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Abstract

We study the gradient sampling algorithm of Burke, Lewis and Overton for minimiz-
ing a locally Lipschitz function f on IR” that is continuously differentiable on an open
dense subset. We strengthen the existing convergence results for this algorithm, and
introduce a slightly revised version for which stronger results are established with-
out requiring compactness of the level sets of f. In particular, we show that with
probability 1 the revised algorithm either drives the f-values to —oo, or each of its
cluster points is Clarke stationary for f. We also consider a simplified variant in
which the differentiability check is skipped and the user can control the number of
f-evaluations per iteration.
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1 Introduction

In two recent papers [BLOO02b, BLOO05], Burke, Lewis and Overton introduced and es-
tablished convergence of the gradient sampling (GS) algorithm for minimizing a locally
Lipschitz function f : IR® — IR which is continuously differentiable on an open dense
subset D of IR™ and has bounded level sets.

At each iteration, the GS algorithm computes the gradient of f at the current iterate
and at m > n + 1 randomly generated nearby points. This bundle of gradients is used
to find an approximate e-steepest descent direction, where € is the sampling radius, as
the solution of a quadratic program. A standard Armijo line search along this direction
produces a candidate for the next iterate, which is obtained by perturbing the candidate
if necessary to stay in the set D where f is differentiable; the perturbation is random and
small enough to maintain the Armijo sufficient descent property. The sampling radius

*Systems Research Iustitute, Newelska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)



e may be fixed for all iterations or may be reduced dynamically. For ¢ fixed, the main
convergence result of [BLO05, Thm. 3.4] established that, with probability 1, the GS
algorithm generates a sequence with a cluster point that is e-stationary for f (as defined
in §2). For € reduced dynamically, the result of [BLO05, Thm. 3.8] established that if the
GS algorithm converges to a point, this limit point is stationary for f with probability 1.

The GS algorithm is not only very interesting in theory (especially due to its ingenious
use of gradients instead of subgradients [BLO02al), but also widely applicable and robust
in practice {BHLOO05, BLO04, BLOO05, Lew05].

This paper provides stronger convergence results for the GS algorithm. For ¢ fixed, we
show that with probability 1 every cluster point of the GS algorithm is e-stationary for f
(see Thm. 3.6). For ¢ reduced dynamically, we show that with probability 1 every cluster
point of a well-defined subsequence is stationary for f (see Thm. 3.4), without assuming
that the whole sequence converges. In both cases, we show that suitable stopping criteria
ensure with probability 1 that the algorithm terminates with the required “optimality
certificate” of [BLOOS, p. 768]; this practical aspect was not analyzed in [BLOO05, §3].

We also introduce a slight revision of the GS algorithm, in which the perturbation of
the Armijo candidate is controlled by the current step size (instead of ¢ as in the original
method; see (2.6)). This tiny modification enables us to derive much stronger convergence
results; in particular, we can dispense with the assumption of [BLOOS] that f has compact
level sets. For e fixed, we show that with probability 1 either the algorithm drives the
f-values to —o0, or every cluster point of a well-defined subsequence of its iterates is e-
stationary for f (see Thm. 3.5). For ¢ reduced dynamically, we show that with probability 1
the algorithm either drives the f-values to —oo, or each of its cluster points is stationary for
f (see Thm. 3.3); in a sense, this is the best result one can hope for. If inf f > —c0, in both
cases suitable stopping criteria ensure with probability 1 that the algorithm terminates
with the required “optimality certificate”.

Our further modifications of the GS algorithm are intended to improve its performance
in practice. Since the GS algorithm employs search directions of unit 2-norm, the number
of f-evaluations per Armijo’s line search can grow to infinity as the algorithm converges. To
mitigate this drawback, we consider using an “unscaled” search direction, i.e., the negative
of the convex combination of the gradients in the bundle whose norm is minimized. (This
direction was used in [BLOO2b, §3] for a different line search.) The third alternative is to
scale the direction so that its length equals ¢ and the Armijo line search is made within
the ball in which gradient sampling occurs.

Finally, we introduce a lower bound on step sizes tested by the Armijo search, accepting
a null step size when this bound is reached. Here the idea is simple: when the search
direction is good enough, a step size close to our lower bound should work, whereas if the
search direction is poor, the Armijo search will produce a tiny step size anyway. In our
limited Armijo line search (see Proc. 4.3) the number of f-evaluations can be controlled
by the choice of an initial step size; in an extreme version, just one evaluation occurs.
Further, for our limited line search there is no longer any need for keeping the iterates in
the set D where f is differentiable. Skipping the differentiability check makes life easier
for the user who provides gradient values and brings the simplified algorithm closer to the
version implemented and tested in [BLO0S5, §4].




