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Abstract

The paper deals with the numerical solution of wheel - rail rolling contact problems with the
temperature field and wear as additional components. We shall consider the contact of a wheel
with an elastic rail resting on a rigid foundation. It is assumed that the friction between the
bodies is described by the Coulomb law. Moreover we assume a frictional heat generation and
heat transfer across the contact surface as well as Archard’s law of wear in contact zone. The
friction forces and the heat flux depend on the friction coefficient. This coefficient is assumed
to depend on temperature.

In the paper quasistatic approach to solve this contact problem is employed. This approach is
based on an assumption that for the observer moving with the rolling body the displacement
of the supporting foundation is independent on time. The system is described by the elliptic
variational inequality governing the displacement and the parabolic equation governing the heat
flow. In order to solve numerically this system we will decouple it into mechanical and thermal
parts. Finite element method is used as a discretization method. Using duality theory and the
regularized relation between tangent and normal components of the contact stress we formulate
the mechanical part of this problem as an optimization problem with respect to the normal con-
tact stress. Pschenichnyj method combined with Newton method are used to solve numerically
this discretized optimization problem. Next for calculated displacement field the thermal part
of the system is solved using Newton method. Numerical examples showing the influence of the
temperature dependent friction coefficient on the contact local traction and the length of the

contact zone are provided.

1 Introduction

This paper deals with the numerical solution of the rolling contact problems taking into ac-
count the temperature field and wear as additional components of the rolling contact problem.
Temperature field and wear in the wheel-rail system have influence on the phenomenon which
occur in the contact area [1, 15]. We shall consider the contact of a rigid wheel with an elastic
rail lying on a rigid foundation. The friction between the bodies described by the Coulomb law
[15, 16, 26] is assumed. Frictional heat generation and heat transfer across the contact surface
are also assumed.

The wear process at the interface depends on kinematics, material and geometry of the contacting
bodies as well as on the enviroment (see [3, 5, 8, 10, 13, 22, 26]). The wear may be caused by
adhesion, abrasion, corrosion and surface fatigue. On a macro - scale the existence of the wear
process can be identified as wear debris. This debris is assumed to disappear immediately at the
point were it is formed. In the model the wear is identified as an increase in the gap between
bodies. Moreover the dissipation energy is being changed due to wear. We employ the Archard’s




law of wear where the wear rate is proportional to the normal contact pressure and the sliding
velocity.

The elastic rolling contact problem was considered by many authors (3, 4, 9, 13, 14, 15, 16, 19, 26].
Among others, one of the first rolling contact problem model was described in [9] where the
contact zone and the normal contact stress are assumed to be known. This model was developed
and employed to calculate numerical solution of the wheel-rail wear problem in {3]. In [19] this
contact problem was described by hyperbolic variational inequality and solved numerically using
incremental finite element method. The numerical algorithm proposed in [19] is very general and
very slow convergent. The effects of heat generation and heat transfer involving contact has been
analysed in literature for many years (see [1, 6, 7, 12, 21, 23, 25, 26]). The thermomechanical
interface models taking into account micro-geometrical shape of surfaces were introduced in
[15]. Finite element formulations including thermomechanical coupling for contact problems has
been presented in (7, 12, 21, 23, 25]. In {7, 12] the Green function approach has been used
used to solve the thermoelastic contact problems numerically. Papers were wear is included
in the rolling contact model are less numerous. Reviewing paper [5] contains bibliography of
papers dealing with contact and wear. In (3] Hertz contact model with Archard law of wear were
employed to solve numerically wheel - rail contact problem. Coulomb friction model including
heat generation and wear combined with Green function approach were used in [7, 8, 22] to solve
numerically the rolling contact problem. Models of contact with friction, heat generation and
wear are introduced and discussed in [10, 13, 22, 26).

In literature this contact problem is usually considered assuming the constant friction coefficient.
Numerous experiments [18, 24, 2] indicate that this coefficient is depending, among others, on
the sliding velocity or the temperature. The friction coeflicient first abruptly decreases and
than monotonously increases with the sliding velocity. The friction coefficient is also temper-
ature dependent through the temperature dependence of mechanical parameters of the wheel
- rail contact {18]. The existence of solutions for viscoelastic contact problem has been shown
in [11] provided the friction coefficient is Lipschitz continuous function of sliding velocity or
temperature.

