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Abstract

We show that several versions of Floyd and Rivest’s algorithm SELECT for finding
the kth smallest of n elements require at most n +min{k, n — k} + o(n) comparisons
on average and with high probability. This rectifies the analysis of Floyd and Rivest,
and extends it to the case of nondistinct elements. Our computational results confirm
that SELECT may be the best algorithm in practice.
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1 Introduction

The selection problem is defined as follows: Given a set X := {xj};-;l of n elements, a
total order < on X, and an integer 1 < k < n, find the kth smallest element of X, i.e.,
an element & of X for which there are at most ¥ — 1 elements z; < z and at least &
elements z; < z. The median of X is the [n/2]th smallest element of X. (Since we are
not assuming that the elements are distinct, X may be regarded as a multiset).

Selection is one of the fundamental problems in computer science. It is used in the
solution of other basic problems such as sorting and finding convex hulls. For good reviews
of its literature, see, e.g., [DHUZ01, DoZ99, DoZ01] and [Knu98, §5.3.3]. We only stress
that most references employ a comparison model (in which a selection algorithm is charged
only for comparisons between pairs of elements), assuming that the elements are distinct.
Then, in the worst case, selection needs at least (2 + €)n comparisons {DoZ01], whereas
the pioneering algorithm of [BFP*72] makes at most 5.43n, its first improvement [SPP76]
needs 3n + o(n), and the most recent improvement in [DoZ99] takes 2.95n + o(n). Thus
a gap of almost 50% still remains between the best lower and upper bounds in the worst
case.

The average case is better understood. Specifically, for £ < [n/2], at least n + &k — 2
comparisons are necessary (CuMB89], [Knu98, Ex. 5.3.3-25], whereas the best upper bound
is 1+ k 4+ O@®Y?In'?n) [Knu98, Eq. (5.3.3.16)]. Yet this bound holds for a hardly
implementable theoretical scheme [Knu98, Ex. 5.3.3-24], whereas a similar frequently cited
bound for the algorithm SELECT of {FIR75b] doesn’t have a full proof, as noted in [Knu98,

*Systems Research Institute, Newelska 6, 01-447 Warsaw, Poland (kiwiel@ibspan.waw.pl)

1



Ex. 5.3.3-24] and [PRKTS83). Significantly worse bounds hold for the classical algorithm
FIND of [Hoa61], also known as quickselect, which partitions X by using the median of a
random sample of size s > 1. In particular, for k¥ = [n/2], the upper bound is 3.39n+o(n)
for s = 1 [Knu98, Ex. 5.2.2-32] and 2.75n + o(n) for s = 3 [Grii99, KMP97], whereas for
finding an element of random rank, the average cost is 3n + o(n) for s = 1, 2.5n+ o(n) for
s = 3 [KMP97], and 2n + o(n) when s — o0, s/n — 0 as n — oo [MaRO01]. In practice
FIND is most popular, because the algorithms of [BFP+72, SPP76] are much slower on the
average [Mus97, Val00]. For the general case of nondistinct elements, little is known in
theory about these algorithms, but again FIND performs well in practice [Kiw03a, Val00].

Our aim is to rekindle theoretical and practical interest in the algorithm SELECT of
[FIR75b, §2.1} (the versions of [FIR75b, §2.3] and [FIR75a] are addressed in [Kiw04b,
Kiw04a]). We show that SELECT performs very well in both theory and practice, even
when equal elements occur. To outline our contributions in more detail, we recall that
SELECT operates as follows. Using a small random sample, two elements u and v almost
sure to be just below and above the kth are found. The remaining elements are compared
with % and v to create a small selection problem on the elements between 1 and v that is
quickly solved recursively. By taking a random subset as the sample, this approach does
well against any input ordering, both on average and with high probability.

