu = —oo, M = 0. Thus, the

quantity & := inf,eas gt is the minimal Lagrange multiplier if f, > —oo, ft = 0o otherwise.
For a penalty parameter ¢ > 0, the exact penalty function

w(;e) = f(-)+ch{-}y with A{), = max{h(),0} (2.1)

satisies info (- ¢) = fo > —oo iff ¢ > i (cf. [Ber99, §5.4.5)).

2.2 Improvement functions

We associate with problem (1.1) the improvement functions defined for 7 € R by
e( ;) i=max{f() —7, ()}, ec(7):=e(7)+ic(), E(7r):=infec(7), (2.2)

where i¢ is the indicator function of C' (ic(u) = 0if w € C, oo if w ¢ C'). In our context, 7
will be au asymptotic estimate of f, generated by ow method, and to prove that 7 < f,,
we shiall need the main property of the function E given in part (vi) of the lenuna below.

Lemma 2.1. (i) The function E defined by (2.2) is nonincreasing and conver.
(it) If I is improper, then E() = f, = —oo for f, given by (1.1).
(i) If E is proper. then E 1s Lipschitzian with modulus 1.
(iv) If E is proper and f, = ~oo, then E(-) = iufch € (—o0,0).
(v) If f. > —oo, then E(7) >0 for 7 < f,. E(f,) =0, and E{(r) <0 for f. <.
(vi) If E(r) =0 for some 7 € R, then 7 < f,.

Proof. (i) Monotonicity is obvious, and convexity follows from [Roc70, Thm. 5.7].
(il) Since dom E = R, E(-) = ~oo by [Roc¢70, Thm. 7.2] and then f, = —oc by (1.1).
(iif) F is finite on dom E =R, and e(-;7') < e(;7) + [r — 7’| for any 7 and 7.



(iv) Since f, = —oo implies E() < 0, E(-) is constant and finite by [Roc70, Cor. 8.6.2],
ie, B(-) = o € R. Then, on the one hand, o > infe h by (2.2). On the other hand, for
we€ Cand 7 > f(u) — h(w), the fact that e(u;7) < A(u) yields a < infeh < 0 by (1.2).

(v) We have E(f,) <0 by (1.1), and E(f,) > 0 (otherwise f(u) < f, and h(u) < 0 for
some u € (' would contradict (1.1)); thus E(f.) = 0. By (1.2), for 7 := f(&) ~ h(d) >
J(@) > f., e(;7) = h(t) < 0 implies E(7) < 0, so by convexity, we have E(r) > 0 for
T < fo, B{7) <0 for 7 € (f,,7], as well as E(r) < 0 for 7 > 7 by monotonicity.

(vi) E is proper by (ii), f. > —oco by (iv), and (v) yields the conclusion. [J

Let U = {u & C: h(u) < 0} and U, := Argminy f denote the feasible and optimal
sets of problem (1.1). We shall need the following extension of [Kiw85, Lem. 1.2.16].

Lemma 2.2, Letue C,¢> 0,7 :=n(;2) (cf (2.1)). Then the following are equivalent:
(a) u € U, (t.e., u solves problem (1.1));
(b) E(7) = ec(u; T) (1.e., i minimizes e(-;7) over C');

(¢) 0 € declu;,7) (ie., 0€ (), where ¥(-) :=ec(;T)).

7

Proof. First, (a) implies 7 = f{@) = [, e(@;7) =
7), (b) and

E(7) = 0 by Lemima 2.1(v}, and
(c

hence (b). Since (b) means @ € Argminec(-; ) are equivalent. Next, note
that
0f(u) it f(a) -7 > h(u),
dec(it; 7) = Bic() + § co{df(@)Voh(w)} if f(a)—7 = h(a), (2.3)
Bh() if f(a) — 7 < h{a).

