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The paper presents a new existence result for three-dimensional (3-D)

shape memory model which has the form of a nonlinear thermoelastic-
i ity system with viscosity » > 0 and capillarity » > 0. In contrast to
) the previous authors results, proved under assumption 0 < 24/ < v,

here we admit » > 0 and » > 0 possibly arbitrarily small. With such as-

stmption the obtained existence result becomes more adequate for shape

memory problems where viscosity effects are negligible small. Moreover,

we consider a broader class of boundary conditions. _

The main new part of the present paper constitutes solvability analysis

of the initial-boundary-value problems for viscoelasticity system with

capillarity.
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1. Introduction

i The goal of this paper is to present a pew existence result for three-
dimensional (3-D) shape memory model which has been previously studied
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by the anthors under more restrictive assumptions in [10], [11]. The model,
firstly introduced and studied in {13], {14], [9], has the form of the following
nonlinear thermoelasticity system with viscosity v > 0 and strain-gradient
coeflicient (called capilarity} » > 0:

wy ~ vQu + xQ*u =V -F(e,0)+ b in QT = Qx(0,7),

Ulr=o = U0, Uth=o = 11 in Q, (1.1
B(d:)u =0 on ST =5 x(0,7),
co(e,8)0; — koD = BF pe(e,0) + v(Asg,) e, +g in QT
Bli=0 = 6o in Q, (1.2)
n-Vé=0 on ST,
where
CO(E,G): Cy —HF.”(E,H), (13)
and B(8;)u stands for one of the following two types of boundary condi-
tions
u=0 Qu=0 on ST,
or (1.4)

u=0, (Ae(u))n=0 on S7.

5‘;’ Here Q C R®is a bounded domain with a smooth boundary S, occupied
by a solid body in a reference configuration with constant mass density
(p = 1); n is the unit ontward normeal vector to S; T > 0 is an arbitrary
fixed time; u : Q¥ — R® is the displacement and 8 : QF — R is the
absolute temperature. The second order tensors

e=efu) = %(Vu +(Vu)T) and & = e(ur) = %(V‘u, + (Vu)T)

denote respectively the linearized strain and the strain rate. The operator
Q stands for the linearized elasticity operator defined by

Qu =V (Ae(u)) = pAu+ (A + p)V(V - u), (1.5)
r where A = (A1) is the fourth order elasticity tensor representing linear
B isotropic Hooke’s law
Ae(u) = Atre (u)I + 2pe(u), (1.6)
I is the identity tensor, and A, p are the Lamé constants such that x4 > 0
and 34 + 2z > 0.
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Correspondingly, the fourth order operator @2 = Q@ is given by
Q¥ =V (Ae(Qu)) = 2A%u + (A + p)(A + 3u)VV - (Au).  (1.7)

Moreover, F(e,8) denotes the elastic energy which is a nonconvex (multi-
well) function of & with the shape strongly depending on #. The remaining
3 quantities in (1.1), (1.2) have the following meaning: co(e, 0) is the specific
;"f:' heat coefficient, ¢, ko, v and » are positive numbers denoting respectively
thermal specific heat, heat conductivity, viscosity and capillarity.
Systern (1.1), (1.2) describes balance laws for the linear momentum and
the internal energy. The underlying free energy density has the Landau-
Ginzburg form

H(e(w), Ve(u),0) = —euflogh + Fle(w),0) + Z1Quf*  (1.8)

with the three terms representing respectively thermal, elastic and strain-
gradient (capillarity) energy. The corresponding stress tensor is given by

S = :—Z(e(u), Ve(u),6) + 5 = Fa(e(u),0) — cAe(Qu) + vAe(ur),
(1.9)

where 6f/6e = f. — V - f ve denotes the first variation with respect to ¢,
and SY = v Ae(w,) is the viscous stress according to Hooke’s-like law. For
thermodynamical background of the model we refer to [9], {14].

