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Abstract 

We study the gradient sampling algorithm of Burke, Lewis and Overton for minimiz­
ing a locally Lipschitz function fon JR.n that is continuously differentiable on an open 
dense subset. We strengthen the existing convergence results for this algorithm, and 
introduce a slightly revised version for which stronger results are established with­
out requiring compactness of the level sets off. In particular, we show that with 
probability 1 the revised algorithm either drives the f-values to -oo, or each of its 
cluster points is Clarke stationary for f. We also consider a simplified variant in 
which the differentiability check is skipped and the user can control the number of 
f-evaluations per iteration. 

Key words. generalized gradient, nonsmooth optimization, subgradient, gra­
dient sampling, nonconvex. 
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1 Introduction 

In two recent papers [BLO02b, BLO05], Burke, Lewis and Overton introduced and es­
tablished convergence of the gradient sampling (GS) algorithm for minimizing a locally 
Lipschitz function f : ]Rn --+ JR which is continuously differentiable on an open dense 
subset D of ]Rn and has bounded level sets. 

At each iteration, the GS algorithm computes the gradient of f at the current iterate 
and at m 2: n + l randomly generated nearby points. This bundle of gradients is used 
to find an approximate E-steepest descent direction, where E is the sampling radius, as 
the solution of a quadratic program. A standard Armijo line search along this direction 
produces a candidate for the next iterate, which is obtained by perturbing the candidate 
if necessary to stay in the set D where f is differentiable; the perturbation is random and 
small enough to maintain the Armijo sufficient descent property. The sampling radius 
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c may be fixed for all iterations or may be reduced dynamically. For c fixed, the main 
convergence result of [B1O05, Thm. 3.4] established that, with probability 1, the GS 
algorithm generates a sequence with a cluster point that is c-stationary for f (as defined 
in §2). For c reduced dynamically, the result of [B1O05, Thm. 3.8] established that if the 
GS algorithm converges to a point, this limit point is stationary for f with probability 1. 

The GS algorithm is not only very interesting in theory ( especially due to its ingenious 
use of gradients instead of subgradients [BLO02a]), but also widety applicable and robust 
in practice [BHLO05, B1O04, B1O05, Lew05]. 

This paper provides stronger convergence results for the GS algorithm. For c fixed, we 
show that with probability 1 evenJ cluster point of the GS algorithm is c-stationary for f 
(see Thm. 3.6). For c reduced dynamically, we show that with probability 1 every cluster 
point of a well-defined subsequence is stationary for f (see Thm. 3.4), without assuming 
that the whole sequence converges. In both cases, we show that suitable stopping criteria 
ensure with probability 1 that the algorithm terminates with the required "optimality 
certificate" of [B1O05, p. 768]; this practical aspect was not analyzed in [B1O05, §3]. 

We also introduce a slight revision of the GS algorithm, in which the perturbation of 
the Armijo candidate is controlled by the current step size (instead of c as in the original 
method; see (2.6)) . This tiny modification enables us to derive much stronger convergence 
results; in particular, we can dispense with the assumption of [B1O05] that f has compact 
level sets. For c fixed, we show that with probability 1 either the algorithm drives the 
/-values to -oo, or every cluster point of a well-defined subsequence of its iterates is f­

stationary for f (see Thm. 3.5). For c reduced dynamically, we show that with probability 1 
the algorithm either drives the /-values to -oo, or each of its cluster points is stationary for 
f (see Thm. 3.3); in a sense, this is the best result one can hope for. If inf/ > -oo, in both 
cases suitable stopping criteria ensure with probability 1 that the algorithm terminates 
with the required "optimality certificate". 

Our further modifications of the GS algorithm are intended to improve its performance 
in practice. Since the GS algorithm employs search directions of unit 2-norm, the number 
of /-evaluations per Armijo's line search can grow to infinity as the algorithm converges. To 
mitigate this drawback, we consider using an "unscaled" search direction, i.e., the negative 
of the convex combination of the gradients in the bundle whose norm is minimized. (This 
direction was used in [BLO02b, §3] for a different line search.) The third alternative is to 
scale the direction so that its length equals c and the Armijo line search is made within 
the hall in which gradient sampling occurs. 