Finally, (c¢) implies k(@) < 0 (otherwise h(@) > 0 > f(i) — 7 and 0 € dec(u;7) =
oh(@) + dic(n) would give mingh = h{a) > 0, contradicting (1.2)), so the facts that
= f(@) and E(T) = e(&;7) = 0 yield 7 = f, by Lemma 2.1(v), and hence (a). [1

Lemma 2.2 suggests the following algorithmic scheme: Given the current iterate @ € C'
and the target 7 := 7(@; ¢) for a penalty parameter ¢ > 0, find an approximate minimizer
w of ec(-; 7), replace @ by u, and repeat. Note that if ec{u;7) < ec{@; ), then u is better
than 4: either f(u) < f(d) and uw € U if @ € U, or h(u) < h{a) if @ ¢ U. To progress
towards the optimal set U,, it helps if ec(@;7) < ec(@;7) for any optimal @ € U,; the
sufficient condition given below employs the minimal multiplier j of §2.1.

Lemma 2.3. Let w € U,, @« € (', ¢ > 0, 7 := 7w{@;¢). Then e(i;7) = h({);, and
e(t;7) < e(t,7) off f(@) < w(;e+1). In particular, f(@) < w(@;é+1)if ¢> ji—1.

Proof. First, 7 = f(@) and e(@; 7) = 0 if h{Q) <0, e{t; 7) = h(a) if 2(@) > 0. Next,
e(; 7) — e{t; 7) = max{ f(a) — w(@; ¢+ 1), h(@) ~ h{1),}

is nonpositive iff f, = f(@) < 7(&; &+ 1); the latter holds if 2+ 1 > [ (see §2.1). 0



2.3 An overview of the method

Our method generates a sequence of trial points {u*}%, C C for evaluating the approx-

3 : . 3 k . k . . .
imate values f¥ := fux, BE = R, subgradlents g’f‘ =gy, g = g and linearizations

Jo= Jue. g := hyi of f and i at u®, respectively, such that

W) =S+ (gf =l < FC) with f(uf) = fE 2 b)) — e, (2.4a)
B )= R4 (gF - — Y < R() with hy(u®) = BE > h(ef) — ¢, (2.4b)
as stipulated in (1.3). At iteration k, the polyhedral cutting-plane models of f and /
L) = 1]1;2}5)‘]() < f() with ke Jjc{l,... k}, (2.5a)
7
hy(o) = maxh;(-) < h() with k€ JEC{l .k}, (2.5b)
jEJ

which stem from the accumulated linearizations, yield the relaxed version of problem (1.1)

fE=inf{fu(w):ue Hyn O} with I, = {u: hy(u) <0}, (2.0)
in which Ay is an outel approximation of H := {u : h{u} < 0}. The current prox (or
stability) center 4 := u*® € ' for some k(1) < k has the values fE = fHD and hE = i),

FEe[f@") — e, f(@F)] and R € [R(4F) — e, R(2¥)]. (2.7)

As in (2.2) and Lemma 2.2, our improveinent function for subproblem (2.6) is given by
er(-) = max{fu(-) — 7, he()}  with 7 := fF + cu[RE], (2.8)

for some penalty coefficient ¢, > 0 and []4 = max{ 0}. We solve a proxinial version of
the relaxed improvement problem Ej, := inf é ek with ec = &, +ic by finding the trial point

0k } (2.9)

w1 = arg min { dr() = () +ic() + ﬁ .
where t, > 0 is a stepsize that controls the size of |t — @i*|. For deciding whether u*+!
is better than @*, we use approximate values of the improvement function e(-; 7). Thus.
e(@*; 7,.) is approximated by [hf],, and e(4*; 7i.) — ér(uF*?) by the predicted decrease

ve = [AE], — e (utt). (2.10)

When f§ < fi(@*) or hE < hy(4*) due to inexact evaluations, v, may be nonpositive;
if necessary, we increase t;, as well as ¢ in (2.8) if A% > 0, and recompute u*+! to
decrease & (uft1) until vy > Juft! — @¥%/2t, (as motivated below). Of course, e(u**%; 7;)
is approximated by max{fitl — 7, AEt1} A descent step to @*T' = w**! occwrs if
max{ fAH — 7, DAY < [0k 1+ — wuy for a fixed & € (0,1). Otherwise, a null step = gk
improves the next models ka, g1 with the new linearizations Sfei1 and hyqy (cf. (2.5)).
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2.4 Apggregate linearizations and an optimality estimate

Extending the approach of [Kiw06c|, we now use optimality conditions for subproblem
(2.9) to derive aggregate linearizations (i.e., affine minorants) of the problem functions at
u**1 as well as an optimality estimate (see (2.22) below) related to Lemma 2.1(vi).