We add few remarks on model (1.1), (1.2) and its solvability. Firstly, we
point out that dynamics (1.1); is in accordance with the so-called viscosity-
capillarity criterion justified by several authors, among them Slemrod {15],
Abeyaratne-Knowles [1} as a proper model for dynamics of phase transitions
in van der Waals fluids and for propagating phase boundaries in solids. By
this criterion, originally formulated in case of one space dimension, a proper
constitutive relation for the stress has the form (see e.g. [1], eq. (2.8))

5= Fu (Us) — 5Upsy + Viiz (1.10)

p where u; is the strain, F(u;) is a nonconvex double-well elastic energy,
and ¥ > 0 and > > 0 are the viscosity and the strain-gradient coefficient,
respectively. We can see that equation (1.9) generalizes stress-strain relation
(1.10) to the case of three space dimensions.

Secondly, we remark that in case of vanishing viscosity v = 0, problem
(1.1), (1.2) represents a 3-D analog of the well-known Falk model for one-
dimensional martensitic phase trausitions of the shear type (see [6], [4]).
Unfortunately, either our previous theory [10], [11] or the present one do
uot cover the case v = 0. The existence proofs in [10], [11] as well as

B
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the earlier one in [14] were based on the following condition between the
vigcosity and capillarity coefficients

0 < 2/ < v (1.11)

Such conditon allows for the decomposition of elasticity system (1.1); into
two second order parabolic problems

w— AQw =V -F.(e,8)+b in QT,
wli=o0 = u1 — aQug in Q, (1.12)
w=0 on ST

)

u —aQu=w in QF,
Uly=0 = ug in , (1.13)
u=20 on ST,

where «, A are numbers satisfying
at+f=v, af=osr

Due to condition (1.11) these numbers are real and positive, o, 8 € R .
The decomposition (1.12), (1.13) was the main idea underlying the exis-
tence proofs in the above mentioned papers. It is known, however, that in
structural phase transitions in shape memory alloys strain-gradient effect is
observable but not the viscous one (see e.g. [4]). For that reason condition
(1.11) is not appropriate for shape memory models.

In view of that it is of importance to construct an existence theory with
relaxed condition (1.11). In the present paper we replace (1.11) by

x>0 and v >0, (1.14)

allowing the viscosity to be arbitrarily small but positive. In such a case
system (1.1) is parabolic and the theory of parabolic equations can be
applied (see [16], [5]).

We mention a similar study due to Yoshikawa [20] which is also con-
cerned with the existence of solutions to problem (1.1), (1.2) under assum-
tion (1.14). On the contrary to the present paper, however, the result in
[20] concerns model (1.1), (1.2) with simplified energy equation (1.2);.
This simplification consists in neglecting the nonlinear term —8F g4(e, §)
in the specific heat coefficient co(e,d) by assuming that co(e,8) = ¢, =
= const > 0. Obviously, such simplification destroys the thermodynamic
structure of the model but makes the mathematical analysis much simpler.
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We add that the same simplification was used in the first result on the
global in time unique solvability of system (1.1}, (1.2) in 2-D and 3-D cases
obtained in [14].

The existence result due to Yoshikawa [20] generalizes that in {14] by admit-
ting weaker assumptions on the data, in particular (1.14) instead of (1.11),
and a more general solutions class. The technique used in {20] is different
from the classical methods for parabolic systems applied in [14], [10], [11].
1t is based on the so-called maximal regularity theory for abstract parabolic
equations.

The authors papers [10] and [11] generalize the result of {14] respectively
in 2-D and 3-D case by removing the above mentioned simplification of the
energy equation. We stress that the presence of a non-linearity in the leading
coefficient of the heat conduction equation introduces essential difficulties
in the existence proof.

As it has been already mentioned in case of one-space dimension problem
(1.1), (1.2) with 3¢ > 0 and v = 0 is identical with the Falk model. In such
a case, in contrast to the three-dimensional one, there are several results on
the existence and uniqueness of solutions, in particular due to Sprekels and
Zheng {17], Aiki [2] and Yoshikawa [19]. The latter paper includes up-to-
date list of references related to 1-D Falk’s model. For a survey of diffused-
interface models of shape alloys and the related mathematical results we
refer to [12]. We mention also that problem (1.1), (1.2) without capillarity
but with the viscosity, i.e. » = 0, v > 0, with simplified energy equation
discussed above, has been studied by Zimmer [18].