Finally, we introduce a tower bound on step sizes tested by the Armijo search, accepting 
a null step size when this bound is reached. Here the idea is simple: when the search 
direction is good enough, a step size close to our tower bound should work, whereas if the 
search direction is poor, the Armijo search will produce a tiny step size anyway. In our 
limited Armijo line search (see Proc. 4.3) the number of /-evaluations can be controlled 
by the choice of an initial step size; in an extreme version, just one evaluation occurs. 
Further, for our limited line search there is no longer any need for keeping the iterates in 
the set D where f is differentiable. Skipping the differentiability check makes life easier 
for the user who provides gradient values and brings the simplified algorithm closer to the 
version implemented and tested in [B1O05, §4]. 
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Among other algorithms for minimizing locally Lipschitz functions, we should mention 
bundle methods (see the references in [BLO05, Kiw96]). Bundle methods require the com­
putation of a single subgradient at each trial point in addition to the objective value. They 
generate search directions by solving quadratic programs based on accumulated subgra­
dients, and employ line searches which either produce descent or find a new subgradient 
that modifies the next search direction. At first sight, they have little in common with 
the GS algorithm, which does not accumulate gradients. We believe, however, that deeper 
understanding of their similarities and differences shoulcl lead to new variants. The first 
step in this direction is made here: the proof technique of §3 is borrowed from [Kiw96, §3] 
and the limited line search of §4.3 is inspired by null steps of bundle methods. We defer 
consideration of gradient sampling in bundle methods, as well as numerical comparisons, 
to future work. 

The paper is organized as follows. A slightly revised version of the GS algorithm is 
presented in §2. A convergence analysis of the original and revised versions is given in §3. 
Various modifications are discussed in §4. 

2 The gradient sampling algorithm 

As in [BLO05], we assume that the objective function f : rrr --> JR is locally Lipschitz 
continuous and continuously differentiable on an open dense subset D of JR.n_ The Clarke 
subdifferential [Cla83] off at any point x is given by 

8/(x) = co{ lim1 V f(y1) : y1 --, x, y1 E D }, 

where co denotes the convex hull, and the Clarke E-subdifferential (Gol77] by 

8,f(x) := co8f(B(x, c)), (2.1) 

where B(x, c) := {y: IY- xl ś c} is the bali centered at x with radius E 2 O and I· I is the 
2-norm. The Clarke c-subdifferential 8,!(x) is approximated by the set of (BLO05] 

G,(x) := clco V f(B(x, c) n D), (2.2) 

since G,(x) C 8,!(x), and a.J(x) C G,.(x) for o ś E1 < E2- We say that a point X is 
stationary for f if O E 8/ ( x); x is called E-stationary for f if O E 8.J ( x). 

We now state a slightly revised version of the GS algorithm (BLO05, §2]. In particular, 
we don't require that the starting point x 1 E Dis such that the level set {x: f(x) ś f(x 1)} 

is compact. For a closed convex set G, Proj(0 IG) is its minimum-norm element. 

Algorithm 2.1 ( GS algorithm). 
Step O (lnitialization) . Select an initial point x 1 E D, optimality tolerances Vopt, Eopt 2 O, 
line search parameters /3, -y in (O, 1), reduction factors µ, 0 in (O, l], a sampling radius 
c1 > O, a stationarity target v1 2 O and a sample size m 2 n+ 1. Set k := 1. 

Step 1 (Approximate the Clarke E-subdifferential by gradient sampling). Let { xk•}~1 

be sampled independently and uniformly from B(xk, Ek)- If {xk•}~1 <f. D, then stop; 
otherwise, set 

Gk := co{V f (xk), V f (xk1 ), ... , V f(xkm)}. (2.3) 

Step 2 (Directionfinding). Set gk := Proj(0IGk)-
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Step 3 (Stopping criterion). If l9kl ~ Vopt and ck~ copt, terminate. 