Lemma 2.4. (i) There exist subgradients pf, pf, p& and a multiphier vy such that
P € 0fs(utth), pf € Oh(u*), pé € dic(uFth), (2.11)
it + (L= wdpl + b =~ — a4, (212)
v €[0,1], velee(ufh) = fuu* ) + 1l =0, (1 — w)fer(e®™) = ()] = 0. (2.13)

(ii) These subgradients determine the following aggregate linearizations

Fe() = Sl + (o, =) < fi) < 7, (2.14)

() o= (B + (ph, - — W) < ha() < A, (2.15)

io() = e (W) + (pf, -~ uth) <de(), (2.16)

&) i= vl () = m 4 (1 — v hie() +26() < €5() < ecl ) (2.17)

(iil) For the aggregate subgradient and the aggregate linearization error given by
pro= z/kpﬁ + (1 =)ok +ph = (@ = F Y/t and e = [WE]L — eb(ah), (2.18)

and the optimality measure

Vi := max{|p*l, e + (05, 05}, (2.19)
we have
BE() = ep(uh ) + (pb, - — b, (2.20)
(hE)s — e + (p*, — @) = et (- ) <eE() <eclim) (2.21)
ec(u;mi) > eg(u) > [hf], = V(L + [ul)  for all u. (2.22)

Proof. (i) Use the optimality condition 0 € d¢y(u*") for (2.9) and the form (2.8) of éj.
(i1} The first inequalities in (2.14)—(2.15) stem from (2.11), and the final ones from
(2.5). Similarly, (2.11) gives (2.16) with ic(u*™1) = 0. Then (2.17) follows from the facts
that v € [0, 1] (cf. 2 13)) yields vy (fi — ) + (1 —uk)hk < € by using fe < froand by < hy,
in (2.8), and that & := &, + ic < ec(-; 1) by using fi < f and hy < h in {2.2).
(iii) For (2.20), use (2.12)—(2.13) and the definitions in (2.14)—(2.18); since &, is affine,
its expression in (2.21) follows from (2.18). Finally, since by the Cauchy-Schwarz inequality,

— (" u) + e + (pF, @) < |pFllu] + e + (P8, @) < max{[pF[ e + (p*, 45} + [ul)
in (2.21), we obtain (2.22) from the definition of ¥} in (2.19). 0

Obaerve that V) is indeed an optimality measure: if Vj, = 0 in (2.22), then E(7,) > 0

gives f¥ < 7. < f, by Lemma 2.1(vi); similar relations hold asymptotically.
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2.5 Ensuring sufficient predicted decrease

In view of the optimality estimate (2.22), we would like V} to vanish asymptotically. Hence
it is crucial to bound V. via the predicted decrease vy, since normally bundling and descent
steps drive vy, £0 0. The necessary bouunds are given below.

Lemma 2.5. (i) In the notation of (2.18), the predicted decrease vy of (2.10) satisfics
v = telp*)’ + e (2.23)

(i) We have vy > —e, & L|pF|Y2 > —cp & v > LfpPY2 = [uft! — 0% /2.
(iii) For the maximal evaluation error eya := max{es, €,}, we have

—€k S Eniax- (224)

(iv) The optimality measure of (2.19) satisfies Vi, < max{|p*|, ex }(1+|@*|). Moreover,

v > max{tg|p*¥2, ||} if up > —eg, (2.25)
Vi < max{(2ue/t) 2, 0} + [35) o w2 —e, (2.26)
Vie < (2emae/te) " (14 [2%)) if ve < —cg (2.27)

Proof. (i) We have (p*, uf*! — @*) = —t,[p*[> by (2.18), whereas by (2.20),
L) = B () = e () + i)
so v = [AF], — ep(ubt) = e + ti[pF|? by (2.18). Note that v, > €.
(ii) This follows from (2.23) and the first part of (2.18).
(iii) By the definitions of &% and € in (2.17)~(2.18), we may express —e;, as follows
=6, = v fu(@*) — 7] 4 (L= w) e (@) + 76(2%) — [R5l

where v € [0,1] by (2.13), fu(@®) < f(@*) < fE + ep, Re(0F) < h(a%) < hE + €, and
(0%) <ic(@*) = 0 by (2.14)-(2.16) and (2.7}, and 7 > f¥ by (2.8). Therefore, we have

—ex < ey + (L= ve)h(@F) — (1 — v)[hE], < ke + (1 — vi)en < Emax.

