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Abstract 

The paper deals with the numerical solution of wheel - raił rolling contact problems with the 
temperature field and wear as additional components. We shall consider the contact of a wheel 
with an elastic raił resting on a rigid foundation. It is assumed that the friction between the 
bodies is described by the Coulomb law. Moreover we assume a frictional heat generation and 
heat transfer across the contact sur face as well as Archard 's law of wear in contact zone. The 
friction forces and the heat flux depend on the friction coeflicient. This coeflicient is assumed 
to depend on temperature. 
In the paper quasistatic approach to solve this contact problem is employed. This approach is 
based on an assumption that for the observer moving with the rolling body the displacement 
of the supporting foundation is independent on time. The system is described by the elliptic 
variational inequality governing the displacement and the parabolic equation governing the heat 
flow. In order to solve numerically this system we will decouple it into mechanical and thermal 
parts. Finite element method is used as a discretization method. Using duality theory and the 
regularized relation between tangent and norma! components of the contact stress we formulate 
the mechanical part of this problem as an optimization problem with respect to the norma! con­
tact stress. Pschenichnyj method combined with Newton method are used to solve numerically 
th.is discretized optimization problem. Next for calculated displacement field the thermal part 
of the system is solved using Newton method. Numerical examples showing the influence of the 
temperature dependent friction coefficient on the contact !ocal traction and the length of the 
contact zone are provided. 

1 Introduction 

This paper deals with the numerical solution of the rolling contact problems taking into ac­
count the temperature field and wear as additional components of the rolling contact problem. 
Temperature field and wear in the wheel-raił system have influence on the phenomenon which 
occur in the contact area [l, 15]. We shall consider the contact of a rigid wheel with an elastic 
raił lying on a rigid foundation. The friction between the bodies described by the Coulomb law 
[15, 16, 26] is assumed. Frictional heat generation and heat transfer across the contact surface 
are also assumed. 
The wear process at the interface depends on kinematics, materia! and geometry of the contacting 
bodies as well as on the enviroment (see [3, 5, 8, 10, 13, 22, 26]). The wear may be caused by 
adhesion, abrasion, corrosion and surface fatigue. On a macro - scale the existence of the wear 
process can be identified as wear debris. This debris is assumed to disappear immediately at the 
point were it is formed. In the model the wear is identified as an increase in the gap between 
bodies. Moreover the dissipation energy is being changed due to wear. We employ the Archard's 