Finally, we add a remark concerning boundary conditions in (1.1);. In
[14] and later in [10], {11] the no-displacement boundary condition % = 0 on

was chosen in order to apply the result due to Necas [7] on the ellipticity
property of the operator @ whereas the condition Qu = 0 on ST resulted
in a compatibility with parabolic decomposition (1.12), (1.13).

In the present paper, apart from u = 0, Qu = 0 on ST, we admit the other
type of boundary conditions (1.4),.

The plan of the paper is as follows.

In Section 2 we formulate the assumptions and state the existence and
uniqueness theorems. These theorems generalize the results of {11], Theo-
rems 2.1, 2.2, by admitting assumption (1.14) and a broader class of bound-
ary conditions (1.4).

In Section 3 we examine the solvability of the initial-boundary-value prob-
lem defined by the differential operator on the left-hand side of (1.1); with
initial conditions (1.1); and boundary conditions (1.4). We show that the
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differential operator is parabolic in the sense of Solonnikov and that the
initial and boundary conditions satisfy the Shapiro-Lopatinskij conditions
(complementarity condition).

In Section 4 we present auxiliary results on the solvability of parabolic
problems of fourth and second order. These results play a key role in the
new existence proof.

Section 5 presents the outline of the existence proof.

We use following notations:

8 , dj
fi= —5{—;' 1=1,23, fi= ?l%’ e = (Eij)ij=1,23,

__(OF(e,8) _ OF(e,6)
F'S(E’H)_( 55-‘:‘ )i,j:l,z,sl F,g(e,(i)— 2

where space and time derivatives are material.
Vectors (tensors of the first order), tensors of the second order (referred
simply to as tensors) and tensors of higher order are denoted by bold letters.
Tensors of the second order represent linear transformations of vectors into
vectors; ST, tr§, §~! and detS, respectively, denote the transpose, trace,
inverse, and determinant of a tensor S.
A dot designates the inner product, irrespective of the space in question:
u-v is the inner product of vectors u = (w;) and v = (v;), S-R = tz(STR) is
the inner product of tensors § = (S;;) and R = (Ry;), A™- B™ is the inner
product of the m-th order tensors A™ = (A7} ; )and B™ = (B[? , ).
In Cartesian components,

(Su); = Sijuj, (ST);_,' = S5ji, tr§ =354,

u-v=wy, S-R=S;R;,

AT BT = AR, Bl .
Here and throughout the summation convention over repeated indices is
used. By A = (Aijx1) we denote the fourth order elasticity tensor which rep-
resents a symmetric linear transformation of symmetric tensors into sym-
metric tensors. We write (Ae);; = Aijrick.
The symbols V and V- denote the material gradient and the divergence.
For the divergence we use the convention of the contraction over the last
index, e.g. (V- 8); = 85;;/0z;.
We use the Sobolev spaces notation of [8]. Throughout the paper ¢ and ¢(T")
denote generic constants, different in various instances, depending on the
data of the problem and domain Q. The argument T indicates time horizon
dependence which is always of the form 7%, a € R .
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2. Assumptions and main results
Problem (1.1), (1.2) is studied under the following assummptions (A1)-(A5)

(the same as in [11]):
(A1) Domain £ C R® with the boundary of class C*. The C* - regularity

is needed to apply the classical regularity result for parabolic systems.
(A2) The coeflicients of the operator @ satisfy

p>0, 3A+2u > 0.

These conditions assure the following properties:

(1) Coercivity and boundedness of the operator 4
clel? < (Ae) e < ef?, @21

where ¢ = min{3A + 24, 2u}, ¢ = max{3A + 2, 2u};
(ii) Strong ellipticity of the operator @ (see [14], Sec.7). Thanks to this
property the following estimate due to Nedas [7} holds true

cllullwa < 1Qullrqy for {u € W) ul, = 0} ; (2.2)

(iii) Parabolicity in general (Solonnikov) sense of system defined by the dif-
ferential operator on the left-hand side of (1.1); (see Lemma 3.1).

