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1 Introduction

The stability theory is an integral part of any traditional section of mathematics. J. Hadamar introduced
the stability condition and treated it within the concept of a well-posed mathematical programming problem
equally with the conditions of existence and uniqueness of the solution. In optimization a question of stability
of a problem arises in the case where the set of feasible solutions and (or) the objective function depend on
parameters. The presence of such parameters in optimization models is caused by inaccuracy of initial data,
non-adequacy of models to real processes, errors of numerical methods, errors of rounding off and other factors.
So it appears to be important to allocate classes of problems in which small changes of input data lead to small
changes of the result. The problems with such properties are called stable. It is obvious that any optimization
problem arising in practice cannot be correctly formulated and solved without use of results of the stability
theory.

A vector (multicriteria) optimization problem is usually understood as the problem of finding a set of efficient
solutions, i.e. choosing from the set of feasible solutions the alternatives which satisfy a given optimality principle.
In the case where the partial criteria of the problem have an equal importance, the Pareto optimality principle
(see e.g. [4], [5], [15], {18]) is more often used. If all the partial criteria are ordered by importance in such
a manner that each of them is more important than all the subsequent, then the principle of lexicographic
optimality is used. Investigating stability of a vector optimization problem means usually studying the behavior
of the set of efficient solutions under perturbations of problem parameters.

In the literature a technique of studying the stability of optimization problems (both single criterion and
multicriteria) is better developed and covered for problems with continuous set of feasible solutions and there
are numerous results in sensitivity analysis for such problems. Unfortunately, these results are not very useful
in discrete case although most of discrete optimization problems may be formally transformed, at least — in
principle, to an equivalent continuous optimization problem. The reason is that such a transformation does not
exploit the specific combinatorial structure.

There are also a lot of papers devoted to stability of combinatorial optimization problems. There is no
chance to describe all variety of results in the frame of one article. However one can find excellent annotated
bibliographies and surveys for sensitivity and post-optimal analysis in integer programming and combinatorial
optimization problems in (2}, {7], {16], {17].

In single objective case the most frequently considered object is so-called stability radius with respect to
some given optimal solution (see e.g. [1}). It gives a subset of problem parameters for which this solution remains
optimal. There are already similar investigations in multiobjective case. For example, in {3] the stability radius
for multicriteria linear combinatorial optimization problem is calculated in the Pareto case. One can find also a
large survey on sensitivity analysis of vector unconstrained integer linear programming in {2].

It is important to note that even in single objective case the stability radius does not provide us with any
information about the quality of a given solution in the case when problem data are outside of the stability
region. Some attempts to study a quality of the problem solution in this case are connected with concepts
of stability and accuracy functions. These functions were firstly introduced in [12] for scalar combinatorial
optimization problem. In this paper we give an extension of results obtained in (12] and [13] for the vector
perturbed combinatorial optimization problem with Pareto and lexicographic optimality principles. To our
knowledge this problem has not been approached earlier within the multicriteria framework.

The paper is organized as follows. In section 1 we consider vector linear combinatorial optimization problem
which consists in finding the set of Pareto optimal solutions. For a given Pareto optimal solution we introduce an
appropriate relative error as a function of the norm of data perturbations. This leads us to natural extension of
stability and accuracy functions in multiobjective case. We give formulae to calculate values of both functions.
Afterward, we define so called stability and accuracy radii as extreme norms of perturbations of problem
parameters for which the stability and accuracy functions are equal to zero. In section 2 analogous results are
stated for the case of lexicographic optimality. In this section both functions are defined in a different way
which reflects lexicographic specific. At the end of paper we give small example which illustrates why it seems
so important to calculate stability and accuracy functions which give us the most detailed information about

efficient solution.




Stability and accuracy [unctions

2 Stability and accuracy functions of Pareto optimal solution

Let £ = {e1,ea,..,en}, n > 1, be a given set, and let 7 C 28\{0}, |7} > 1, be a family of non-empty subsets
of E. For e € E we define a vector of positive weights

cle) = (Cl(e)vcﬁ(e)v'"vcm(e))v m 21,

and a matrix C' = {c;(e;)} € R}*", where Ry = {u € R: u > 0}. Denote for £ € N, Nx = {1,2,...,k} and
let for t € T, N(t) = {j : e; € t}. We will consider a vector criterion

f(cvt) = (fl(Cw ), fz(c,t), -"afm(Ctt))a

where
fi(Ct) = Z ci(ej), 1 € Ny

JEN(t)
For a matrix C' € R}'*™ and a feasible solution ¢ € T, let
n(C8) = {t' €T f(C,t) < f(C,1), f(Ct) # F(C,t)}.
The Pareto set P™(C) is defined in a traditional way, namely:
POy ={teT: n(C,t) =0}