(iv) Since Vi < max{[p"], ex}(1 + |@*[) by (2.19) and the Cauchy-Schwarz inequality,
the bounds follow frow the equivalences in statement (ii), using vy, > €, and (2.24). O

The bound (2.27) will imply that if 7, > f, (so that F(r.) < 0 and Vj can’t vanish in
(2.22) as t; increases), then vy > e and the bound (2.26) hold for ¢, large enough.
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2.6 Linearization selection

For choosing the sets J§*' and JF**, note that (2.4)-(2.5) and (2.11) yield the existence

of multipliers a;” for the pieces f;, j € J¥, and ﬁ;‘ for the pieces hy, j € JF, such that

(p'}, 1} = Z af(ij, 1) afjk >0, af[ﬂ(uk“) — L) =0, 5 ¢ Jjﬁ, (2.284)
JEJ}'

(P 1) = 3 B5(Vh, 1) 85 =0, G Ry — b (u* )] = 0, 5 € Jf. (2.28h)
JeJf

Denote the indices of linearizations f; and h; that are “strongly” active at ut* by
Jp={jeJj af#0} and Jf:={j€ Ji:p #0} (2.29)

These linearizations embody all the information contained in the aggregates J. and Ry
(which are actually their convex combinations; cf. (2.14)-(2.15) and (2.28)). To save
storage and work per iteration, we may drop the remaining linearizations.

2.7 The method

We now have the necessary ingredients to state our method in detail.

Algorithm 2.6.

Step 0 (Initialization). Select u' € (', a descent parameter n € (0,1), an infeasibility
contraction bound ry, € (0,1], a stepsize bound Ly, > 0, a stepsize t; > by, and a penalty
coefficient ¢; > 0. Set @' :=w!, fi = fl:= [, g} = g}‘l, hl=hLi=hg, g} = g (cf.
(24)), Jj = Jy = {1}, 4} == 0, k:=k(0) :== 1, := 0 (k(!) — 1 will denote the iteration
of the lth descent step).

Step 1 (Trial point finding). For & given by (2.8), find u**! (cf. (2.9)) and multipliers
af, L?]k such that (2.28) holds. Set vy by (2.10), p* := (&* — w*+1) /ty and ¢, := vy — 4"
Step 2 (Stopping criterion). If V, = 0 (cf. (2.19)) and h% < 0, stop (f¥ < £,).

Step 3 (Phase I stepsize correction). If b < 0 or €pax = 0 or v > rphé, go to Step 4.
Set ty := 10y, iF := k. If ¢4 > 0, set ¢; := 2¢y; otherwise, pick ¢, > 0. Go back to Step 1.
Step 4 (Stepsize correction). If vy > —ex, go to Step 5. Set ty := 10ty, ¢ :=k. I hE > 0,
set ¢y, := 2¢p if ¢ > 0, pick ¢ > 0 otherwise. Go back to Step 1.

Step 5 (Descent test). Evaluate fyq and hgyy (cf. (2.4)). If the descent test holds:
max{ /A — . WP < [RE), — ko, (2.30)

set @MY = A FEEL o pREL AR LR 2 0 k(L4 1) i= k1 and increase | by
=h

1 (descent step); else set %! = aF, fE+ =[5 pEFU o bk and 43 = b (nudl step).



Step 6 (Bundle selection). For the active sets jf" and JF given by (2.29), choose

S Jfulk+ 1} and  JET D JFU{k+ 1) (2.31)
Step 7 (Stepsize updating). I k(I) = k+ 1 (i.e., after a descent step), select ¢y > £ and
Crp1 > 0; otherwise, set ¢y = ¢, and either set {3, := fy, or choose try1 € [tumin, L] if
At
o= 0.

Step 8 (Loop). Increase k by 1 and go to Step 1.
Several comments on the method are in order.

Remarks 2.7. (i) When the set C' is polyhedral, Step 1 may use the QP method of
{Kiw9d], which can solve efficiently sequences of related subproblems (2.9).