First, we revise SELECT slightly to simplify our analysis. Then, without assuming
that the elements are distinct, we show that SELECT needs at most n -+ min{k,n — k} -+
O(n?*1n'/3 n) comparisons on average; this agrees with the result of [FIR75b, §2.2] which
is based on an unproven assumption [PRKT83, §5]. Similar upper bounds are established
for versions that choose sample sizes as in [FIR75a, Meh00, Rei85] and [MoR95, §3.3].
Thus the average costs of these versions reach the lower bounds of 1.5n + o(n) for median
selection and 1.25n+ o(n) for selecting an element of random rank (yet the original sample
size of [FIR75b, §2.2] has the best lower order term in its cost). We also prove that nonre-
cursive versions of SELECT, which employ other selection or sorting algorithms for small
subproblems, require at most n + min{k,n — k} + o(n) comparisons with high probability
(e.g., 1 — 4n~% for a user-specified 4 > 0); this extends and strengthens the results of
[GeS03, Thm 1], [Meh00, Thm 2] and [MoR95, Thm 3.5].

Since theoretical bounds alone needn’t convince practitioners (who may worry about
hidden constants, etc.), a serious effort was made to design a competitive implementation
of SELECT. Here, as with FIND and quicksort [Sed77], the partitioning efficiency is crucial.
In contrast with the observation of [FIR75b, p. 169] that “partitioning X about both z and
v [is] an inherently inefficient operation”, we introduce a guintary scheme which performs
well in practice.

Relative to FIND, SELECT requires only small additional stack space for recursion,
because sampling without replacement can be done in place. Still, it might seem that
random sampling needs too much time for random number generation. (Hence several
popular implementations of FIND don’t sample randomly, assuming that the input file is
in random order, whereas others [Val00] invoke random sampling only when slow progress
occurs.) Yet our computational experience shows that sampling doesn’t hurt even on ran-
dom inputs, and it helps a lot on more difficult inputs (in fact our interest in SELECT was
sparked by the poor performance of the implementation of [FIR75a} on several inputs of



[Val00]). Most importantly, SELECT beats quite sophisticated implementations of FIND
[Kiw03a, Kiw03b, Val00] in both comparison counts and computing times even for exam-
ples with relatively low comparison costs. To save space, only selected results are reported
in §7.3 and [Kiw03a, Kiw03b], but our experience on many other inputs was similar. In
particular, empirical estimates of the constants hidden in our bounds were always quite
small. Further, the performance of SELECT is extremely stable across a variety of inputs,
even for small input sizes (cf. §7.3). A theoretical explanation of these features will be
undertaken elsewhere. For now, our experience supports the claim of [FIR75b, §1] that
“the algorithm presented here is probably the best practical choice”.

The paper is organized as follows. A general version of SELECT is introduced in §2,
and its basic features are analyzed in §3. The average performance of SELECT is studied
in §4. High probability bounds for nonrecursive versions are derived in §5. Partitioning
schemes are discussed in §6. Finally, our computational results are reported in §7.

Our notation is fairly standard. |A| denotes the cardinality of a set A. In a given
probability space, P is the probability measure, and E is the mean-value operator.

2 The algorithm SELECT

In this section we describe a general version of SELECT in terms of two auxiliary functions
s(n) and g(n) (the sample size and rank gap), which will be chosen later. We omit their
arguments in general, as no confusion can arise.

SELECT picks a small random sample S from X and two pivots « and v from S such that
u < zi < v with high probability, where z} is the kth smallest element of X. Partitioning
X into elements less than u, equal to u, between u and v, equal to v, and greater than v,
SELECT either detects that u or v equals zj, or determines a subset X of X and an integer
% such that zj may be selected recursively as the kth smallest element of X,

Below is a detailed description of the algorithm.

Algorithm 2.1,

SELECT(X, k) (Selects the kth smallest element of X, with 1 < k < n :=|X]|)

Step 1 (Initiation). If n = 1, return z;. Choose the sample size s < n—1 and gap g > 0.
Step 2 (Sample selection). Pick randomly a sample S := {y,...,¥,} from X,

Step 3 (Pivot selection). Set i, := max{[ks/n — g],1}, %, ;= min{[ks/n + g],s}. Let u
and v be the {,th and i,th smallest elements of S, found by using SELECT recursively.
Step 4 (Partitioning). By comparing each element z of X to u and v, partition X into
L={zeX:z<uhU={zeX z=u}, M ={ze€ X :u<z<uv}
Vi={zeX:z=v},R:={z€ X :v<az} If k<n/2, zis compared to v first, and to
wonly if £ <vand u < v. If k > n/2, the order of the comparisons is reversed.