law of wear where the wear rate is proportional to the norma! contact pressure and the sliding 
velocity. 
The elastic rolling contact problem was considered by many authors [3, 4, 9, 13, 14, 15, 16, 19, 26]. 
Among others, one of the first rolling contact problem model was described in [9] where the 
contact zone and the norma! contact stress are assumed to be known. This model was developed 
and employed to calculate numerical solution of the wheel-rail wear problem in [3]. In [19] this 
contact problem was described by hyperbolic variational inequality and solved numerically using 
incrementa! finite element method. The numerical algorithm proposed in [19] is very generał and 
very slow convergent. The effects of heat generation and heat transfer involving contact has been 
analysed in literature for many years (see [l, 6, 7, 12, 21, 23, 25, 26]). The thermomechanical 
interface models taking into account micro-geometrical shape of surfaces were introduced in 
[15]. Finite element formulations including thermomechanical coupling for contact problems has 
been presented in [7, 12, 21, 23, 25]. In [7, 12] the Green function approach has been used 
used to solve the thermoelastic contact problems numerically. Papers were wear is included 
in the rolling contact model are less numerous. Reviewing paper [5] contains bibliography of 
papers dealing with contact and wear. In [3] Hertz contact model with Archard law of wear were 
employed to solve numerically wheel - raił contact problem. Coulomb friction model including 
heat generation and wear combined with Green function approach were used in [7, 8, 22] to solve 
numerically the rolling contact problem. Models of contact with friction, heat generation and 
wear are introduced and discussed in [10, 13, 22, 26]. 
In literature this contact problem is usually considered assuming the constant friction coefficient. 
Numerous experiments [18, 24, 2] indicate that this coefficient is depending, among others, on 
the sliding velocity or the temperature. The friction coefficient first abruptly decreases and 
than monotonously increases with the sliding velocity. The friction coefficient is also temper­
ature dependent through the temperature dependence of mechanical parameters of the wheel 
- rai! contact [18]. The existence of solutions for viscoelastic contact problem has been shown 
in [11] provided the friction coefficient is Lipschitz continuous function of sliding velocity or 
temperature. 
In this paper we solve numerically this thermoelastic wheel - raił contact problem assuming 
piecewise linear dependence of the friction coefficient on the temperature. Following [4, 14] we 
use a quasistatic approach to solve this contact problem. This approach is based on assumption 
that for the observer moving with the rolling wheel the displacement of the raił is independent 
of time. Moreover we shall assume that the length of the raił is much bigger than the diameter 
of the wheel. We shall confine ourselves to the case of small velocities of the wheel, i.e. we do 
not consider the vibration of the wheel. Under this assumption the rolling contact problem is 
described by an elliptic variational inequality instead of hyperbolic variational inequality. The 
thermal field is described by the parabolic equation. After brief introduction of the thermoelas­
tic model of the rolling contact problem in the framework of two-dimensional linear elasticity 
theory [7, 9, 15, 16, 21] the generał coupled parabolic - hyperbolic system describing this physical 
problem is formulated. Under the mentioned earlier assumptions we obtain quasistatic formula­
tion of this contact problem in the form of the parabolic - elliptic system. To solve numerically 
this system we will decouple it into mechanical and thermal parts [21]. Finite element method 
is used as a discretization method. First for given temperature field we solve the mechanical 
part. In order to solve the mechanical part of this system we introduce regularization of the 
friction conditions. Moreover we replace solving the elliptic inequality by solving an auxiliary 
optimization problem to find the norma! contact tractions only. This approach is based on dual­
ity theory [16]. Having obtained the norma! contact tractions we can calculate the displacement 
and stress fields in the whole domain by back substitution. Pschenicznyj Jinearization method 
is used to solve this auxiliary optimization problem [17]. Newton method is employed to cal­
culate tangent contact stress from regularized friction conditions. In the second step for the 
calculated displacement field we solve the thermal part of the system using the Newton method. 
The applications are for wheel-raił systems. The attention will be paid on the influence of the 
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temperature which is generated in the contact zone on the contact !ocal tractions and the length 
of the contact. The results are discussed. 

2 Contact Problem Formulation 

Consider deformations of an elastic strip lying on a rigid foundation (Fig. 1). The strip has 
constant height h and occupies domain f! E R2 with the boundary r. A wheel rolls along the 
upper surface re of the strip. The wheel has radius ro, rotating speed w and linear velocity V. 
The axis of the wheel is moving along a straight line at a constant altitude ho where ho< h+ro, 
i.e. the wheel is pressed in the elastic strip. It is assumed that the head and taił ends of the 
strip are clamped, i.e. we assume that the lenght of the strip is much bigger than the radius 
of the wheel. Moreover it is assumed that there is no mass forces in the strip. We denote by 
u= (u1 , u2 ), u= u(x, t), x En, t E (O, T), T > O, a displacement of the strip and by 0 = 0(x, t) 
the absolute temperature of the strip. 

', 

coolacl 
boundary 
re 

ro 

r, 

r, 
', 

Figure 1: Wheel rolling over the raił. 

In an equlibrium state the displacement u and the temperature 0 of the strip satisfiy the system 
of equations [1, 7, 16, 21): 

82u 
p 0t2 =A*DAu-a(3>.+2-y)v'0 inf!x(O,T) 

d0 
pcpdt = i<t:,0 inf! x (O, T) 

with initial and boundary conditions : 

u = O on ro x (O, T) 

B*DAu = F on re X (O,T) 
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u(0) = u0 u'(0) = u1 in fl 

0(0) = 0 in fl 

80 
Bn (x, t) = q(t) on r 

(5) 

(6) 

(7) 

where u(0) = u(x, O), u'= du/dt, uo, ii1, 0, q(t) are given functions, pis a mass density of the 
strip materiał, a is a coefficient of thermal expansion, ii, is a thermal conductivity coefficient, 0, 

is a heat capacity coefficient, ro= r \ re, the operators A, B and D are defined as follows [20] 