In this paper we solve numerically this thermoelastic wheel - rail contact problem assuming
piecewise linear dependence of the friction coefficient on the temperature. Following [4, 14] we
use a quasistatic approach to solve this contact problem. This approach is based on assumption
that for the observer moving with the rolling wheel the displacement of the rail is independent,
of time. Moreover we shall assume that the length of the rail is much bigger than the diameter
of the wheel. We shall confine ourselves to the case of small velocities of the wheel, i.e. we do
not consider the vibration of the wheel. Under this assumption the rolling contact problem is
described by an elliptic variational inequality instead of hyperbolic variational inequality. The
thermal field is described by the parabolic equation. After brief introduction of the thermoelas-
tic model of the rolling contact problem in the framework of two-dimensional linear elasticity
theory (7, 9, 15, 16, 21] the general coupled paraholic - hyperbolic system describing this physical
problem is formulated. Under the mentioned earlier assumptions we obtain quasistatic formula-
tion of this contact problem in the form of the parabolic - elliptic system. To solve numerically
this system we will decouple it into mechanical and thermal parts [21]. Finite element method
is used as a discretization method. First for given temperature field we solve the mechanical
part. In order to solve the mechanical part of this system we introduce regularization of the
friction conditions. Moreover we replace solving the elliptic inequality by solving an auxiliary
optimization problem to find the normal contact tractions only. This approach is based on dual-
ity theory {16]. Having obtained the normal contact tractions we can calculate the displacement
and stress fields in the whole domain by back substitution. Pschenicznyj linearization method
is used to solve this auxiliary optimization problem {17]. Newton method is employed to cal-
culate tangent contact stress from regularized friction conditions. In the second step for the
calculated displacement field we solve the thermal part of the system using the Newton method.
The applications are for wheel-rail systems. The attention will be paid on the influence of the



temperature which is generated in the contact zone on the contact local tractions and the length
of the contact. The results are discussed.

2 Contact Problem Formulation

Consider deformations of an elastic strip lying on a rigid foundation (Fig. 1). The strip has
constant height h and occupies domain Q € R? with the boundary I'. A wheel rolls along the
upper surface I'c of the strip. The wheel has radius rg, rotating speed w and linear velocity V.
The axis of the wheel is moving along a straight line at a constant altitude hg where Ag < h+rg,
i.e. the wheel is pressed in the elastic strip. It is assumed that the head and tail ends of the
strip are clamped, i.e. we assume that the lenght of the strip is much bigger than the radius
of the wheel. Moreover it is assumed that there is no mass forces in the strip. We denote by
u=(uy,u2), u=u(z,t), z €, t€(0,T), T >0, a displacement of the strip and by 6 = 6(z,t)
the absolute temperature of the strip.
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Figure 1: Wheel rolling over the rail.

In an equlibrium state the displacement u and the temperature & of the strip satisfiy the system
of equations [1, 7, 16, 21]:

2
p% = A*DAu— a3\ +27)V8 in 0 x (0,T) N
pcpgg =kA® inx(0,T) (2)
with initial and boundary conditions :
u=0 onTyx(0,T) (3)
B*DAu=F onT¢gx (0,T) 4)




U(O) = Uy UI(O) =u; inQ (5)
8(0)=94 inQ (6)

80
(@t =q(t) onT (1)
where u(0) = u(z,0), v = du/dt, p, 1, 0, q(t) are given functions, p is a mass density of the
strip material, o is a coefficient of thermal expansion, & is a thermal conductivity coefficient, ¢,
is a heat capacity coefficient, Iy = I \ T'c, the operators A, B and D are defined as follows [20]

o 0 mo0 A+2y A0
A= g 3% , B=|0 m|, D= A A2y 0 (8)
3% Bo ng N 0 g ¥

where n = (ny,ns) is outward normal versor to the boundary T of the domain 2, A and v are
Lame coefficients {15, 16}, A* denotes a transpose of A. By ¢ = (011,092, 012) and F we denote
the stress tensor in domain 2 and surface traction vector on the boundary I' respectively. The
surface traction vector F' = (F, F3) on the boundary ¢ is a priori unknown and is given by
conditions of contact and friction. Under the assumptions that the strip displacement is small
the contact conditions take a form {7, 9, 15, 16):

utgtws0, F<0, (wtg+w)Fa=0 onTcx(0,T) ®)
gr=71—To
duy duy
| A<l B, FIF{SO, (|F1|—#fF2D“E=0 onT'¢ x (0,T) (10)

where i = p(0) is a friction coefficient dependent on temperature 8 and r is the distance between
the center of the wheel and a point z € I'c lying on the boundary I'c of the strip 2. Under
suitable assumptions g, = h— hg+ /7% — (w1 + 21)%. w = w(z,t) denotes the distance between
the bodies due to wear {10, 22] and satisfies the Archard law |5, 10},

dw

e kVE, (11)
w = w(z,t) is an internal state variable to model the wear process taking place at the contact
interface [10]. k is a wear constant. The wear process can be identified as wear debris, i.e. the
removal of material particles from the contacting surfaces. The wear process between contacting
surfaces may be caused by adhesion, abrasion, corrosion or surface fatigue {5, 10}. In the con-
sidered model the wear is described as an increase in the gap in the normal direction between
the contacting bodies.