Step 5 (Stopping test). If |L| < k < |[LUU]|, return u; else if |[LUU U M| < k <n—|R],
return v.

Step 6 (Reduction). If k < |L], set X:=Landk:=k; elseifn—|R| <k, set X:=R
and k:=k —n+ |R|; else set X := M and k := k — |[LUU]. Set A :=|X].

3



Step 7 (Recursion). Return SELECT(X, k).

Our revision of the original version of SELECT [FIR75b, §2] has two features. First,
the form of pivot ranks i, and i, at Step 3 will allow us to handle more general choices
of the sample size s and gap g. Second, for distinct keys and u < v, the original version
worked with just three sets: L, UUM UV and R; in contrast, partitioning into five sets at
Step 4 is needed when equal keys occur. Still, our revision inherits the following general
properties, formulated as numbered remarks to ease future references.

Remarks 2.2. (a) The correctness and finiteness of SELECT stem by induction from the
following observations. The returns of Steps 1 and 5 deliver the desired element. At Step
6, X and k are chosen so that the kth smallest element of X is the kth smallest element
of X, and 7 < n (since u,v ¢ X). Also |S| < n for the recursive calls at Step 3.

(b) When Step 5 returns u (or v), SELECT may also return information about the
positions of the elements of X relative to u (or v). For instance, if X is stored as an array,
its k£ smallest elements may be placed first via interchanges at Step 4 (cf. §6). Hence after
Step 3 finds u, we may remove from § its first i, smallest elements before extracting v.
Further, Step 4 need only compare u and v with the elements of X \ S.

(c) The following elementary property is needed in §4. Let ¢, denote the maximum
number of comparisons taken by SELECT on any input of size n. Since Step 3 makes at
most ¢, + ¢,_i, comparisons with s < n, Step 4 needs at most 2(n — s), and Step 7 takes
at most ¢; with 7 < n, by induction ¢, < oo for all n.

3 Preliminary analysis

In this section we analyze general features of sampling used by SELECT.

3.1 Outline of main proof techniques

Since our analysis involves many technicalities, we now outline the main strategy.

We wish to show that for sample sizes and gaps such that s, gn/s and ne~29"% are o(n),
SELECT needs on average at most n+ min{k, n — &} + o(n) comparisons. For an inductive
proof, because the cost of Step 3 is at most twice 1.55 + o(n) from s < n, we only need to
show that the cost of Step 4 is at most n + min{k,n — £} + o(n) and the cost of Step 7 is
o(n), since adding these three costs yields the desired estimate.

Our bounds on the costs of Steps 4 and 7 stem from bounds on the ranks of u and
v in the input set X. Specifically, denote by z7 < ... < 2}, and yf < ... < y} the
sorted elements of the input set X and the sample set S, respectively. Thus z} is the kth
smallest element of X, whereas u = y} and v = y}, at Step 3. Hence for i, = ks/n —g¢
and i, = ks/n -+ g, the positions of 4 and v in the sorted input should not deviate much
from k — gn/s and k + gn/s, respectively. Indeed, for the bounding indices

ky:=max{[k—2gn/s],1} and & :=min{[k+2gn/s],n}, (3.1)
each of the wnfavorable events u < x}, 2} < u, v < £}, =} < v has probability at

most e~ %7 (bounded as the tail of the hypergeometric distribution; cf. Fact 3.1 below).
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Hence, by the Boole-Benferroni inequality, the favorable event =}, < u < zf <wv < zj_has
probability at least 1—4e~29%*. Our bound for Step 4 stems from the fact that for k < n/2
and v < zf _, at most k. ~ 2 elements T < v are compared to u, whereas for £ > n/2 and
z;, < u, at most n — k; — 1 elements T > w are compared to v. Similarly, at Step 7 for
the favorable event, at most k. — k; — 1 elements z}, < T < zj_comprise X. In each case,
expected values are bounded via the Chebyshev inequality (cf. Fact 3.2).

Unfortunately technical complications muddle the picture. First, separate treatment
is needed for k < gn/s or k > n — gn/s (when either u or v becomes redundant; cf. Rem.
3.7). Second, to get sharper estimates for specific choices of s and g, our bounds for Steps
4 and 7 employ s, gn/s and ne~%"s instead of the simpler o(n) notation.