Among other algorithms for minimizing locally Lipschitz functions, we should mention
bundle methods (see the references in [BLO05, Kiw36]). Bundle methods require the com-
putation of a single subgradient at each trial point in addition to the objective value. They
generate search directions by solving quadratic programs based on accumulated subgra-
dients, and employ line searches which either produce descent or find a new subgradient
that modifies the next search direction. At first sight, they have little in common with
the GS algorithm, which does not accumulate gradients. We believe, however, that deeper
understanding of their similarities and differences should lead to new variants. The first
step in this direction is made here: the proof technigue of §3 is borrowed from [Kiw96, §3}
and the limited line search of §4.3 is inspired by null steps of bundle methods. We defer
consideration of gradient sampling in bundle methods, as well as numerical comparisons,
to future work.

The paper is organized as follows. A slightly revised version of the GS algorithmm is
presented in §2. A convergence analysis of the original and revised versions is given in §3.
Various modifications are discussed in §4.

2 The gradient sampling algorithm

As in [BLO05], we assume that the objective function f : R" — IR is locally Lipschitz
continuous and continuously differentiable on an open dense subset ) of R”. The Clarke
subdifferential [Cla83] of f at any point z is given by
df(z) = co{lim; Vf(y’') : v/ - 2,97 € D},

where co denotes the convex hull, and the Clarke e-subdifferential |Gol77] by

Ocf(x) := coIf (B(z,€)), (2.1)
where B(z,€) := {y : |y — x| < €} is the ball centered at z with radius e > 0 and |- | is the
2-norm. The Clarke e-subdifferential 3. f(z) is approximated by the set of [BLOO05]

Ge(z) :=clco Vf(B(z,€) N D), (2.2)
since Ge(x) C 8. f(z), and O, f() C Gym) for 0 < 6 < €. We say that a point z is
stationary for f if 0 € 0f(z); z is called e-stationary for f if 0 € J.f(z).

We now state a slightly revised version of the GS algorithm [BLOO05, §2]. In particular,

we don’t require that the starting point = € D is such that the level set {z : f(z) < f(z!)}
is compact. For a closed convex set G, Proj(0|G) is its minimum-norm element.
Algorithm 2.1 (GS algorithm).
Step 0 (Initialization). Select an initial point z' € D, optimality tolerances vopg, €ops > 0,
line search parameters 3, v in (0, 1), reduction factors 4, 8 in (0,1], a sampling radius
€; > 0, a stationarity target vy > 0 and a sample size m > n + 1. Set k := 1.
Step 1 (Approzimate the Clarke e-subdifferential by gradient sampling). Let {z*}7,
be sampled independently and uniformly from B(z*,€). If {z*}™, ¢ D, then stop;
otherwise, set

G = co{V f(z*), Vf(z™),..., Vf(z*™)}. (2.3)
Step 2 (Direction finding). Set g* := Proj(0] Gy).
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Step 3 (Stopping criterion). If |g¥| < Vopt and € < €gpt, terminate.

Step 4 (Sampling radius update). If |g®| < vy, set veyy = Oy, €py1 = uey, tx == 0,
¢+ .= z* and go to Step 7. Otherwise, set v,y 1= Vg, €xp1 2= € and

d* = — /|, (2.4
Step 5 (Line search). Set the step size
te = max{t: f(z* +1td*) < f(a*) - Btlg*l,t € {1,7,7% .} } (2:5)

Step 6 (Updating). If z* + t,d* € D, set zF*! := z* + t,d*. Otherwise, let zF+! be any
point in D satisfying
F(@Y) < f(z¥) - Btelgt), (2.6a)
|o* 4 tpd® — £ < min{te, e} (2.6b)
Step 7. Increase k£ by 1 and go to Step 1.

The algorithm keeps every iterate z* in the set D. At Step 2, ¢g* is characterized by
g* € Gy and {g,g*) > [g*|? for all g € Gi; since Vf(z¥) € Gy by (2.3), (2.4) yields
(Vf(z*),d*) < —|g*|. Hence the Armijo line search (2.5) is well defined, because there is
f > 0 such that f(z* +td*) < f(z¥) — Btlg*| ¥t € (0,1).