3 Friction coefficient dependent on temperature

The relation between the friction coefficient and temperature is subject of intensive research.
Among others in [18] an analytical approximation of the friction coeeficient is developed. In this
model the friction coefficient is described by a rational function dependent on tensile strength and
the Young modulus of the rail steel as well as other parametars. The values of these parameters
are calculated by the least square method. In this model there is no explicit dependence on
the temperature. The friction coefficient can be change only due to changes in the strength op
or Young modulus E' of the steel caused by temperature variations. Strength of the material
is most heavily temperature dependent. Assuming that the decrease in strength at increased
temperatures is due to heat-activated plastic deformation processes, the theoretical dependence
of the steel friction coefficient displayed in Fig. 2 may be concluded. Analytically
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where F = 206G Pa and
op = 925.7MPa, if 6 <663°C,

0 = 5.93601n(0.0023¢°%" + /(0.0025¢*7*)2 +1, if 6> 663°C.

It is known that the increase in the average temperature at the Hertzian contact does not
exceed 150 K, and thus the absolute temperature reaches 450 X at maximum. This suggests
that temperature cannot considerably alter the friction coeflicient. However, peak temperatures
at microcontacts can achieve much higher values (about 1000 K) and significantly affect the
friction coefficient. Similar dependence is reported in [24] where the hard carbon films are
considered. On the other hand in {2], where automobile brake materials are considered, the
friction coefficient is assumed to be strongly dependent on the temperature in the range -100
[deg] C - 200 [deg] C and attaining several local minima and maxima.
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Figure 2: Theoretical dependence of the rail steel friction coefficient on the absolute temperature

[18].

Following experimental investigation in {18, 2] we employ the following temperature dependence
friction coefficient (see Fig. 3):

= po, if 0< 8o, (12)
and P 0
Ho — P Hobr — prbp .
=— f
“ OF_009+ o6 if 8> 6, (13)

where pg, 0 < pp < pg and 0 < 8y < fp are given positive constants. Note, the function given
by (12) - (13) is Lipschitz continuous.

3.1 Quasistatic formulation

Let be given an observer moving with the wheel with the constant linear velocity V. We shall
assume :
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Figure 3: Experimental based dependence of the friction coefficient on temperature.

(i) the lenght of the strip is much bigger than the radius of the wheel

(ii) for the observer moving with a wheel the displacement of the strip
does not depend on time

(iif) the velocity of the wheel is small enough, i.e. vibrations of wheel
can not appear

If the running velocity is constant the temperature very soon approach steady-state values,
We assume in the contact area the heat is generated due to friction and the heat flow rate is
transformed completely into heat. Moreover we assume the wear debris disappear immediately
at the point where it is formed influencing the contact conditions by increasing the gap between
the contacting bodies only. Since the wear debris will be warm due to conduction from heated
contacted bodies as well as due to wear processes the disappearing wear debris will carry away
also the heat energy [10].

Let us introduce the new cartesian coordinate system O’z ) hooked in the middle of the wheel.
The systems O'z}z} and Oz,z, are related by :

I’l = - vVt
THh = T2 (14)

Since by assumptions (i)-(iil) u(z{, z) does not depend on time we obtain :

du du
E(z'l,z;) = E(zl —Vt,z2,t) =0 (15)
It implies
du du du 2d%u
E = —VE and d—t2 = d—fL‘% (16)
Using the same argument we obtain :
dé dd  dw dw
e vy Ly
dt dz,’ dt del (7




Let Q2 denotes now the moving part of the strip seen by the observer. Taking into account ( 14)
quasistatic approximation of the problem ( 1)-( 3) takes the form :

Find u and 8 satisfying

A*DAu — pViuy; — (32 +27)V8=0 inQ (18)
a6 0%
5;:: = Kg;z in © (19)
u=0 onTg (20)
B*DAu=F onl¢ (21)
uz+gr+w<0, <0, (u+g+w)fa=0 onl¢
[Fil<p@) 2] Fuin<0, (Fi-p@) | £ Dug=0 onlcg (22)
_o00 8 kpc,t
Bar &~ B+ (1 () ()Y Fy(z)] onlc (23)
dw
= _kE 24
= kFy (24)

where ui; = §%5, ik = g2, 6,5,k = 1,2, uij = (umij)m=12, 4,5 = 1,2, & = &/pcy is the
thermal diffusivity coeflicient, @ represents the fraction of frictional heat flow rate entering the
rail, r is thermal resistance constant [10]. There are also given initial conditions ( 5) - ( 6). We
assume in (22) the heat flows through the contact surface only, therefore § = 0 on T'y.