3.2 Sampling deviations and expectation bounds

Our analysis hinges on the following bound on the tail of the hypergeometric distribution
established in [Hoe63] and rederived shortly in [Chv79)].

Fact 3.1. Let s balls be chosen uniformly at random from a set of n balls, of which r
are red, and r' be the random variable representing the number of red balls drawn. Let

p:=r/n. Then
P[r'>ps+g]<e ¥ vg>0. (32)

We shall also need a simple version of the (left) Chebyshev inequality [Kor78, §2.4.2).

Fact 3.2. Let z be a nonnegative random variable such that Plz < (] = 1 for some
constant {. Then Ez <t+ (P[z > t] for all nonnegative real numbers t.

3.3 Pivot ranks
By intepreting the unfavorable events described below (3.1) in the setting of Fact 3.1, we
now bound their probabilities via (3.2). Recall that u =y}, and v =], for yf < ... <y}

Lemma 3.3. (a) Plz} < u] < ™27 if 4, = [ks/n —g].
(b) Plu < x| < e,
(c) Plv < 3] < e=%7 if 4, = [ks/n + g].
(d) Plz}, < o) < e%%s.
(¢) i # Tks/n — g] iff k < gn/si iy # [ks/n + g] iff n < k+ gn/s.

Proof. (a) If z; < y;,, at least s — 4, + 1 sample elements y; satisfy
vi 2 w3y with 7:=max{j:z} = z;}.

*

In the setting of Fact 3.1, we have r := n — 7 red elements z; > z3,), ps = s - 7s/n and
' > § — 1, + 1. Since i, = [ks/n — g] < ks/n—g+1and 7> k, we get

r'>ps+(7-k)s/n+g>ps+g.
Hence Pz} < u] < P[r' > ps+ g] < e27/% by (3.2).
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(b) If yf, < zf,, at least i, sample elements y; satisfy
yi <@y with ro=max{j:z} <zj}.
Thus we have 7 red elements z; < z*, ps = rs/n and 7' > i,. Now, 1 < r < k; — 1 implies
J Ll

2<r+1< k= [k—2gn/s] by (3.1) and thus &; < k—2gn/s+1,s50 —rs/n > —ks/n+2g.

Hence
in—ps—g>ks/n—g—rs/n—g>0,

ie., r' > ps+ g; invoke (3.2) as before.
(c) If g}, < =}, at least 4, sample elements are at most =7, where 7 := maxgy<z; 7. Thus

we have r red elements z; < a7, ps = rs/n and ' > 4,. But
iw—ps—g>ks/n+g—rs/n—g>0

implies ' > ps + g, so again (3.2) yields the conclusion.

(d) If =5 < v, at least s — 7, + 1 sample elements are at least z},,, where 7 :=
MaXgs—gy j. Thus we have r := n — 7 red elements z; > 77,4, ps = s — 78/n and
v >s—14,+1 Now, i, < ks/n+g+1and 7>k > k+ 2gn/s (cf. (3.1)) yield

s—i,+l-ps—g>Js/n—ks/n—g-1+1-g20.

Thus < v implies 7 > ps + g; hence Pz} <] <P’ 2 ps+g] < e~ by (3.2).
(e) Follows immediately from the properties of {-] [Knu97, §1.2.4]. 00

3.4 Partitioning cost

We may now estimate the partitioning cost of Step 4. We assume that only necessary
comparisons are made as in Remark 2.2(b) (but it will be seen that up to s extraneous
comparisons may be accomodated in our analysis; ¢f. Rem. 5.4(a)).

Lemma 3.4. Let ¢ denote the number of comparisons made at Step 4. Then
Plc<e]>1-e %7 and Ec<e+2n-— s)e s with (3.3a)
Z:=n+min{k,n—k}—s+2gn/s. (3.3b)
Proof. Consider the event A := {¢ < ¢} and its complement A" = {¢ > ¢}. lf u = v,

the elements of X \ S are compared to v (or u) only, s0 ¢ = n — s < ¢; hence P[A4'] =

PLA N {u < v}], and we may assume v < v below.
First, suppose k < n/2. Then each element z in X \ S is compared to v first, and then

to u only if z < v, so
c=n—-s+|{ze X\S:z<v}

In particular, ¢ < 2(n — s). Since k <n/2, é=n+k— s+ 2gn/s. If v < zf, then

{zeX\S:z<v}c{zeX z<uv}\{u}



vields {ze X\ S:z<v}| <k —2,s0c<n—s+k —2; since k. < k+2gn/s+1 by

(3.1), we get
c<n+k—s+2gn/s—1<¢c.