The only significant difference between Algorithm 2.1 and the original GS algorithm
[BLOOS, §2] lies in the slightly stronger requirement (2.6). Namely, if z* + t,d* ¢ D, z*+!
can be found as follows. For i = 1,2,..., sample z¥*! from a uniform distribution on
B(z* + td*, min{ty, €, }/7) until £¥*1 € D and (2.6a) holds. By (2.5) and the continuity
of f, this procedure terminates with probability 1. In contrast, the original GS algorithm
requires finding #* in B(z*, €;) such that #* + t,d* € D and (2.6a) holds for z**! :=
#* + td*; to this end, one can sample ¥ from a uniform distribution on B(z*, ¢;/7) until
these requirements are met. Further, if (2.6) holds, then 2 := zF+! — ¢,d* satisfies the
requirements of the original GS algorithm. This is the only reason for including ¢, in
(2.6b). On the other hand, the presence of ¢ in (2.6b) yields |z*+! — 2¥| < 2t; (using
|d*| = 1 by (2.4)) and hence the highly useful consequence of (2.6a)

fa*) < f(2*) - Bl — 2*|lgk. 2.7

Note that this key inequality (2.7) holds also when z**! := z* + ¢,d* at Step 6 (thanks to
(2.5)), or when z**! ;= 2* at Step 4.

The stopping criterion of Step 3 delivers the “optimality certificate” of [BLOO05, p. 768]:
the final values of |g*| and ¢, provide an estimate of nearness to Clarke stationarity.

3 Convergence analysis

We start with two technical lemmas. The first lemma on approximate least-norm elements
is a simplified version of [BLO0S5, Lem. 3.1}.




Lemma 3.1. Let § # C C R" be compact convez and 8 € (0,1). If 0 ¢ C, there exists
§ > 0 such that u,v € C and |u| < dist(0]C) + 6 imply (v,u) > Blu|?

Proof. If the assertion were false, we could pick two sequences {u'}, {v'} C C satisfying
|u’| < dist(0|C)+1/i and (v}, u’) < B|ui|%. By compactness, we may assume v’ — i € C,
v' — 7 € C, thus (7, 4) < Bla|*>. However, @ = Proj(0|C) # 0 satisfies (v, @) > |a|? for all
v € C, a contradiction. O

The next lemma recalls from [BLOO05, Lem. 3.2] basic properties of the set of points
close to a given point Z that can be used to provide a §-approximation to the least-norm
element of G¢(Z); its second part summarizes some useful ideas from the proof of [BLO05,
Thim. 3.4]. For ¢,§ > 0 and Z,z € R", using the measure of proximity to e-stationarity

pe(E) := dist(0 ] Ge(E)), (3.1)
let

m

DI (z) = III(B(z, eyND)cC IT_IIR" (3.2)

and
Vo(@,2,8) = {(y"....y™) € D (z) : dist(0] co{ VF(y')}iZ)) < pe(B)+ 6} (3.3)

Lemma 3.2. Let ¢ >0 and T € R™

(i) For any § > 0, there is T > 0 and a nonempty open set V satisfying V C Ve(@,7,9)
for all z € B(z,7), and dist(0] co{ Vf()}™,) < p(F) + S for all (3',...,y™) € V.

(i) Assuming 0 ¢ G (%), pick § > 0 as in Lemma 3.1 for C = G.(Z), and then 7
and V as in statement (i). Suppose at iteration k of Algorithm 2.1, Step 5 is reached with
z* € B(z, min{7,¢/3}), & = ¢ and (z*',...,2*) € V. Then tx > min{l,ve/3}.

(iii) If limg max{|z* — |, |¢*|, ex} = 0 with g* € O, f(z*) for all k, then 0 € Of(T).

Proof. (i) Let u € co V f(B(Z,¢) N D) be such that |u| < pe(Z) + . Then Carathéodory’s
theorem {Roc70] implies the existence of (Z',...,5™) € DI*(Z) and A € IRT with &7 X; =
1 such that u = ¥, A,V f(Z'). Since f is continuously differentiable on the open
set D, there is € € (0,¢) such that the set V := [I7, int B(z%,¢) lies in D™ (%) and
[T AV ()] < pe(Z) +6 for all (3!, ...,y™) € V. Hence for all x € B(Z, 7) with 7 :=¢,
the fact that B(Z,e — €) C B(z, €) yields V' C Vi(Z,x,8) by the definitions (3.2)—(3.3).
(ii) Let G := co{ Vf(z*)}2,. Since (2, ..., 2*) € V ¢ Vi(, %, 6) in statement (i),
we get dist(0|Gy) < pe(z) +6 and G.cG ( ) from (3.3), (3.2) and (2.2). We also have
Vf{z*) € G.(%) from z* € B(Z,¢/3) N D. Thus, by (2.3) and the construction of g* at
Step 2, g* € G(Z) and |g*| < p.(Z) + 4. Hence by (3.1) and the choice of § in Lemma 3.1,