Step 4 (Sampling radius update) . If l9kl ~ vk, set Vk+ł := 0vk, ck+1 := µck, tk := O, 
xk+ł := xk and go to Step 7. Otherwise, set vk+i := vk , ck+1 := ck and 

dk := -i/Iii- (2 .4) 

Step 5 (Line search). Set the step size 

Step 6 ( Updating). If xk + tkdk E D, set xk+1 := xk + tkdk. Otherwise, Jet xk+ł beany 
point in D satisfying 

f(xk+l) < f (xk) - .Btklil, 

lxk + tkdk - xk+il ~ min{tk, ck}­

Step 7. Increase k by 1 and go to Step 1. 

(2.6a) 

(2.6b) 

The algorithm keeps every iterate xk in the set D. At Step 2, gk is characterized by 
gk E Gk and (g, gk) 2: l9kl 2 for all g E Gk; sin ce V f (xk) E Gk by (2.3), (2.4) yields 
(V f (xk), dk) ~ -lgkl• Hence the Armij o line search (2.5) is well defined, because there is 
f > O such that f (xk + tdk) < f (xk) - .Btlgkl Vt E (O, f). 

The only significant difference between Algorithm 2.1 and the original GS algorithm 
[B1O05, §2) lies in the slightly stronger requirement (2.6). Namely, if xk + tkdk r/: D , xk+i 
can be found as fellows. For i = 1, 2, . .. , sample xk+ł from a uniform distribution on 
B(xk + tkdk, min{ tk, ck} /i) until xk+1 E D and (2.6a) holds. By (2.5) and the continuity 
off, this procedure terminates with probability 1. In contrast, the original GS algorithm 
requires finding xk in B(xk, ck) such that xk + tkdk E D and (2.6a) holds for xk+i := 

xk + tkd\ to this end, one can sample xk from a uniform distribution on B(xk, ck/i) until 
these requirements are met. Further, if (2.6) holds, then xk := xk+ł - tkdk satisfies the 
requirements of the original GS algorithm. This is the only reason for including ck in 
(2.6b). On the other hand, the presence of tk in (2.6b) yields lxk+1 - xkl ~ 2tk (using 
ldkl = 1 by (2.4)) and hence the highly useful consequence of (2.6a) 

(2.7) 

Note that this key inequality (2.7) holds also when xk+i := xk + tkdk at Step 6 (thanks to 
(2.5)), or when xk+i := xk at Step 4. 

The stopping criterion of Step 3 delivers the "optimality certificate" of [B1O05, p. 768]: 
the finał values of lgkl and ck provide an estimate of nearness to Clarke stationarity. 

3 Convergence analysis 

We start with two technical lemmas. The first lemma on approximate least-norm elements 
is a simplified version of [B1O05, Lem. 3.1). 

4 



... 

, 

Lemma 3.1. Let 0 f CC !Rn be compact convex and f3 E (O, 1). ff O</. C, there exists 
ó > O such that u, v E C and lul ś dist(0 I C) + ó imply (v, u) > /3lul 2 • 

Proof. If the assertion were false, we could pick two sequences { u;}, { v;} c C satisfying 
luil ś dist(0 I C) + 1/i and (vi, u;) ś f31uil 2• By compactness, we may assume u; --tu E C, 
vi --tv EC; thus (v, u) ś /3lul 2 . However, u= Proj(0 I C) f O satisfies (v, u) ~ lul 2 for all 
v E C, a contradiction. O 

The next lemma recalls from [BLO05, Lem. 3.2) basie properties of the set of points 
close to a given point x that can be used to provide a 5-approximation to the least-norm 
element of G,(x); its second part summarizes some useful ideas from the proof of [BLO05, 
Thm. 3.4]. For E, ó > O and x, x E !Rn, using the measure of proximity to E-stationarity 

p,(x) := dist(0 I G,(x)), (3.1) 

let 
m m 

D;"(x) := II (B(x, E) n D) C II !Rn (3.2) 
I I 

and 

V.(x , x , 5) := { (y1, ... , ym) E D;"(x) : dist(0 I co{V /(yi)};:1) ś p.(x) + ó}. (3.3) 