Thus u < v < z}_implies A. Therefore, A’ N {u < v} implies {z} < v} N {u <v},so
P41 {u < v)] < Plaj, <v] <"
(Lem. 3.3(d)). Hence we have (3.3), since by Fact 3.2 (with 2 :=¢, ¢ = 2(n — s)),
Ec <c+2(n—s)Ple>a <+ 2(n—s)e™ ™7,

Next, suppose & > n/2. Then each element x in X \ S is compared to u first, and to
v only if u < z, so
c=n—-s+l{re X\ S:u<z}|

If z,*q < u, then
{zeX\S:u<z}c{ze X :u<z}\{u,v}

yields [{z € X\ S:u<z}| <n-k—1; hence k > k — 2gn/s (cf. (3.1)) gives
c<n—s+(n-k)+2gn/s~1<¢c

Thus A’ N {u < v} implies {u < 2}, } N {u < v}, s0 P[A'N{u <v}] < Plu<az}] < g2
(Lem. 3.3(b)), and we get (3.3) as before. 0

3.5 Size of the selected set

The following result will imply that, for suitable choices of s and g, the set X selected at
Step 6 will be “small enough” with high probability and in expectation; we let X := @} and
A 1= 0 if Step 5 returns w or v, but we don’t consider this case explicitly.

Lemma 3.5. P[A < 4gn/s] > 1 — 4e~%"/2, and Ef < 4gn/s + 4ne~297s,

Proof. The first bound yields the second one by Fact 3.2 (with z := 2 < n). In each case
below, we define an event £ that implies the event B := {#t < 4gn/s}.

First, consider the middle case of gn/s < k < n — gn/s, where i, = [ks/n — g] and
1y = [ks/n + g] (Lem. 3.3(e)). Denote the favorable event by

5:={1:,:i§u§z,:_<_v§z;r}.

By Lem. 3.3 and the Boole-Benferroni inequality, its complement &' has P[] < 4e=%'s,
so P[€] > 1~ 4e=29%%, By the rules of Steps 4-6, the bracketing property u < zf < v of
& implies X = M, whereas the bound zj, <u < v <z} yields A < k. — &+ 1 — 2; since
k. < k+2gn/s+1and k; > k—2gn/s by (3.1), we get 2 < 4gn/s. Hence £ C B and thus
P[B] > P[&].

Next, consider the leff case of k < gn/s, ie., i, # [ks/n — g] (Lem. 3.3(e)). If
iy # [ks/n + g], then n < k + gn/s (Lem. 3.3(e)) gives & < n < k + gn/s < 2gn/s; take
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Table 4.1: Sample size f(n) := n**In'/* n and relative sample size $(n) := f(n)/n.

n 103 104 10° 106 5.10° 107 5.107 108
f(n) 190.449 072.953 4864.76 239950 72287.1 117248 353885 568086
#(n) .190449 .097295 .048648 .023995 014557 .011725 .007078 .005690

€ :={n < k+gn/s}, a certain event. For %, = [ks/n+g], let £ := {z} <v <z} }; again
PEl>1- 2¢~%% by Lem. 3.3(c,d). Now, z} < v implies X < LU M, whereas v < T}
gives i < k, — 1 < k + 2gn/s < 3gn/s; therefore £ C B.

Finally, consider the right case of k > n—gn/s, i.e., i, # [ks/n+g]. If i, # [ks/n—g],
the inequality k < gn/s gives i < n < 2gn/s; take £ := {k < gn/s}. For i, = [ks/n—g],
the event £ := {2}, <u < z}} has P[£] > 1 — 2¢~%"% by Lem. 3.3(a,b). Now, u < z}
implies X C M U R, whereas z}, < uylelds A < n — k with k; > k — 2gn/s and thus
A < 3gn/s. Hence £ C B. 0

The following stronger version of Lemma 3.5 is needed in §5.
Corollary 3.6. Plc<cand A <dgn/s} > 1— 4e=2%"s,

Proof. Check that £ implies A in the proofs of Lems. 3.4 and 3.5; note that n < 2¢gn/s
yields ¢ < 2(n — ) < & (cf. (3.3b)) in the left and right subcases. [

The proof of Lemma 3.5 reveals that u plays a relatively minor réle in the left case;
similarly for v in the right case. This motivates the following modification.