[ -k 
A= O 

a 
Ę 

(8) 

where n = ( n 1, n2) is outward norma! versor to the boundary r of the domain fl, >- and 'Y are 
Lame coefficients [15, 16}, A* denotes a transpose of A. By o-= (0-11, 0-22, 0-12) and F we denote 
the stress tensor in domain !1 and surface traction vector on the boundary r respectively. The 
surface traction vector F = (Fi, F2) on the boundary re is a priori unknown and is given by 
conditions of contact and friction. Under the assumptions that the strip displacement is small 
the contact conditions take a form [7, 9, 15, 16]: 

u2+9r+w:<::0, F2:<::0, (u2+gr+w)F2=0 onrex(O,T) (9) 

9r=r-ro 

on rex (O,T) (10) 

where µ = µ(B) is a friction coefficient dependent on temperature 0 and r is the distance between 
the center of the wheel and a point x E re lying on the boundary re of the strip !1. Under 

suitable assumptions 9r = h- ho+ Jr~ - (u1 + x1)2. w= w(x, t) denotes the distance between 
the bodies due to wear [10, 22] and satisfies the Archard law [5, 10], 

dw = kVP. 
dt 2 

(ll) 

w = w(x, t) is an interna! state variable to model the wear process taking place at the contact 
interface [10]. k is a wear constant. The wear process can be identified as wear debris, i.e. the 
removal of materia! particles from the contacting surfaces. The wear process between contacting 
surfaces may be caused by adhesion, abrasion, corrosion or surface fatigue [5, 10]. In the con­
sidered model the wear is described as an increase in the gap in the norma! direction between 
the contacting bodies. 

3 Friction coefficient dependent on temperature 

The relation between the friction coefficient and temperature is subject of intensive research. 
Among others in [18] an analytical approximation of the friction coeeficient is developed. In this 
model the friction coefficient is described by a rational function dependent on tensile strength and 
the Young modulus of the raił steel as well as other parametars. The values of these parameters 
are calculated by the least square method. In this model there is no explicit dependence on 
the temperature. The friction coefficient can be change only due to changes in the strength o-o 
or Young modulus E of the steel caused by temperature variations. Strength of the materia! 
is most heavily temperature dependent. Assuming that the decrease in strength at increased 
temperatures is due to heat-activated plastic deformation processes, the theoretical dependence 
of the steel friction coefficient displayed in Fig. 2 may be concluded. Analytically 

o-o 1 o-o 2 6 o-o 2 s E 
µ = 0.15 + 1020E - 2 · 10 ( E) - 1.6 · 10 ( E) ln(2.5 · 10 + 159;;;- ), 
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where E = 206GPa and 
o-o= 925.7MPa, if 0:,; 663°G, 

and 
3074 . / 3074 

o-o= 5.9360ln(0.0023e.- + y (0.0025e.-) 2 + 1, if 0 > 663°G. 

It is known that the increase in the average temperature at the Hertzian contact does not 
exceed 150 K, and thus the absolute temperature reaches 450 K at maximum. This suggests 
that temperature cannot considerably alter the friction coefficient. However, peak temperatures 
at microcontacts can achieve much higher values (about 1000 K) and significantly affect the 
friction coefficient. Similar dependence is reported in [24] where the hard carbon films are 
considered. On the other hand in [2], where automobile brake materials are considered, the 
friction coefficient is assumed to be strongly dependent on the temperature in the range -100 
[<leg] C - 200 [<leg] C and attaining severa! !ocal minima and maxima. 

0.65 

friction coefficient µ 
0.6 

0.55 

0.5 

0.-45 

0.4 

0.35 

0.3 

0.25 

0.2 
200 400 „o 600 1000 1200 1400 

temperature 8 [deg] C 

Figure 2: Theoretical dependence of the raił steel friction coefficient on the absolute temperature 
[18]. 