(v,9%) > Blg*? for all v € G¢(F). (3.4)
Suppose for contradiction that ¢x < min{1, ve/3}. Then by construction (cf. (2.5))
=By lgt| < fa* + 7 d") - f(zh),
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whereas Lebourg’s mean value theorem (cf. [Cla83, Thm. 2.3.7]) yields the existence of
F* € [zF + vt d%, 2*] and v* € A f(FF) such that

fla® + 77 d®) — f(2F) = v (o, dF).

Hence using d* := —g¥/|g*| gives (v, ¢*) < Blg*|%, so v* ¢ G.(F) by (3.4). But vy~ '#;|d*| <
¢/3 and |z¥ — T| < ¢/3 imply Z* € B(Z,2¢/3) and thus v* € G.(%), a contradiction.
(iil) Note that g* € O, f(z*) at Step 2 by (2.1), whereas 8.f(-) is closed. [

As discussed in §2, Algorithm 2.1 is a special case of the GS algorithm, which in turn
corresponds to removing #; in the right-hand side of (2.6b) and requiring that the level
set {z : f(z) < f(z')} be bounded. Therefore, we give convergence results separately for
Algorithm 2.1 and the original GS algorithm. We start with the case where ¢, and v, are
allowed to decrease.

Theorem 3.3. Let {m"} be a sequence generated by Algorithm 2.1 with v > Vepy = €opy =
0 and 1,0 < 1. With probability 1 the algorithm doesn’t stop and either f(z*) | —oo, or
v 10, € | 0 and every cluster point of {z*} is stationary for f.

Proof. (i) Since termination in Step 1 has zero probability, we may assume it doesn’t
occur. Similarly, if f(z*) | —oo, there is nothing to prove, so assume infy f(z*) > —oo0.
Then summing Bt |g* < f(z*) — F(a**+!) (cf. (2.6a)) and relation (2.7) gives

Etk|g’°| < oo, (3.5)
k=1
5 |51 — 2¥||g¥| < o0 (3.6)
k=1

(ii) Suppose there is ki, 7 > 0 and € > 0 such that v, = U and ¢, = € for all k > k.
Using [¢*] > ¥ in (3.5)~(3.6) yields tx — 0, ¥ [z5+! —1*| < oo, and hence the existence of a
point Z such that z¥ — Z. Let ¢ := € First, suppose 0 ¢ G(Z). For §, T and V chosen as in
Lemma 3.2(ii), we can pick k2 > kj such that z* € B(Z, min{r,€/3}) and tx < min{1,ve/3}
yield (z¥!,...,z%™) & V for all k > k. This event has probability 0, since for each k > ko,
(#*, ..., 2" is sampled independently and uniformly from D™(z*), which contains the
open set V # @. Second, suppose 0 € G¢(Z). For § := #/2 and 7, V chosen as in Lemma
3.2(i), we can pick k3 > k; such that z* € B(Z, 7), 7 < |g*| < dist(0] co{V f(z*)}i",) and
p:(%) = 0 imply (z*!,...,2%™) ¢ V for all k > ki. This event has probability 0 as well.

(iii) Consider the event where v | 0, ¢, | 0 and {z*} has a cluster point Z. If z* — 7,
0 € 0f(z) by Lemma 3.2(iii). If 2* 4 Z, we claim that lim, max{|z* — Z|,]¢*|} = 0.
Otherwise, there exist 7 > 0, k and an infinite set K := {k: k > k,|z*¥ — Z| < 7} such
that |g¥| > ¥ for all k € K, so (3.6) gives Yxex |zt — 2*| < co. Since z* 4 Z, there
is € > 0 such that for each k € K with |2¥ — Z| < /2 there exists ¥’ > k satisfying
|z* — x*| > € and |3¢ — | < ¥ for all k < i < k'. Therefore, by the triangle inequality, we
have € < |z — 2F| < 387 |2+ — 27| with the right side being less than € for large k € K
from Ypex |25 — 2F| < 00, a contradiction. Therefore, lim, max{|z* — 7|, [¢g*|} = 0 yields
0 € df(z) by Lemma 3.2(iii). O




