Lemma 3.2 . Let E > O and x E !Rn . 
(i) For any 5 > O, there is T > O and a nonempty open set V satisfying VC V.(x, x, 5) 

for all x E B(x, T), and dist(0 I co{V /(yi)}:'.!,1 ) ś p,(x) + ó Jor all (y1, ... , ym) EV. 
(ii) Assuming O </. G,(x), pick 5 > O as in Lemma 3.1 for C := G,(x), and then T 

and V as in statement (i). Suppose at iteration k of Algorithm 2.1, Step 5 is reached with 
xk E B(x,min{T,E/3}), Ek = E and (xk1 , ... ,xkm) EV. Then tk ~ min{l,-yE/3}. 

(iii) ff limk max{lxk - xl, l9kl, Ek} = O with gk E 8,.f(xk) Jor all k, then OE 8/(x). 

Proof. (i) Let u Eco V J(B(x, E) n D) be such that lul < p,(x) + ó. Then Caratheodory's 
theorem [Roc70] implies the existence of (x 1, ... , xm) E D;'(x) and XE IR'.;: with I:;;:1 X;= 
1 such that u = I::;:1 X; V/ ( xi). Since f is continuously differentiable on the open 
set D, there is f E (O, E) such that the set V := rr:1 int B(xi, f) lies in D~.(x) and 
I I:::1 X; V/ (yi)I < p,(x) +o for all (y1, ... , ym) E V. Hence for all x E B(x, T) with T := f, 

the fact that B(x, E - f) C B(x, E) yields VC V.(x , x, 5) by the definitions (3.2)- (3.3). 
(ii) Let Gk := co{V / (xki) }r,:,1 . Since (xk 1 , ... , xkm) E VC V.(x, x, 5) in statement (i), 

we get dist(0 I Gk) ś p,(x) + 5 and Gk c G,(x) from (3.3), (3.2) and (2.2) . We also have 
V J(xk) E G,(x) from xk E B(x, E/3) n D. Thus, by (2.3) and the construction of gk at 
Step 2, gk E G,(x) and l9kl ś p,(x) +o. Hence by (3.1) and the choice of ó in Lemma 3.1, 

(v, l) > /31ll 2 for all v E G,(x). (3.4) 

Suppose for contradiction that tk < min{l, 'YE/3}. Then by construction (cf. (2.5)) 
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whereas Lebourg's mean value theorem (cf. [Cla83, Thm. 2.3.7]) yields the existence of 
xk E [xk + -y- 1tkdk, xk] and vk E 8f(xk) such that 

f(xk + 'Y-łtkdk) - f(xk) = 'Y-łtk(v, dk). 

Hence using dk := -gk/lll gives (v\ l) :S .Blgkl2 , so vk ff: G,(x) by (3.4). But ,Y-1tkWI < 
E/3 and lxk - xl :S E/3 imply xk E B(x, 2E/3) and thus vk E G,(x), a contradiction. 

(iii) Note that gk E 8,J(xk) at Step 2 by (2.1), whereas 8.J(-) is closed. O 

As discussed in §2, Algorithm 2.1 is a special case of the GS algorithm, which in turn 
corresponds to removing tk in the right-hand side of (2.6b) and requiring that the level 
set {x: f(x) :S f(x 1)} be bounded. Therefore, we give convergence results separately for 
Algorithm 2.1 and the original GS algorithm. We start with the case where Ek and lik are 
allowed to decrease. 

Theorem 3.3. Let {xk} be a seąuence generated by Algorithm 2.1 with ll1 > llopt = Eapt = 
O andµ, 0 < l. With probability l the algorithm doesn't stop and either f (xk) l -oo, or 
lik ł O, Ek ł O and every cluster point of {xk} is stationary for f. 