In other words, a solution t is Pareto optimal if and only if there is no solution ¢’ such that f;(C,t') < fi(C,t) for
all i € IV, and at least one strict inequality holds. If the sets E and T are fixed, then an instance of m-criteria
combinatorial optimization problem is uniquely determined by the matrix C € R *". Therefore, we will denote
it by Zp(C).

It is assumed that the set T is fixed, but the matrix of weights C' may vary or is estimated with errors.
Moreover, it is assumed that for some originally specified matrix C? = {c(e;)} € R}*™ we know one Pareto

optimal solution ¢°.
When coefficients of objective functions change, then initially efficient solution may become no longer effi-

cient. We will evaluate the quality of this solution from the point of view of its robustness on data perturbations.
Namely, in case of Pareto optimality we introduce for t* € P™(C°) and a given matrix C € RT*" so-called

relative error of this solution: C0 c
(C,19) — fi(C,t
ep(C, to) = max min Mf_'(i_)
teT i€N., f(Ct)
In the scalar case, i.e. for m=1, the Pareto set transforms into the set of optimal solutions. Therefore the relative
error ep(C, t°) converts into (see {13]):

A(C#) —min 7(C.0)
i /(G0

ep(C, to) =

In the scalar case the equality ep(C,t°) = 0 gives necessary and sufficient optimality conditions of the
optimality of the solution t° for problem Z}(C). But in the multicriteria case the situation is a bit different.
Observe, that for arbitrary C € RT*™ we have ep(C,t°) > 0. If ep(C,t°) > 0, then t° ¢ P™(C) and this
positive value of the relative error may be treated as a measure of inefficiency of the solution t° for problem
ZP(C). Obviously, if t° € P™(C), then ep(C,t%) = 0. But the inverse is not always through as the following

example shows:
Consider E = {e1,e,e3}, T = {t1,42,t3}, where ¢; = {e1}, to = {ea}, t3 = {e3}, and let

3 3 3 3 3 3
=2 1 1},c=]21 10
1 2 1 1 2 10

It is clear that t° = ¢3 is Pareto optimal in the original problem ZZ(CP), but it is not Pareto optimal in the
problem Z3(C) although ep(C,t°) = 0.

Thus, in the multiobjective case the equality ep(C,t°) = 0 formulates in general only necessary condition of
the efficiency of the solution t® for problem ZF(C). But later we will show, that if the equality ep(C,t°) = 0 is
valid for any matrix in some open neighbourhood of C, i.e., there is ¢ > 0 such that Ep(C',tO) =0 for any C,
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[|C~C|| < ¢, where || -|| denotes a norm in R7*™, then this equality provides also sufficient efficiency condition

of the solution ¢° for problem ZZ(C).
In the following we are interested, in fact, in the maximum value of the error ep(C,t%) when the matrix C'

belongs to some specified set. Two particular cases are considered:

In the first case we are interested in absolute perturbations of the weights of elements and the quality of a
given solution is described by the so-called stability function. For a given p > 0 the value of the stability function
is equal to the maximal relative error of a given solution under the assumption that no weights of elements are

increased or decreased by more than p.
In the second case we deal with relative perturbations of weights. This leads to the concept of the accuracy

function. The value of the accuracy function for a given é € [0,1) is equal to the maximum relative error of the
solution t° under the assumption that the weights of the elements are perturbed by no more than § - 100% of

their original values,
Observe that if we compare two initially efficient solutions from the point of view of their robustness on data

perturbations or inaccuracy, then smaller value of the stability or accuracy function for a given norm of data
perturbation is more preferable. Thus, both defined functions may be used to evaluate the quality of solutions

from this particular point of view.
Let X be the set of non-stable elements, i.e. elements for which weights may change, and let

C%X) ={C e RT*": ci(e;) = (e;), e; € ENX, i € Ny j € Ny}
For a given p € [0,9(C°, X)), where ¢(C° X) = min{c{(e;): e; € X, i € N, j € N,.}, we consider a set
2,(C% Xy ={C € CUX) : eiles) ~ 2 (e;)| <p, § € N, j € Nu}.
For a Pareto optimal solution t® € P™(CP), an arbitrary set of non-stable elements X, and p € [0, ¢(C°, X)),
the value of the stability function is defined as follows:

Sp(t®, X,p) = ep(C,t%).

max
CEN,(C0,X)
In a similar way, for a given § € [0, 1), we consider a set
O5(C% X) ={C € CUX) : |eilej) — cX(es)| <bcX(e;),i € Nim, j € Na}.
For a Pareto optimal solution t° € P™(C?), an arbitrary set of non-stable elements X and § € [0, 1) the value
of the accuracy function is defined as follows:

Ap(t,X,8) = ep(C,10).

max
CEBs(CY,X)

It is easy to check that Sp(t°, X,p) > 0 for any p € [0,g(C% X)) as well as Ap(¢®, X,8) > 0 for each
§ €10,1). Moreover, the following fact holds:

Proposition 1 For t® € P™(C%) and p € (0,¢(C°, X)),
Sp(t% X,p) =0 if and only if t° € P™(C) for any C & 02,(C°, X).
Similarly, for t® € P™(C%) and § € (0,1),
Ap(t, X,p) =0 if and only if ° € P™(C) for any C € Os(C°, X).
Proof We will prove only first statement, because the proof of the second part is analogous.
If for a given p € (0,¢(CP°, X)), t® € P™(CP) for any C € £2,(C°, X), then - directly from the definition of the
stability function — we have Sp(t°, X, p) = 0. Thus, it remains to prove the opposite implication.

Assume that this implication does not hold, i.e., suppose that Sp(t% X,p) = 0, but there exists a matrix
C* € 2,(C° X), such that t° ¢ P™(C*). We will show that such assumption must lead to a contradiction.
Indeed, t® ¢ P™(C*) means that there exists t* € 7" such that for all i € Ny, fi(C*,t*) < fi(C*,t°%) and
F(C*t) # F(C™,%). Let I C Ny, denotes the set of indices, for which fi(C*,t*) = f;(C*,#°), and consider for
0 < a < p the matrix C = {&(e;)} € RT™", where

ciej)—a ifiel, e € (t*\t)NX,
Gile;) =< ci(ej)+a ifiel, g; € (O\*)NX,
ci(e;) otherwise.
Observe that € € 2,(C%, X) and £i(C,t) < f:(C,t°) for i € Ny, which implies Sp(t°, X, p) > 0. Thus we have
a contradiction which completes the proof.
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Proposition 1 suggests, that it is of special interest to know the largest values of p and 4, for which, respec-
tively, Sp(t%, X,p) = 0 and Ap(t°, X,6) = 0, because these values give the maximum norms of perturbations
which preserve the efficiency of a given solution. These values are close analogues of so-called stability and
accuracy radii introduced earlier for single objective optimization problems. Formally, for any arbitrary set of
non-stable elements X the stability radius RE(t% X) and the accuracy radius Rf(t%, X) are defined in the
following way:
RE(t°, X) = sup{p € [0,¢(C°, X)) : Sp(° X,p) =0},

RA@®, X) =sup{é € [0,1): Ap(¢° X,8) = 0}.

Two following theorems give formulae for calculating values of the stability and accuracy functions as well
as values of the corresponding radii. Let for t,¢' € T, t®t' = (¢\t) U (¢'\¢). Thus [t ® t'} = {(t\t') U (t'\t})] =
[t]+ |¢] - 2lent].

Theorem 1 For an optimal solution t° € P™(C?), an arbitrary set of non-stable elements X, and p €
[0,9(C?, X)), the stability function can be ezpressed by the formula:

F(C% %) — fi(CO ) +pl(t @ t%) N X

$p(t°, X, p) = max min A% (1)

For an optimal solution t° € P™(C°), an arbitrary set of non-stable elements X, and é € [0,1),

B Fi(C% %) ~ £i(C°,1) + 6£:(C°, (t®t°)ﬂX)
Ap(t%, X, 8) = max min FACO D —6/(CO.tN X) @

Proof We will prove only (1). The proof of (2) is analogous.
filC1%) = fi(Co1)

Sp(t%, X,p)= m ep(C,t%) = jpn 2L DT o
P Xp) = gnex eP(GE) = [ e mexmin =)

_ - JilC0) ~ Fi(Ct)
max min 22 2
teT cen (Co,,\')leN fi(C,t)
X 0y _ f.
< e min HC) - 1(C0)
teT ie€Nm CER, (cU X) fi(C, 1)
For any fixed ¢ € T and i € N,;, the maximum —‘—(C’—;‘(Zg%@ over C € (2,(C% X) is attained when

(e;) = { Gles) +p if5 € NN X),
P e) —p ijeNENX).