The next assumption concerns the structure of the elastic energy.
(A3) Function #(g,8) : % x [0,00) — R is of class C3, where S? denotes
the set of symmetric second order tensors in R¥. We assume the splitting

F(e,0) = Fi(e,0) + Fafe),

where F) and F, are subject to the following conditions:
(A3-1) Conditions on Fy(e, 6)

(i) concavity with respect to ¢
—Fi00(e,8) 20 for (£,0) € §? x [0,00). (2.3)
(ii} 'Nonnegativity
Fi(e,0) >0 for (£,0) € 52 x [0,00).
(iii) Boundedness of the norm

”FIHC’(S’x[U,oo)) < 00.
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(iv) Growth conditions. There exist a positive constant ¢ and numbers
s, K1 € (0, 00) such that

[6i65 F1] < e(140°7F|eff), 0<i+j<2, i,jEN,

andi=2,j=1,
for large values of ¢ and ¢;;, where admissible ranges of s and K; are
given by
2 15
0 - 0< K —
<5< 3 < Ky < 3
Moreover, in case K; > 1 the numbers s and K; are linked by the .
equality
155 + 4K, = 15.
(A3-2) Conditions on Fy(¢)
(i) Nonnegativity
Fye) >0 for e €S2
(i) Boundedness of the norm
“F’;“cn(sz) < 00,
(iii) Growth conditions
02F2 e+ Jel7), 0<i<2, €N,

for large values of ¢;;, where

. 9
O<IX2$§,

Before formulating the assumptions on the data we note some conse-
quences of assumption (A3-1) which are of importance for the existence
proof. In view of (A3-1) (i), by definition of ¢p(e, 6),

0< ey <cole,8) for (g,8) € 57 x[0,00). (2.4)
Moreover, (A3-1) (iii) and (iv) imply the bounds

ICO(£>€)|7 |CO,9(51‘9), < C(l + |ElK‘)) (2 5)
co,c(e, )] < e(1+ |e[=X{0F2 -1}y for (e,0) € §2 x [0, 00). :

From (A3-1)(i) and (ii) it follows that
Fi(e,0) — 8F1 4(,8) > 0 for (£,8) € 5% x [0,00), (2.6)
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and owing to {A3-2) (i),
(Fi(e,0) = 0F1,0(e,0)) + Fo(e) 20 for (e,6) € $7 x [0,00),  (2.7)
what means that the elastic part of the internal energy is nonnegative.

The later bound is used in derivation of energy estimate.
(A4) The data satisfy

b€ Ly(QT), 5<p<oo,

g€ L,(QT), 5<g<oco, and ¢>0 ae in QT,

ug € WETHP(Q), uy € WETHP(Q), 5 < p< oo,

8y € WEH1(Q), 5<g< oo, and 6, = mingdo > 0.

Moreover the initial data are supposed. to satisfy the compatibility condi-
tions for the classical solvability of parabolic problems.
We note that by Sobolev’s imbeddings,

o € C1oo(Q), eg € C3% with 0 < ag, of < 1. (2.8)

Similarly as in {11] we introduce an additional technical assumption
which requires a special separable form of Fy(e,8):
(A5) Function Fy(g,6) has the form

N
Fi(e,8) = Zﬁ‘li(e)ﬁzi(i)»
i=1

where N-€ IV is a finite number, and in accordance with (A3-1) (i)—(iii),

(A5-1)
By e CY([0,00)), FoeCS?), i=1,...,N,
Fi(6) 2 0, Fa(e) 2 0, i=1,...,N,
—Flip0(6) 2 0, i=1,..., N
Moreover, functions ﬁ‘;(ﬁ), i=1,...,N, are given by
(A5-2)
~ 0 for 0 <6 <4,
Fri(0) = { ¢i(6) for 6; <8 <0y,
g% for 6 > 62,
where numbers s;, i=1,..., N, and 6,,8; satisfy the following conditions

0<si<s<l, 1< <8,<0"  fori=1, . N
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The requirements in (A5-1) imply that

wi(61) = b1, pi(61) =1, Pl (61) = 0, ;
@i(f2) = 03, wi(62) = 6571, pf(B2) = si(si — 1)85 77,
6 < pil6) <6, —pl(8)>0,  forf e (f,6),

where i = 1,...,N. We note that functions Fy;(8) in (A5-2) satisfy the
growth conditions (A3-1) (iv) which now read as follows

16 Pl < e(1+0°7),

|0 Faif < e(1+ [eff),
where i=1,...,Nand j=0,1,2. ]

We point out that in [11] the above separable form of F (e, §) has been
used to prove the key La.-norm estimate for §. In our present argumenta-
tion this part of the proof will remain unchanged. We add also that such
separable form of Fj(e,0) is conformable with the known Falk-Konopka
elastic energy model (for more detailed account see [11]).