Remark 3.7. Suppose Step 3 resets 4, := i, if & < gn/s, or iy := 4, if k > n~ gn/s,
finding a single pivot u = v in these cases. The preceding results remain valid.

4 Analysis of the recursive version

In this section we analyze the average performance of SELECT for various sample sizes.

4.1 Floyd-Rivest’s samples

For positive constants « and B, consider choosing s = s(n) and g = g(n) as
s:=min {[af(n)],n -1} and g := (Bslnn)"? with f(n) :=n?*In'’n. (4.1)

This form of g gives a probability bound e=2"* = n=? for Lems. 3.4-3.5. To get more
feeling, suppose @ = f =1 and s = f(n). Let ¢(n) := f(n)/n. Then s/n = g/s = ¢(n)
and 7i/n is at most 4¢(n) with high probability (at least 1—4/n?), i.e., ¢(n) is a contraction
factor; note that ¢(n) = 2.4% for n = 10° (cf. Tab. 4.1).



Theorem 4.1. Let C,i denote the expected number of comparisons made by SELECT for
s and g chosen as tn (4.1) with § > 1/6. There ezists a positive constant v such that

Cop En+min{kn—k}+vf(n) VI<k<n, (4.2)

Proof. The main idea of our inductive proof is simple: add the costs of Steps 3, 4, 7 and
simplify to get (4.2). To this end, however, we need a few preliminary facts.

The function ¢(t) := £(1)/t = (Int/t)//* decreases to 0 on [e, 00), whereas f(t) grows
to infinity on [2,00). Let & := 4(8/a)*?. Pick f > 3 large enough so that e— 1 < af(A) <
fi—1and e < 4f(n). Let & := a+ 1/ f(f1). Then, by (4.1) and the monotonicity of f and
¢, we have forn > 7

s<af(n) and f(s) < ag(af()f(n), (4:3)
f(6£(n) < 6¢(6£(R))f(n). (4.4)
Indeed, for instance, the first inequality of (4.3) yields f(s) < f(af(n)), whereas
f(af(n)) = ag(@f(n)) f(n) < ag(af(n))f(n).

Also for n > 7, we have s = [af(n)] = af(n) + € with ¢ € [0,1) in (4.1). Writing
s = af(n) with & := a + ¢/ f(n) € [a, &), we deduce from (4.1) that

gn/s = (B/@)"*f(n) < (B/a)/*f(n). (4.5)
In particular, 4gn/s < éf(n), since § := 4(3/a)"*. For B > 1/6, (4.1) implies
ne= %% < n'=% = f)nt3=% =3 g, (4.6)
Using the monotonicity of ¢ and f on [e, 00), increase 7 if necessary to get
2a¢(af(n)) + 0¢(8f(A)) + 4¢(R)a"/*~* In~** 7 < 0.95. (4.7)

By Rem. 2.2(c), there is y such that (4.2) holds for all n < 71; increasing + if necessary, we

have
20 + 26 + 832 1In"1% 5 < 0.05y. (4.8)

Let n’ > fi. Assuming (4.2) holds for all n < n’, we will inductively prove that it holds

forn=n'+1.
The cost of Step 3 can be estimated as follows. We may first apply SELECT recursively

to S to find u = ¢, and then extract v = y; from the elements y; ,,,...,y; (assuming
iy < 1y; otherwise v = u). Since s < n’, the expected number of comparisons is

Coia + Comiipmiy, <158+ 7f(s) + 1.5(s — 1) +vf(s — ) < 35—~ 1.5+ 27yf(s). (4.9)
The partitioning cost of Step 4 is estimated by (3.3) as
Ec < n+min{k,n—k} — s+ 2gn/s+ 2ne"%7°, (4.10)
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The cost of finishing up at Step 7 is at most
Cip < 157+ v f(R).