Proof. (i) Since termination in Step 1 has zero probability, we may assume it doesn't 
occur. Similarly, if f(xk) ł -oo, there is nothing to prove, so assume infk f (xk) > -oo. 
Then summing ,Btkl9kl :S f(xk) - f(xk+ 1) (cf. (2.6a)) and relation (2.7) gives 

(3.5) 
k=ł 

00 

L lxk+i - xk llll < oo. (3.6) 
k=ł 

(ii) Suppose there is k1, D > O and € > O such that lik = D and Ek = l for all k 2'. k1, 
Using l9kl 2: Din (3.5)-(3.6) yields tk _, O, Lk lxk+ł -xkl < oo, and hence the existence ofa 
point x such that xk --, x. Let E := €°. First, suppose O ff: G,(x). For 8, T and V chosen as in 
Lemma3.2(ii), wecanpickk2 2: k1 such thatxk E B(x,min{r,E/3}) andtk < min{l,-yE/3} 
yield (xkł, ... , xkm) ff: V for all k 2'. k2. This event has probability O, since for each k 2'. k2, 
(xk1 , •. . , xkm) is sampled independently and uniformly from D~(xk), which contains the 
open set V f 0. Second, suppose OE G,(x). For 8 := D/2 and r, V chosen as in Lemma 
3.2(i), we can pick k3 2'. k1 such that xk E B(x, r), D :S Ili :S dist(0 I co{V f(xki)}:'.:.i) and 
p,(x) = O imply (xkł, ... , xkm) ff: V for all k 2'. k3 . This event has probability O as well. 

(iii) Consider the event where lik ł O, Ek ł O and {xk} has a cluster point x. If xk _, x, 
O E 8f(x) by Lemma 3.2(iii). If xk f; x, we claim that limk max{lxk - xl, jgkl} = O. 
Otherwise, there exist D > O, k and an infinite set K := { k : k 2'. k, lxk - xl :S D} such 
that l9kl > D for all k E K, so (3.6) gives LkEK lxk+1 - xkl < oo. Since xk f; x, there 
is c > O such that for each k E K with lxk - xl :S D/2 there exists k' > k satisfying 
lxk' - xkl > E and lxi - xl :SD for all k :Si< k'. Therefore, by the triangle inequality, we 
have c < lxk' - xkl :S I::7~,;1 lx'+l - xil with the right side being less than c for large k E K 
from LkEK jxk+1 -xkl < oo, a contradiction. Therefore, limk max{lxk -xl, Ili} = O yields 
OE 8f(x) by Lemma 3.2(iii). O 
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Theorem 3.4. Let {xk} be a sequence generated by the GS algorithm with v1 > Vopt = 
copt = O and µ,0 < l. Suppose the level set {x : f(x) ~ f(x 1 )} is bounded. Then 
with probability 1 the algorithm doesn't stop, vk l O, ck l O, there is a subsequence K C 
{l, 2, ... } such that gk ~ O and every cluster point of {xkhEK is stationanJ for f. 

Proof. It suffices to reconsider part (ii) of the proof of Theorem 3.3 (since for vk l O, we 
can take K := {k: Vk+J < vk}). 

Thus suppose there is k 1 , ii > O and E > O such that vk = ii and ck = E for all 
k ~ k 1. Using /gk/ ~ ii in (3.5) yields tk -+ O. Since {f (xk)} is decreasing and the set 
{x: f(x) ~ f(x 1)} is compact, there are a set J C {1,2, ... } and a point x such that 
xk _!_. x. Since tk _!_. O as well, arguing as in part (ii) of the proof of Theorem 3.3 we 
deduce the existence of k4 and an open set V=/- 0 such that (xk 1, ... , xkm) (/.VC D';'(xk) 
for all k ~ k4, k E J, and again conclude that this event has probability O. O 

Our convergence results for fixed sampling radius follow. 

Theorem 3.5. Let {xk} be a sequence generated by Algorithm 2.1 with v1 = Vopt = O, 
<1 = <opt = c > O and µ = l. With probability 1 either the algorithm terminates at some 
iteration k with O E G,(xk), or f(xk) l -oo, or there is a subsequence K C {l, 2, ... } 

such that gk ~ O and every cluster point x of {xk}kEK satisfies OE 8,f(x). 