The main result of the present paper is the following existence theorem.

Theorem 2.1: Let assumptions (A1)-(A5) be satisfied and the coefficients
>, v fulfil condition (1.14). Then for any T' > 0 there exists a solution (., 6)
to problem (1.1), (1.2) with boundary conditions (1.4) in the space

V(p,¢) ={(u,0)lu e WHQT), 6 W2 (QT), 5<p<qg<oo},
(2.9)
such that
fleellyrasgqry < (@), Wollzr qry < (1), (2.10)
with a positive constant C(7") depending on the data of the problem and
T4, a € Ry. Moreover, there exists a positive finite number w satisfying
lg + v(Ag;) - er) exp(wt) + [weale, 8) + Foe(e,8) &0 > 0 in QT,
such that
6 > 8. exp(—wt) in QF. (2.11)
‘We point out that this theorem generalizes the result in [11}, Theorem
2.1, by admitting a weaker assumption on the coefficients s, v and a broader
class of boundary conditions.

We remark also that solutions specified in Theorem 2.1 enjoy, by virtue of
Sobolev’s imbeddings, the following properties:

u,uq, €, Ve, Ve, 1,8, V0 (2.12)
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are Hélder continuous in 27 and satisfy the corresponding a priori bounds

with constant ¢(7T').

For completeness we recall also the uniqueness result which follows by
repeating the arguments used in [10] in the study of problem (1.1), (1.2),
(1.4)1 in 2-D case. The proof is based on a direct comparison of two solu-
tions, the use of energy estimates together with the regularity properties
(2.12). The parabolic decomposition of elasticity system (1.1) is not applied
in the uniqueness proof.

Theorem 2.2: Let the assumptions of Theorem 2.1 be satisfied and in
addition suppose that

(A6) F(e,0): 52 x [0,00) = R is of class C*, and g € Loo(Q7).

Then the solution (u,6) € V(p, ¢) to problem (1.1}, (1.2) is unique.

3. Parabolicity of the elasticity system with viscosity and
capillarity
We consider the following problem
uy —VQuy + #Q?u=Ff in QT
ult=0 = ug, Wih=o=uy, in Q, (3.1)
B(8:)u =0 on ST,
where Q is the linear elasticity operator defined by (1.5) and B(0,)u stands
for one of the following two types of boundary conditions

u=0, Qu=0 on ST,
or 3.2)
u=0, (Ae(u))n=0 on 57,

In view of (1.5), (1.7) system (3.1); can be expressed in the explicit form

ue + A(=vpu, + sep’Au) (3.3)
+VV o [+ phug + 3(A 4 p)(A + 3p)Au) = f ’

or, equivalently, in the matrix form

3
S 08,0y = fr, k=1,2,3, (3.4)
i=1
where
1k (01, 8z) = 61 [0F + A(—vpdy + sp?A)) (3.5)

+001, e, [-v (A + p)0: + 2(X + 1) (A + 3p) A].
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By assumption (A2), p >0, A+ 4> 0.
We write (3.4) in the short form

£(8¢, 0a)u = f, (3.6)

where £(&, 3;) is the matrix operator with elements {/3;(8;, 8z)}x j=1,2,3 '
Moreover, let L = det L.

Lemma 3.1: System (3.1), 1s parabolic.

Proof: By the Pourier-Laplace transform

=

a(€,p) = /eP‘dt/eif‘“’u(:c,t)dz,
] &S
system (3.6) takes the form
3 ~
Sl ie)i; = fi, k=123
i=1
Then
L=d’[d+ (A + mblé])
where
d=p" +palél’, a=vp+xplll?, b=vp+x(d+3u)E
The roots of equation L = 0 are
(i) double-root d = 0;
(i) d+ (A + wbleff = 0.
Solving (i} we get
P+ vplélPp+ i) = 0,

80

—v 4Vt —dx 5
= A e
In case of (ii) we have

PP (A + 20)vpl€l* + (A + 20)° 18] = 0.

Hence,

= =800+ 2wl

—vt \/1/5
2















