Following experimental investigation in [18, 2] we employ the following temperature dependence 
friction coefficient (see Fig. 3): 

µ=µo, if 0 :,; 0o, (12) 

and 

if 0 > 0o, (13) 

where µo, O < µF < µo and O < 0o < 0F are given positive constants. Note, the function given 
by (12) - (13) is Lipschitz continuous. 

3.1 Quasistatic formulation 

Let be given an observer moving with the wheel with the constant linear velocity V. We shall 
assume: 
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Figure 3: Experimental based dependence of the friction coefficient on temperature. 

(i) the lenght of the strip is much bigger than the radius of the wheel 
(ii) for the observer moving with a wheel the displacement of the strip 

does not depend on time 
(iii) the velocity of the wheel is small enough, i.e. vibrations of wheel 

can not appear 

If the running velocity is constant the temperature very soon approach steady-state values. 
We assume in the contact area the beat is generated due to friction and the beat flow rate is 
transformed completely into beat. Moreover we assume the wear debris disappear immediately 
at the point where it is formed influencing the contact conditions by increasing the gap between 
the contacting bodies only. Since the wear debris will be warm due to conduction from heated 
contacted bodies as well as due to wear processes the disappearing wear debris will carry away 
also the heat energy [10]. 
Let us introduce the new cartesian coordinate system O' x1 x2 hooked in the middle of the wheel. 
The systems O'x1x2 and Ox1x2 are related by: 

x; = x1 - Vt 

x2 

Since by assumptions (i)-(iii) u(x1, x2) does not depend on time we obtain: 

du 1 1 ) du( ) 
dt (x 1,x2 = dt x1 - Vt,x2,t = O 

It implies 

du= -V~ and 
dt dx1 

Using the same argument we obtain : 

~--V~ 
dt - dx1' 
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Let f! denotes now the moving part of the strip seen by the observer. Taking into account ( 14) 
quasistatic approximation of the problem ( 1)- ( 3) takes the form : 

Find u and 0 satisfying 

A* DAu - pV2un - a(3>- + 2,)'i70 = O in fi 

80 820 . 
-V-=1<- mf! 

8x1 8x~ 

u2 + 9r +w:,; O, 

I Fi I:::; µ(0) I F2 I 

u= O on fo 

B*DAu=F onfe 

F2:::; O, (u2 +gr+w)F2 = O on fe 

Fiu1,1 :::; O, (I F1 I -µ(0) I F2 l)u1,1 = O on fe 

80 0 kpep0 
-R. 8x2 = a[;:F2(x) + (1 - µ(0) µ(0)V F2(x)] on fe 

dw 
- =-kF2 
dx1 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

h /Ju· /J7u· . . k l 2 ( ) . . 1 2 -; . h W ere Ui,j = ~' Ui,jk = 8xi8Xk, t,J, = 1 , Uij = Um,ij m=l,2, i,J = , , K, = K. PCp 1S t e 
thermal diffusivity coefficient, a represents the fraction of frictional heat flow rate entering the 
raił, r is thermal resistance constant [10]. There are also given initial conditions ( 5) - ( 6). We 
assurne in (22) the heat flows through the contact surface only, therefore 0 = O on fo. 

3.2 Variational formulation 

Let us introduce a space and a set : 

Z= {z E [H1(!1)] 2 : z= O on fo}, (25) 

w is supposed to be enough regular function, i.e., for each t E (O, T) w E H 312(fe). Let 
a(.,.) : Z x Z---> R denote bilinear form defined by 

a(z, v) = k (Au)* DAvdx (26) 

We denote by (z, v) = fn z*vdx the scalar product in L2 (f!) . 
We formulate quasistatic problem ( 18)-( 22) in the variational form. Let us denote by a' the 
bilinrear form depending on 0 E Z : 

a'(0;z,v) : Z x z_, R 

a'(0; z, v) = a(z, v) - pV2I}=1 (zi,1, v.,1) - a(3>- + 2,)(0, v1,1 + v2,2) (27) 

Note, that the coercivicity of the form ( 27) is assured for small velocities only. Problem ( 18) 
- ( 22) is equivalent to the following variational problem [16] : 