Proof. If the algorithm terminates at iteration k, then wp 1 it does so at Step 3 with 
O= gk E G,(xk)_ Hence we may assume that no termination occurs and infk f (xk) > -oo. 

By the proof of Theorem 3.3, the event ii := infk /gk/ > O has probability O. In the 
remaining case of infk /gk/ = O, the conclusion follows from the closedness of 8,!(· ). D 

Theorem 3.6. Let {xk} be a sequence generated by the GS algorithm with V1 = Vopt = O, 
c1 = <opt = c > O and µ = l. Suppose the set { x : f (x) ~ f (x1)} is bounded. With 
probability 1 either the algorithm terminates at some iteration k with O E G,(xk), or 
gk-+ O and every cluster point x of {xk} satisfies OE 8,f(x). 

Proof. Arguing by contradiction, it suffices to consider the case where there are a set 
J C {l, 2, ... } and ii > Osuch that inf ko /gk/ ~ ii. Since {f(xk)} is decreasing and the 
set {x: f(x) ~ f(x 1 )} is compact, we may assume with no loss of generality that there 

is a point x such that xk _!_. x. Since (3.5) gives tk _!_. O, arguing as in part (ii) of the 
proof of Theorem 3.3 we deduce the existence of ks and an open set V =I- 0 such that 
(xk 1 , ••• , xkm) (/. V C D';'(xk) for all k ~ ks, k E J. This event has probability O, since for 
each k, (xk 1, ... ,xkm) is sampled independently and uniformly from D';'(xk). O 

A few comments and comparisons with the results of [B1O05, §3] are in order. 

Remarks 3. 7. (i) Since the framework of [B1O05, §3] requires compactness of the level 
set {x: f(x) ~ f(x 1 )}, it has no results comparable to our Theorems 3.3 and 3.5. 

(ii) Theorem 3.3 is essentially the best one can hope for. In particular, it implies that 
for positive optimality tolerances Vopt and fopt, with probability 1 either f (xk) l -oo or 
the algorithm terminates with the required "optimality certificate" of [B1O05, p. 768]. 
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(iii) Theorem 3.3 is stronger than Theorem 3.4. Of course, Theorem 3.3 relies on our 
inclusion of tk in the right-hand side of (2.6b), but this should be cheap in practice. With 
this fairly mild qualification, Theorem 3.3 gives a positive answer to the finał open question 
of [BLO05, §3] on whether all cluster points of the algorithm are stationary. 

(iv) Theorem 3.4 subsumes [BLO05, Thm. 3.8], which assumes that {xk} converges. 
(v) Theorem 3.6 subsumes [BLO05, Thm. 3.4], which only asserts the existence of a 

subsequence KC {l, 2, ... } such that p,(xk) ___!S__, O and every cluster point x of {xkhe1< 
satisfies O E 8.f (x), without showing that infk jgkl = O. In contrast, Theorem 3.6 implies 
that for a positive optimality tolerance Vopt, with probability 1 the algorithm terminates 
when the required "optimality certificate" is reached (similarly for Theorem 3.5 if inf f > 
-oo). A result similar to Theorem 3.6 is given in [BLO05, Cor. 3.5.1] only for the case 
where the objective f is continuously differentiable everywhere. Finally, Theorem 3.6 
disproves the conjecture raised in the open question number 2 at the end of [BLO05, §3] 
that a counterexample with limkeK jgkl > O should exist. 

4 Modifications 

4.1 Non-normalized search directions 

Since the GS algorithm employs search directions dk := -l/lll of unit norm, the number 
of f-evaluations per Armijo's line search (cf. (2.5)) can grow to infinity. This will happen 
in the generic case where xk+l = xk + tkdk for almost all k and tk = jxk+1 - xkl -> O 
(e.g., {xk} converges). To mitigate this drawback, let's consider using dk := -gk as in the 
steepest descent method with dk = -'v f (xk) in the smooth case. 