(ii) Step 2 may also use the test infé&f > 0 and A% < 0 (see Lemma 2.8(i) below).

(iii) Step 3 is needed in phase 1 (for 2% > 0) when inaccuracies occur (€uax > 0); it
increases t; and 7. (via ¢) to obtain vy > kphk, so that eventually a descent step (cf.
(2.30)) will reduce the constraint violation significantly: A" < (1 — ki) hE.

(iv) In the case of exact evaluations (€,,,x = 0), Step 4 is redundant, since vy > €, > 0
(ct. (2.23)-(2.24)). When inexactness is discovered via vy < —éy, Uy is increased to produce
descent or confirm that #* is almost optimal. Namely, when @* is bounded in (2.27),
increasing ty, drives V to 0, so that f& < 7, < f, asymptotically. Whenever t;, is increased
at Steps 3 or 4, the stepsize indicator i¥ # 0 prevents Step 7 from decreasing t; after null
steps uutil the next descent step occurs {cf. Step 5). Otherwise, decreasing t; at Step 7
alms at collecting more local iuformation about f and h at null steps.

(v) When enax 1= max{es, e} = 0, our method employs the exact function values

fE=f@hy, nE=hn@), mo=w(@Fe) > f(05) and  [hE]y =e(dfinm)  (2.32)
(ef. (2.7), (2.1), (2.8) and Lem. 2.3}, and the aggregate inequality (2.21) means that
Pt e dkec(ﬂ";rk) with ¢, > 0. (2.33)

Thus, if Vi = 0 in (2.19), then |p¥| = ¢ = 0 imply that 0 € dec(d*;7) and hence that
@* € U, by Lemma 2.2; in particular, in this case we have k% = h(d*) < 0.

(vi) At Step 5, we have v, > 0 (using (2.26) and Vi, > 0 at Step 2 if A% < 0; otherwise
uk > mpht > 0 by Step 3 if 0 > 0, Vi > 0 by item (v) if €pax = 0). When a descent step
occurs, the descent test (2.30) with the target 7 given by (2.8) implies that

REFL < Bk — o, if 1% > 0, (2.34a)
[EY < kpe and BT <0 if RS <O (2.34b)

Thus at phase 1 (i.e., when h% > 0), we have reduction in the constraint violation, whereas
at phase 2 the objective value is decreased while preserving (approximate) feasibility.
(vii) An active-set method for solving (2.9) (cf. [Kiw94]) will produce [J¥[+|JF| < m+1
(cf. (2.29)). Hence Step 6 can keep |J}““| + [JEFY) < m for any given bound m > m + 3.
(viii) Step 7 may use the procedure of {Kiw90, §2] for updating the proxinity weight
1/, with obvious modifications.




We now show that, in phase 2, the loop between Steps 1 and 4 is infinite iff 0 < inf &5 <
€, (@), in which case 4% is approzimately optimal: SOy < £+ ep and h(G*) < ¢,

Lemma 2.8. Assuming kY <0, recall that Ey = inf é(} with &k = é; +ic. Them:
() If By >0, then f(if) — ¢; < f¥ < f, and h(0*) < ¢,.
(ii) Step 2 terminates, i.e., Vi = max{|pF|, ex + (P5, 25} = 0, iff 0 < By = 6,(a%).
(iit) If the loop between Steps 1 and 4 4s infinite, then Ey > 0 and Vj, — 0.
(iv} If By > 0 at Step 1 and Step 2 does not terminate (i.e., [y, < & (0%); of (i),
then an infinite loop between Steps 4 and 1 occurs.

Proof. (i) We have E(r.) > Ep and 7, = f& (cf. (2.2), (2.8), (2.14)—(2.15)), so f§ <
by Lemma 2.1(vi), whereas f(@*) < f5 + ¢; and h(GF) S Rt + e, by (2.7).
) yield w = i, 25(i) < 2(-) and

(i) “=": Since |p¥| =0 > q, (2.18) and (2.21) yield
0 < et (i), whereas by (2.20), &5(2%) = &, (u**!) = & (2" ) “e=": Since é&(iF) = min &%,
using ¢ (@*) = minek < (ﬁ“ﬂ"“) < GR(0F) in (2. 9) ives u*t! = @ so again 2L (0%) =
k(%) by (2.20), and (2.18) yields p* = 0 and ¢, = é(u ) < 0.