3.2 Variational formulation
Let us introduce a space and a set :
Z={ze[H'®)]? : z=00n Iy}, K={z€Z: zm+g+w<0onlg} (25

w is supposed to be enough regular function, ie., for each t € (0,T) w € H3%(I¢). Let
a{.,.): Z x Z — R denote bilinear form defined by

a(z,v) =/ﬂ(Au)*DAvdz (26)

We denote by (z,v) = J, z*vdz the scalar product in L*(£2).
We formulate quasistatic problem ( 18)-( 22) in the variational form. Let us denote by a’ the
bilinrear form depending on § € Z :

d(0;z,v) 1 ZxZ >R
/(63 2,v) = a(z,v) — pV7EL (201, v5,0) — (38X + 29)(6, v11 + v22) (27)

Note, that the coercivicity of the form ( 27) is assured for small velocities only. Problem ( 18)
— ( 22) is equivalent to the following variational problem [16] :

Find u € K and 6 € Z satisfying :

a’(@;u,¢—u)+/l: Fl(ul—vul,l)dmfr p(0) | P | (1] =V |ury AT >0 Vo€ K (28)
(o C
kpcl

) o ., 5_ 0
/n{“a—zzéa +Vostydn = /I:C{—Ea[;Fz(z) O MOV Bl +Vomelds Vo€ 2
(29)

Using the same arguments as in [16] we can show that problems ( 18)-( 22) and ( 28)-( 29) are
equivalent.




3.3 Regularization

In order to assure the existence [9, 15, 16] of solutions to the problem ( 28)-( 29) we have to
regularize it i.e. we will consider problem ( 28)-( 29) as problem with the prescribed friction.
Let € > 0 be a regularization parameter. We propose the following formula relating tangential
and normal tractions on the contact boundary I'c (15] :

Fy = Fi(e, Fa,u1) = —p(0) | Fy | arctan(VLEl’lﬁ (30)

I = Fi(e, Fa,up)
The regularized problem ( 28)-( 29) takes the form :

For given ¢ > 0, find v € K and ¢ € Z satisfying

o (0;u, ¢ — u) -l-/F le(ur = Vug,1)dl + /r @) | Pl (| &1~V ] u hdl' 20 Vo € K (31)

a9 o a 14 kpct
/n{né—x;(?—f; + Vﬂ—é%}dz - /Fc{—%&[FFz(x) +a- ﬁ))u(a)wm +VOmglds Ve ez
(32)

It can be shown that for any ¢ > 0 as well as enough small velocity V problem ( 31) - (32) has
a unique solution &2 € K and § € Z.

4 The Solution Algorithm

Problem ( 31) - ( 32) is a coupled thermoelastic problem since the contact traction will depend
on the thermal distortion of the bodies and wear process. On the other hand, the amount of heat
generated due to friction will depend on the contact traction. The main solution strategies for
coupled problems are global solution algorithms where the differential systems for the different
variables are solved together or operator splitting methods. In this paper we employ operator
split algorithm.

The conceptual algorithm for solving ( 31) - ( 32) is as follows:

Step 1 : Choose # = 8% and w = w®. Choose n € (0,1). Set k& = 0.

Step 2 : For given 6% and »* find u* € K and F¥ satisfying system (31).

Step 3 : For given u* € K and F¥ find w**! as well as 05+! satisfying
equations (11), (32) respectively.

Step 4 : If || 9¥+1 — 9% ||< 7, Stop. Otherwise : set k= k + 1, go to Step 2.

The convergence of the operator split algorithm using Fixed Point Theorem was shown in (1}.
Let us present in details the algorithms for solving disrete mechanical and thermal subproblems.

4.1 Solution of the mechanical subproblem

In order to solve numerically problem ( 31) we have to discretize it. For the sake of simplicity
we shall assume that Q2 € R? is a polygonal domain.

Let h be a discretization parameter tending to 0. By sq, s2,. .., Sa(n) We denote a regular partition
[6, 21] of the boundary I'c. h = min{h; : i = 1,...,n(h)}, b = s; — si—1. By T, we denote a
regular family {6] of triangulations of domain 2. We shall assume that the nodes of 7, on I'c
coincide with the nodes s, j = 1,...,n(h).

To any finite dimensional approximation 2 of the domain 2 we attribute a finite dimensional
subspace Zp given by :

Zno={zn: 2, € [CO))? : 2y € (PY(E))? forall B;€Th, i=1,...,1}NZ (33)
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