Find u E K and 0 E Z satisfying : 

a'(O;u,q,-u)+ { F1(u1-Vu1,1)df+ { µ(0)IF21(14>1I-Vlu1,1')dr;;,:o Vq,EK (28) 
lrc lrc 

1 80 8,t, 8,t, fr " 0 kpc0 {1<-8 -8 + V0-8 }dx = {-:ca[-F2(x) + (1- -(0) )µ(0)VF2,t,] + V0n1q,}ds Vq, EZ 
n x2 x2 x1 re 1< r µ 

(29) 
Using the same arguments as in [16] we can show that problems ( 18)-( 22) and ( 28)-( 29) are 
equivalent. 
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3.3 Regularization 

In order to assure the existence [9, 15, 16] of solutions to the problem ( 28)-( 29) we have to 
regularize it i.e. we will consider problem ( 28)-( 29) as problem with the prescribed friction. 
Let c > O be a regularization parameter. We propose the following formula relating tangential 
and norma! tractions on the contact boundary re [15] : 

Vu11 Fi= Fi(c,F2,u1) = - µ(0) I F2 I arctan(-0-' ) 

l, =F1(c,F2,ui) 

The regularized problem ( 28)-( 29) takes the form : 

For given c > O, find u E K and 0 E Z satisfying 

(30) 

a'(0; u, 4>- u)+ r l,(u1 - Vu1,1)dr + r µ(0) I F2 I (I </>1 I -V I U],) l)dr;::,: o V</> E K (31) lrc lrc 

Ir 80 84> 84> Ir 1< 0 kpc0 {i<-8 -8 + V0-8 }dx = {-::-a[-F2(x) + (1- -(0) )µ(0)VF2 </>] + V0n14>}ds V</> EZ 
n x2 x2 XJ re 1< r µ 

(32) 
It can be shown that for any c > O as well as enough small velocity V problem ( 31) - ( 32) has 
a unique solution u E K and iJ E Z. 

4 The Solution Algorithm 

Problem ( 31) - ( 32) is a coupled thermoelastic problem since the contact traction will depend 
on the thermal distortion of the bodies and wear process. On the other hand, the amount of heat 
generated due to friction will depend on the contact traction. The main solution strategies for 
coupled problems are global solution algorithms where the differentia! systems for the different 
variables are solved together or operator splitting methods. In this paper we employ operator 
split algorithm. 
The conceptual algorithm for solving ( 31) - ( 32) is as follows: 

Step 1 : Choose 0 = 0° and w= w0 . Choose 'T/ E (O, 1). Set k = O. 
Step 2 : For given 0k and wk find uk E Kand F,f satisfying system (31). 
Step 3 : For given uk E K and F,f find wk+1 as well as 0k+1 satisfying 

equations (11), (32) respectively. 
Step 4 : If li 0k+1 - 0k li:<; 'T/ , Stop. Otherwise : set k = k + l, go to Step 2. 

The convergence of the operator split algorithm using Fixed Point Theorem was shown in [l]. 
Let us present in details the algorithms for solving disrete mechanical and thermal subproblems. 

4.1 Solution of the mechanical subproblem 

In order to salve numerically problem ( 31) we have to discretize it. For the sake of simplicity 
we shall assume that l1 E R2 is a polygonal domain. 
Let h be a discretization parameter tending to O. By s1 , s2 , ... , Sn(h) we denote a regular partition 
[6, 21] of the boundary re. h = min{h, : i= 1, ... , n(h)}, h, = s, - s,_1. By Th we denote a 
regular family [6] of triangulations of domain !1. We shall assume that the nodes of Th on re 
coincide with the nodes Sj, j = 1, ... , n(h). 
To any finite dimensional approximation f!h of the domain l1 we attribute a finite dimensional 
subspace Zh given by: 

zh = {zh: Zh E [G(l1)]2 : Zh E [P1(E;)]2 for all E; E 7,., i= 1, ... , I} n Z (33) 
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Here C(O) denotes the space of continuous functions on O and Pk(E,), k = O, 1 denotes the set 
of all polynomials of degree less or equal to k over a triangle E,, i = 1, ... , I. We introduce also 
the set Ah : 