Formally, suppose relations (2.4)- (2.6) in Algorithm 2.1 are replaced by 

dk := -gk, 

tk := max{ t: J(xk + tdk) < J(xk) - /3till 2 , t E {1, ,, 1 2, ... } }, 

f(xk+t) < J(xk) - J3tklll 2 , 

lxk + tkdk - xk+ll :S min{tk, Ek}jdkj. 

( 4.1) 

(4.2) 

( 4.3a) 

( 4.3b) 

Then (2. 7) stili holds, since jxk+1 - xkl :S 2tkjdkl = 2tklll- Lemma 3.2(ii) replaced by 

Lemma 4.1. Let €>O and x E IR.n . Assuming Or/. G,(x), pick ó > O as in Lemma 3.1 
for C := G,(x), and then rand V as in Lemma 3.2(i). Suppose xk E B(x,min{r,E/3}), 
Ek = € and (xk1 , ... , xkm) E li. Then tk 2': min{l, 1€/3R}, where ii; is the Lipschitz 
constant of f on B(x, 2€). 

Proof. In the proof of Lemma 3.2(ii), assuming tk < min{l,,E/3R}, use dk := -gk to get 
(vk, gk) :S /3lgkj 2 as before. Since ,-1tkWI < E/3 yields vk E G,(x) as before, note that 
ldkl = jgkl :SR, since lxk - x l :S E/3 implies gk E G,(xk) C G1.5,(x) and hence lgkl :S R. O 
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With the above replacements, the proofs of §3 are modified in obvious ways. For 
instance, in the proof of Theorem 3.3, using (4.2), we can replace (3.5) by 

00 

L tklll 2 < oo, (4.4) 
k=I 

and in its part (ii) we can consider tk < min{l, 7E/3~}- In effect, Theorems 3.3-3.6 hold 
for this variant as well. 

4.2 Searching within the trust region 

To restrict the Armijo line search to the sampled trust region B(xk, Ek), suppose relations 
(2.4)- (2.6) in Algorithm 2.1 are replaced by 

dk := -Ekl/lll, (4.5) 

tk := max{ t: J(xk + tdk) < f(xk) - ,BtEklll, t E {1, 7 , ·-,,2, ... } }, ( 4.6) 

f(xk+I) < J(xk) - ,BtkEkl9kl, 

lxk + tkdk - xk+II :::; min{tk, t:k}ldkl-

(4.7a) 

( 4. 7b) 

Then (2.7) stili holds, since lxk+ 1 - xkl :::; 2tkWI = 2tkEk - Lemma 3.2(ii) is replaced by 

Lemma 4.2. Let E > O and x E lR,n_ Assuming Or/:. G,(x), pick ó > O as in Lemma 3.1 
for C := G,(x), and then T and V as in Lemma 3.2(i). Suppose xk E B(x,min{T,E/3}), 
Ek = E and (xk 1 , ..• , xkm) EV. Then tk 2'. 7/3. 

Proof. In the proof of Lemma 3.2(ii), for tk < 7/3, use dk := -Ekgk/lgkl to get (vk, gk) :::; 
.Blgkl2 as before, and then vk E G,(x) from 7- 1tk/dk/ < c/3 with W/ = Ek = E. D 

As in §4.1, we deduce that Theorems 3.3- 3.6 hold for this variant as well, since in the 
proof of Theorem 3.3, using (4.6), we can replace (3.5) by 

00 

L tkEklll < CX). (4.8) 
k=l 

4.3 Limiting the line search 

Note that relations (2.4)- (2.6), ( 4.1)- ( 4.3) and ( 4.5)- ( 4. 7) have the form 

dk := -akl with O!k > O, ( 4.9) 

tk := max{ t: J(xk + tdk) < J(xk) - ,Btldkllll, t E {l, 7, 7 2, ... } }, (4.10) 