Thus, we get

0 0 0 1]
oy (O )= F(C%0) 4l @) N X
Sp(t’, X, p) < max min FACO.6) — pit N X]

Now it remains to prove that
£:(C°,¢%) — £:(C°, t)+p| t®1t0) nX(

>
Sp(#°, X,p) = max min 7005 = plin X|

Consider a matrix C* = {c}(e;)} € R™*" with elements defined for any iudex i € Ny, as follows:

e(ey) = Qej)+p ifjeNENX),
i e¥(e;) —p otherwise.

Then
(e = fi(ent) o fiC%E0) — A(C, )+ plt @) N X|
N R (A =R G0 —pltn X]

So, we have that 0 0 o 0
o N . (€, 80) = fi(CP, t)+plt®t)nX|
Sp(t, X,p) 2 max min Fi(CP,8) — plt N X|
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Theorem 2 For an optimal solution t° € P™(C°) and an arbitrary set of non-stable elements X,

- . (C0, 1) — £(C%1%)
S tO — 0 fz( ) i B
RE(t% X) = min{q(C’ ,X),E?\x(nw“eiv’): Teemnx] Iz (3)

and
A0 vy s . Fi(C% 1) = f(C°, %)
FEE X0 = mintl, i 3 R, ro 0) 1 ) @

where To = {t € T: fi(C% (¢ ®t°)NX)F#0 for all i € Npp}.

Proof We will prove only (3). The proof of (4) is analogous. If p = 0, then Sp(t°, X,0) = 0. Let Sp(2%, X, p) > 0.
It holds if and only if
- FlCO,10) — F(C0 1) + pl(t ®1%) N X |
e E FC0 D ~plin X| >0

But last means that o o0 .0
. fi(C%8) — fi(CO, 1)

PZP= e B T Ge oy nX|

Thus, if p < g(C°, X), then we get that Sp(t, X, p) = 0 on interval [0, 5). Otherwise stability function is equal

to zero on [0, ¢(C°, X)).

3 Stability and accuracy functions of lexicographically optimal solution

The lexicographic optimality principle is widely spread in optimization (see e.g. [4), [5]). This principle is used,
for example, for solving stochastic programming problems, to define structure of priorities in complex systems
which consist of different sublevels, etc. Observe also that any scalar constrained optimization problem may
be transformed to unconstrained bicriteria lexicographic problem by using as first criterion some exact penalty
function for problem constrains, and an original objective function as second criterion.

In this section we will consider a variant of lexicographic optimization with respect to all permutations of
partial criteria.

Let S5, be the set of all permutations of N,. For 5 = (51, 52,...,5m) € Sy, the binary relation <, of a
lexicographic order is defined as follows: t <, ¢’ if and only if f(C,t) = f(C,1') or there exists an index j € N
such that for all k € N;_; we have f,,(C,1) < f,,(C,¢') and f,, (C,t) = f,,(C,t'). Here Ny = for j = 1.

Under the vector (m-criteria) combinatorial optimization problem Z7*(C') we understand the problem of
finding the lexicographic set L™(C) defined in the following way:

ey= |J 1m(Cs),

$ESn

where
L™Cs)={teT: t=<,t Yt eT}
The elements of the set L™(C) are called lexicographic optima of the problem Z7*(C'). It is easy to see that any

lexicographic optimum belongs to the Pareto set.
For a given matrix C, we will measure the quality of t° € L™(C®) by the value of the relative error er{C, to)

which is introduced as follows:

e -Gy
€2(C,1") = min max St

While t® € L™(C) for any instance of problem Z7*(C), the equality £1,(C,t°) = 0 holds. The inverse statement
is not true (see in the previous section). If ° looses lexicographic optimality in an Z7*(C), then the relative

error £1,(C, %) characterizes the quality of ¢°.
For a lexicographically optimal solution t° € L™(C?), an arbitrary set of non-stable elements X and p €

[0, ¢(C°, X)) the value of the stability function is defined as follows:

a _ 0
Sp(t”, X, p) = el eL(C,27).



