Ah = {F2h : F2h E Po([sj-1, Bj)), j = 2, ... , n(h), F2h $ O on fe} 

The finite dimensional problem corresponding to the problem ( 31) has the form : 

For given Bh E Zh and wh, find F2h E Ah minimizing the functional : 

(34) 

1 1 
II(F2h) = 2(F2h, [G(Bh, F2h)]2) + (F2h, [G(Bh, l,h)b) + (l,h, [G(Bh, F2hh) + 2(l,h, [G(B,., l,h)h) 

(35) 
over the set Ah . 

where l,h in ( 35) is given by ( 30) with F2 replaced by F2h and G denotes the Green operator 
depending on Bh. 
From numerical point of view problem ( 35) is difficult to salve because the explicit form of 
the Green operator is unknown. To avoid this difficulty we calculate for given Bh the stiffeness 
matrix Sh resulting from discretization of the bilinear form ( 27) on the domain Oh. The inverse 
s;:1 of the matrix Sh approximates the Green operator G [16]. The finite dimensional problem 
( 35) can be reformulated as follows : 

For given Bh E Zh and wh, find F2h E Ah minimizing the functional : 

II(F2h) = ½(F2h, rs;:1 (B,., F2h)b) + (F2h, [s;: 1(Bh, z,h)b) + (l,h, s;:1(Bh, F2h)h) + 
½U,h, [S;: 1 (Bh, l,h)h) (36) 

over the set Ah. 

The finite dimensional problem ( 36) approximating the problem ( 27) obtained by direct math­
ematical discretization to the problem ( 27) is stili difficult to salve. However we can use 
mechanical meaning of the problem ( 27) [15, 16] and obtain its discrete form much easier. 
Consider first the structure Oh obtained from the initial one by assuming only the kinematical 
constraints on the boundary r. Then we salve this structure for unite load F2h(si) = 1 on 
the first node s 1 of the boundary re and we obtain the corresponding norma! displacement 
of all n(h) nodes of the boundary fe. These displacements constitute the first column of a 
matrix M. This procedure is repeated for each node Sj, j = 2, ... , n(h) of the boundary re 
and the others columns of the matrix M are constituted. The norma! displacements of the 
nodes Sj , j = 1, ... , n(h) of the boundary fe for the same structure under the given load ł, 

constitutes a vector m = m,. Then the unknown norma! traction vector F2h =a= {aj}'.;~~) on 
the boundary fe can be found as a solution to the following quadratic programming problem: 

Find a $ O minimizing the functional : 

(37) 

Having obtained the optima! solution & to the problem ( 37) we can calculate the displacement 
and stress fields of the whole structure by back substitution. 
To salve the discretized problem ( 36) we use the following algorithm : 

Step 1 : Calculate matrix : M. Choose e E (O, 1), T) E (O, 1), a 0. Set k = O. 
Step 2 : Calculate z: from ( 30) with F2 = ak and G= M. 
Step 3 : Calculate vector m: = m(l:). 
Step 4: Find ak+ 1 = argmin {½a* Ma+ mka: I a$ O} 
Step 5 : If li ak+1 - ak li$ T/, Stop. Otherwise: set k = k + 1, go to Step 2. 
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The convergence of this algorithm was considered in [17]. Step 2 in the above algorithm is 
realized using Newton method [7, 8, 15, 16, 17]. The quadratic programming problem ( 37) in 
Step 4 is solved using Pschenichnyj algorithm [l 7]. This algorithm for solving the optimization 
problem: ' 

Find a= argmin {!(o:) I g(o:) ~ O} 

has the following form : 

Step 1 : Choose o:0, "'E (O, 1). Set : k = O. 
Step 2 : At a point o:k find vector p = p( o:k) solving 

the following auxiliary optimization problem : 
min {v'f(o:k)p+ ł lip 112 I 99(0:k)p+ g(o:k) ~ O} 
Set: pk = p. 

Step 3 : Find r such that : 
q,(o:k + rpk) ~ q,(o:k) - ijr li pk 112 
where q,(o:) = f(o:) + Ng(o:), ij E (O, 1) and N> O are given numbers. 
Set: rk = r. 