J(xk+I) < f(xk) - ,Btkldklll/, (4.lla) 

jxk + tkdk - xk+Ij:::; min{tk, Ek}jdkl, (4.llb) 

where O!k := 1/ll/ in §§2- 3, O!k := 1 in §4.1, and O!k := Ek//gk/ in §4.2. The corre­
sponding !ower bounds on tk produced by Lemmas 3.2(ii), 4.1 and 4.2 have the form 
tk 2'. min { 1, 7c / 3 j dk I}. This information can be used to search only for step sizes that are 
"big enough" in the following procedure. 
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Procedure 4.3 (limited Armijo line search). 
(i) Choose an initial step size t 2 min{l, 'YEk/3ldkl}­

(ii) If f(xk + tdk) < f(xk) - ,Btldkllgkl, return tk := t . 
(iii) If t :S: min{lh, Ek/3ldkl}, return tk := O. 
(iv) Set t := 'Yt and go to (ii). 

Lemma 4.4. Let E > O and x E JRn_ Assuming O</:. G,(x), pick 8 > O as in Lemma 3.1 
for C := G,(x), and then r and V as in Lemma 3.2(i) . Suppose xk E B(x, min{ r, E/3} ), 
Ek = E, (xkł, ... , xkm) E 11 and dk := -akgk with Cik > O. Then Procedure 4.4 finds a step 
size tk 2 min{l, 'YE/3jdkl} , and the conclusions of Lemmas 3.2(ii), 4.1 and 4.2 hold for 
Cik = 1/jgkl, 1 and Ek/jgkl, respectively. 

Proof. As in the proof of Lemma 3.2(ii), using relation (3.4) and the form of dk := -akgk, 
we obtain (v, dk) < -.BWllgkl for all v E G,(x). Let t E (O, E/3ldkj]. By Lebourg's mean 
value theorem, f(xk + tdk) - f(xk) = t(v, dk) for same v E 8f(x) with x E [xk + tdk, xk]. 
Then tidkl ::; 1:/3 and lxk -xl ::; E/3 imply x E B(x, 2E/3) and hence v E G,(x). Therefore, 
f(xk + tdk) < f(xk) -,BtWllll 'vt E (O, E/3WIJ. and the conclusion follows from the rules 
of Procedure 4.3. O 

Remarks 4.5. (i) We conclude from Lemma 4.4 that Theorems 3.3- 3.6 remain valid for 
step sizes tk produced by Procedure 4.3 instead of the standard Armijo searches (2.5), 
(4.2) and (4.6). This follows easily from the proofs of §3 and the remarks in §§4.1-4.2. 

(ii) The number of f-evaluations made by Procedure 4.3 can be controlled via the 
choice of the initial step size t at step (i) . For instance, if t := min{l, Ek/3jdkl}, then only 
one evaluation occurs, and the procedure returns either tk := t or tk := O. If the initial 
step size t looks "too small", e.g., f(xk + tdk) < f(xk) - 0.5tldkllgkj, we can try expansion 
by setting t := th until f (xk +tdk) 2 f (xk)-,BtWJlgkj, in which case tk := 'Yt is returned. 
Further, step (iii) of Procedure 4.3 can use a smaller threshold O < t < min{lh, Ek/3jdkl} , 
returning tk := O if t ::; t. Alternatively, the stopping criterion of step (iii) can be ignored 
until a given number of f-evaluations is reached. Such variations don't impair Lemma 4.4. 

(iii) Once Procedure 4.3 replaces the standard Armijo searches (2.5), (4.2) and (4.6), 
there is no longer any need for keeping xk in D and including V f (xk) in Gk at Step l. This 
leads to the following simplified variant of Algorithm 2.1. At Step O, select any x1 E JRn _ 
At Step 1, set Gk := co{V f (xki)};::,1 . At Step 5, find tk via Procedure 4.3. Finally, at 
Step 6, set xk+ł := xk + tkdk_ Then the requirements of (4.11) are met if tk > O, whereas 
the key inequality (2.7) holds always. In effect, Theorems 3.3- 3.6 remain valid for this 
variant. Finally, note that Theorems 3.3- 3.6 still hold if the differentiability check of Step 
1 is skipped, since {xki};::,1 CD with probability l. 
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