But by Lem. 3.5, P[A > 4gn/s] < 4% s, and A < n, so (cf. Fact 3.2 with z := 1.5 +
vf (1))
E[L5A +vf(A)] < 1.5-4gn/s + vf(dgn/s) + [1.5n +vf(n) | 472",
Since 4gn/s < §f(n), f is increasing, and f(n) = ¢(n) - n above, we get
ECy; < 6gn/s + vf(8£(n) +[1.5 + v$(n) ] 4ne~7". (4.11)
Add the costs (4.9), (4.10) and (4.11) to get
Cok €35 — 1.5+ 2vyf(s)+n+min{k,n—k}—s+2gn/s+ one=29'/s
+6gn/s + ¥ f(8f(n)) + [ 1.5 + y(n) ] dne~ %"/
<n+min{kn-k}+ [23+8gn/s+8ne‘292/”] (4.12a)
+y[2£(s) + F(8F(n)) + dne 2 p(n) ] . (4.12b)
By (4.3)—(4.6), the bracketed term in (4.12a) is at most 0.057f(n) due to (4.8), and that
in (4.12b) is at most 0.95f(n) from (4.7); thus (4.2) holds as required. O

We now indicate briefly how to adapt the preceding proof to several variations on (4.1);
choices similar to (4.13) and (4.17) are used in [Meh00] and [FIR75a], respectively.

Remarks 4.2. (a) Theorem 4.1 holds for the following modification of (4.1):
s :=min {[af(n)],n — 1} and g:= (BsInfs)¥? with f(n) := n**In'n, (4.13)
provided that § > 1/4, where 6 > 0. Indeed, the analogue of (4.5) (cf. (4.1}, (4.13))
gn/s = (B/&)? f(n)(Inbds/ Inn)/? < (B/a)2 f(n)(In Os/ Inn)*/? (4.14)
works like (4.5) for large n (since lim, .o 12 = 2/3), whereas replacing (4.6) by
ne~2* = n(8s)~% < f(n)(af)"Fnl-1983 In~+20/3 (4.15)
we may replace 7Y/3~% by (af)~2PR(1~49)/3 in (4.7)-(4.8).
(b) Theorem 4.1 holds for the following modification of (4.1):
s:=min {[af(n)],n — 1} and g := (BsIn®n)*/? with f(n) := n**In"n, (4.16)

provided either ¢ = 1 and 8 > 1/6, or ¢ > 1. Indeed, since (4.16)=(4.1) for ¢ = 1,
suppose ¢ > 1. Clearly, (4.3)-(4.5) hold with #(t) := f(¢)/¢. For an arbitrary 8 > 0,
choosing B > 1/6, for n large enough we have g%s = SIn® n > Blnn; hence, replacing 243
by 24 and In~Y/3 by In=%/? in (4.6)~(4.8), we may use the proof of Thm 4.1.

(¢) Theorem 4.1 remains true if we use 8 > 1/6,

5 = min ”anz/ﬂ ,n— 1}, g:=(BsInn)? and f(n) := n**In*?n. (4.17)

Again (4.3)-(4.5) hold with ¢(¢) := f(t)/t, and In"/? replaces In"/* in (4.6)—(4.8).
(d) None of these choices gives f(n) better than that in (4.1) for the bound (4.2).
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4.2 Reischuk’s samples
For positive constants a and §, consider using
s=min{[an“],n—1} and g:=(Bsn°)"* with (4.18a)
n:=max{1+ (e —¢€)/2,e,} <1 for some fixed 0 < € < ¢,. (4.18b)

Theorem 4.3. Let Cpy denote the expected number of comparisons made by SELECT for
s and g chosen as in (4.18). There exists a positive constant v, such that for all k <n

Cnp S+ min{k,n—k} + 7, y(n) with f(n) :=n" (4.19)

Proof. We only show how to modify the proof of Theorem 4.1.