Step 4: Set: o:k+1 = o:k +rkpk. lf li v'f(o:k+1 ) li~ K, Stop. 
Otherwise : set k = k + 1 and go to Step 2. 

The convergence of the Pschenichnyj algorithm is discussed in [17]. 

4.2 Solution of the thermal subproblem 

The finite dimensional problem corresponding to problem (32) has the form: 

For given F2h E L2(rlh) find wh and 0h E Zh satisfying the equations 

Let us introduce the notation : 

In matrix form system (39) takes the form : 

For given o:, find q satisfying 

Aq = P( o:, /3) 

The equation (41) is solved using Choleski algorithm. 
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5 Numerical Results 

Problem ( 31)-( 32) was solved numerically using the described in the previous section algorithms. 
Polygonal domain !1 given by 

!1 = {(x1,x2) E R2 : XJ E (- 2,2), x2 E (0, l)} (42) 

was divided into 192 triangles. The contact boundary re is modeled by 13 nodes. The Lame 
constants were >. = 11.66 • 1010 [N/m2], 'Y = 8.2 • 1010 [N/m2], the density p = 7.8 -103 [kg/m3], 

the velocity V = 10 [m/s] , radius of the wheel r = 0.46 [m]. The penetration of the wheel was 
taken as o= 0.1 · 10-3 fm]. The heat capacity c = 460 J/kgK, thermal diffusitivy coeflicient r;; = 
1,4410-5 m2/s, thermal expansion coeflicient 'Y = 1210- 6 . The thermal resistance coeflicient 
r = 1000 KNs/J, the wear constant k = 0.510-6 MPa- 1. E = 0.001. iio and ii1 in ( 5) as well 
as 0 in ( 6) are equal to O. The friction coeflicient µ is given by (12) - (13), with µ0 = 0.45, 
µF = 0.25, 0o = 50° C, and a) 0F = 150° C, b) 0F = 125° C, c) 0F = 100° C. 
In all cases a) - c) the norma! traction F2 has its peak around the middle of the contact area. 
Tangent traction F1 has different shapes in front and behind of the rolling wheel. The wear 
gap is slightly smaller than in the constant friction coeflicient case. When 0 F is decreasing 
the friction coeeficient is more rapidly decreasing. Therefore it was observed that the maxima! 
temperature increment at a contact point on the surface of the rai! (see Fig. 4) is !ower up to 
5 - 20° C. The temperature is rapidly decreasing while entering into the rai! however the zone 
of higher than air temperatures is longer than in the constant friction coef!icient case. As far as 
it concerns the tangential temperature distribution (see Fig. 5) it was observed that essentially 
the distribution is similar as in the constant friction coef!icient case however the decrease of 
temperature behind the rolling wheel looks slower. 
The proposed algorithm converges very quickely. Its speed of convergence depends on the choice 
of the regularization parameter e value. For e very small we obtain much more accurate results 
than for big values of c: at a cost of increase in computational time. 
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Figure 4: Temperature norma! distribution at a contact point. 
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Figure 5: Temperature tangential distribution at a contact point. 

6 Conclusions 

The thermoelastic rolling contact problem where the friction coefficient is dependent on the 
temperature was solved numerically using the quasistatic approach. The piecewise linear de­
pendence of the friction coefficient on the temperature is assumed. Such selection of the friction 
coefficient ensures the existence of solutions to the rollling contact problem. 

The obtained numerical results are in accordance with physical reasoning [7]. Using the 
quasistatic approach we can observe also dynamie phenomena of the rolling wheel. Since we 
confine to the elastic contact model the computations indicate that the changes in the highest 
temperature value and the distribution of temperature are moderate with the comparison to the 
constant friction coefficient case. 

Note, that the dependence of the friction coefficient on the temperature may be strongly 
nonlinear, nonconvex and nondifferentiable [2]. Moreover, as it is indicated in [18), plastic 
deformation and very high temperatures achieving almost 1000° C may occure in the contact 
zone. Therefore to investigate the influence of the temperature dependent friction coefficients 
on the contact phenomenon, the computations should be carried out for elasto - plastic contact 
model with the friction coefficient depending nonlineary on the temperature. 
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