(iii) At Step 4 during the loop the facts that Vi < (2ema/te)' (1 + [@%]) (cf. (2.27))
and t;, T 0o as the loop continues give V), — 0, so é5(:) > 0 by (2.22).

(iv) We have & (u**!) > infé&k > 0. Thus v = —&,(u*+1) < 0 (cf. (2.10)) and (cf.
(2.23)) v = t|p*|? + er vield e < —14{p*|? at Step 4 with p* £ 0 (since max{|p®], e, +
(p*, %)} =: Vi > 0 at Step 2). Hence ¢ < —%|p*|?, so v, < —ep (cf. (2.23)) and Step 4
loops back to Step 1, after which Step 2 can’t terminate due to (ii). 0

3 Convergence

In view of Lemma 2.8, we may suppose that the algorithm neither terminates nor loops
infinitely between Steps 1 and 4 at phase 2 (otherwise @* is approximately optimal). For
phase 1, our analysis will imply that any loop between Steps 1 and 3 or 4 is finite. We shall
show that the algorithm generates points that are approximately optimal asymptotically
by establishing upper bounds on the values ff and hk. We first bound f¥ via V.

Lemma 3.1. Let K C IN be such that V;, 20, Then Eﬁkeh- f,,f < mke,\, T < f,.

Proof. Pick K’ C K such that 7, LR limgex 7. Since fu < 7 by (2.8), we need only
show that 7 < f, when T > —o0. Note that 7 < 00, since otherwise for 7, > f(i) — (),
the fact that e(i; 7)) = h(@) < 0 (cf. (2.2), (1.2)) and the bound (2.22) would yield

1°L)—1‘1»0,

0> h(h) = eclt; ) = = Vil

a contradiction. Thus 7 is finite. Since ec(u;-) is continuous, letting 4 A oo in (2.22)
gives ec(+; 7) > 0. Therefore, we have E(7) > 0, and hence 7 < f, by Lemma 2.1(vi). O

The upper bound of Lemma 3.1 is complemented below with a lower bound (which is
highly useful for the “dual” applications in §4.3 and §5).
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Lemma 3.2. If limg hE <0, then for the minimal multiplier fi := inf,cpr o (cf §2.1),
Limy fE 4+ ¢; 2 limy f(05) > fo — fie, and Ty h(6¥) < ¢ (3.1)

Proof. Forall k, f(0F) < fEeq, h(a%) < REde, by (2.7), L(45 5) = f(@%)+ph(a*) > f,
with &* € C"and 0 < it < o0 if f, > —o00, i = 00 if f, = —oo; the conclusion follows. [J

We first consider the case where only finitely many descent steps occur. After the
last descent step, only null steps occur and {¢;} becomes eventually monotone, siiice once
Steps 3 or 4 increase {, Step 7 can’t decrease ty; thus the lHmit £, 1= limy £, exists. After
showing that ¢,, = co may occur only at phase 2 in Lemma 3.3 below, we deal with the
cases of o = 00 in Lemma 3.4 and t,, < 0o in Lemma 3.5.

Lemma 3.3. Suppose there exists k such that h,'_j > 0 and only null steps occur for all
k> k. Then Steps 3 and 4 can increase ;, only a finite number of times.

Proof. For contradiction, suppose ¢, — co. Since 7; — oo (cf. Steps 3, 4 and (2.8)), we
may assume 7 > 7 1= f(it) — k(i) for the Slater point @ of (1.2) and k > £; then using
the minorants fi < f and hy, < h (cf. (2.4)) in the definitions (2.8) and (2.2) yields

er() < max{fi(0) — 7, (@)} < e(d;7) = M(@) <0 with e C. (3.2}
At Step 1, (2.9) gives the proximal projection property for the level set of &f := &, +ic
W = argmin{fu — 0¥ ef(u) < ef(uFt)}, (3.3)

whereas before Step 3 increases ty, vy, < it vields e, (ufr1) > (1 — k)08 > 0 by (2.10),
so for k > k, (3.2) and (3.3) give [uf*! — 0¥ < 7 = |4 — 4*] and hence [p*| < r/ty by
(2.18). Therefore, if Step 3 increases t; at infinitely many iterations, indexed by K say,

then t, — oo yields p* i 0, and by (2.21), (2.20) and Cauchy-Schwarz, we get
0> h(i) > () > e5(0) = en(u™ Y + 0, & — oY) > % @ — oY o0,

a contradiction. Similarly, if Step 4 is entered with v, < —¢; for infinitely inany iterations
indexed by /" (say), then ¢, — oo and (2.27) give Vj 250, and we get from (2.22)

0> h(@) > e&(a) > —Vi(
another contradiction. The conclusion follows. 0
The case where the stepsize £, keeps growing at a fixed prox center is quite simple.

Lemma 3.4. Suppose there evists k such that only null steps occur for all k > k. and
loo i== Ll 8y = 00. Let K = {k > Eitp > te}. Then Vj 250 and /z,ﬁ < 0.

Proof. We have hﬁ < 0 (otherwise Lemma 3.3 would imply o, < o0, a contradiction).
For k£ € K, before ¢, is increased at Step 4 on the last loop to Step 1, we have V, <

(2€max/te) V2(1 + I’ELE|) by (2.27), so t; — oo gives Vi X0.0
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The case where the stepsize ¢, doesn’t grow at a fixed prox center is analyzed as in
[Kiw06c]. After showing that the optimal value ¢ (u**!) of subproblem (2.9) is nonde-
creasing and bounded above, ©**! is bounded and «*+2 — u**! — 0, we invoke the descent
test (2.30) to get ve — 0; the rest follows from the bounds (2.25)-(2.26).

Lemma 3.5. Suppose there ewists k such that for all k > k, only null steps occur and
Steps 3 and 4 don’t increase t,. Then V), — 0 and h,ﬁ <0.
Proof. Fix & > k. We first show that the aggregate &8 minorizes the next model ¢&t!
e () e () = e () +ic(): (3.4)
Consider the selected model fk = maxjejlk f; of foo= max;e s fj; then f;, < fk Using
(2.29) in the expression (2.28a) of p¥ gives fi(1**1) = fi(u**!) and vk € Af (w1 (cf.
[HUL93, Ex. V1.34]). Thus fi < f by (2.14), so the choice of JE C JFTY implies that
Jo < fu < fes1. Similarly, for hy := max; e j h;, (2.28b) yields hy < hy < Pysy. Then,
using the definition (2.17) of &% with vy € [0,1] (cf. (2.13)), the minorization 7% < ic of
(2.16) and the fact that 7, = 7, (by (2.8) and Steps 3 and 4) gives the required bound
k+1

26 < vlfir = ) + (1= vy + i < max{ frrr = i, g1} + i = 6

{Note that this bound only needs the minorizations f;, < fkﬂ +ic and by < Ivzkﬂ + ic;
this will be important when selection is replaced by aggregation in §4.2.)
Next, consider the following partial linearization of the objective ¢ of (2.9):

$(r) =g () + 5zt - —uf (3.5)

We have e (u**!) = &, (¢**1) by (2.20) and Vg, (u¥t?) = 0 from Vek = p* = (@ —ut*1) /1,
(cf. (2.20), (2.18)); hence ¢y (uf™!) = dp(uf*!) by (2.9), and by Taylor’s expansion
Bl() = () + 5[ - =M (3.6)
To bound ¢, (*) from above, notice that (3.5), (2.18) and (2.24) imply that

Pr(@*) = e(8¥) = [hf]y — ex < [hE)s 4 €mex-

Then by (3.6}, )
() + i|uk+l — @ = (@) < [hE]L + €max- (3.7)

Now, using the facts that ¢**! = @* and t,,, < t and the model minorization property
(3.4) in the definitions (3.5) of ¢, and (2.9) of ¢y, gives ¢ < ¢ryy. Hence by (3.6),

(™) + 5 bt B = G () < g (1), (3.8)
Thus the nondecreasing sequence {¢(u*!)},55, being bounded above by (3.7) with @* =

it for & > [, must have a limit, say ¢eo < [/Lﬁ]Jr + €max- Moreover, since the stepsizes
satisfy #;, < tg for & > k, we deduce from the bounds (3.7)-(3.8) that

St T oo, wMTE—uFTt 0, (3.9)

12















