The function f,(t) = ¢7 grows to co on (0,00), whereas ¢,(t) = f,(t)/¢ = ¢7
decreases to 0, so f, and ¢, may replace f and ¢ in the proof of Thm 4.1. Indeed, picking
7 > 1 such that afi® <@ — 1, for n > A we may use

s=an® < af,(n) with a<a<a:=1+1/a"
to get analogues of (4.3)—(4.4) and the following analogue of (4.5)
gnfs = (B/&)" 02 < (B/a) 2 £, (n). (4.20)
Since g%s = fn° by (4.18), and te~?Pt/¢7 decreases to 0 for t > ¢, := (;—EI)I/S, we may
replace (4.6) by

ne= %7 = ne="" < e WA f(n) V> A >ty (4.21)
Hence, with 7i!~7e~2% replacing /*~% In""/* 7 in (4.7)-(4.8), the proof goes through. 0
We now compare Floyd and Rivest’s choice of (4.1) with Reischuk’s choice of (4.18).

Remarks 4.4. (a) For a fixed € € (0, 1), minimizing 7 in (4.18b) yields the optimal sample
size parameter

€= (2+¢€)/3 with n=¢ >2/3 and f,(n)=nE+3, 4.22
n

note that if s = an® in (4.18a), then g = (¢8)"/?n with ¢, := (1 +2¢)/3. To compare the
bounds (4.2) and (4.19) for this optimal choice, let ®¢(t) := (¢¢/Int)/3, so that ®.(t) =
/@) = ¢q(t)/#(2). Since lim,_,oo ®(n) = 0o, the choice (4.1) is asymptotically
superior to (4.18). However, ®.(n) grows quite slowly, and ®.(n) < 1 even for fairly large
n when ¢ is small (cf. Tab. 4.2). On the other hand, for small € and 8 = 1, the probability
bound =27 = ¢~ of (4.18) is weak relative to e~297° = n~2 ensured by (4.1).

(b) A tightly related variant of (4.18) consists in using

s:=min{fan®],n —1} and g:=(af)/*n%

11
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Table 4.2: Relative sample sizes ®.(n) and probability bounds e

®c(n) := (t/ Int)/3 exp(—2n°)

n 105 10° 5.10% 107 108 108 5.10° 107
1/41116 1.32 145 152]36-107'% 34.107% 84.107% 1.4-107%

€ 1/6].840 .898 946 969 |1.2-107% 21.107° 4.4.107!2 1.8-107%2
1/9].678 .695 711 719 | 7.6.107%! 93.107% 15.107% 6.2.107°

with 0 < ¢, < €, such that
€:=2¢ —¢e;, >0 and 7:=max{l+e —¢,¢€} <1

Theorem 4.3 covers this choice. Indeed, the equality 1 + ¢, — €, = 1 + (¢ — €5)/2 shows
that (4.18b) remains valid, and we have the following analogues of (4.20) and (4.21)

gn/s = (aB) /P!t a < (B/0)'V* fo(n), (4.23)

ne~2s < RGN L (1) Y > 7> [(1-m)a/(2aB] s, (4.24)

so compatible modifications of (4.7)—(4.8) suffice for the rest of the proof. Note that
n > (2+¢€)/3 by (a); for the choice ¢, = 1, ¢, = 1% of [Rei85], e = § and n = 1.

4.3 Handling small subfiles

Since the sampling efficiency decreases when X shrinks, consider the following modifica-
tion. For a fixed cut-off parameter 7., > 1, let sSelect(X, k) be a “small-select” routine
that finds the kth smallest element of X in at most Ceyy < 00 comparisons when | X| < ngy
(even bubble sort will do). Then SELECT is modified to start with the following

Step 0 (Small file case). If n:=|X| < new, return sSelect (X, k).

Our preceding results remain valid for this modification. In fact it suffices if Cey,
bounds the ezpected number of comparisons of sSelect(X, k) for n < n.y. For instance,
(4.2) holds for n < ¢y, and v > Cew, and by induction as in Rem. 2.2(c) we have Cyy < 00
for all n, which suffices for the proof of Thm 4.1.

Another advantage is that even small n.,, (1000 say) limits nicely the stack space for
recursion. Specifically, the tail recursion of Step 7 is easily eliminated (set X := X k=k
and go to Step 0), and the calls of Step 3 deal with subsets whose sizes quickly reach ngy,.
For example, for the choice of (4.1) with @ = 1 and ny = 600, at most four recursive
levels occur for n < 23! ~ 2.15 - 10°.

5 Analysis of nonrecursive versions

In this section we prove that nonrecursive versions of SELECT, in which Steps 3 and 7
employ other selection or sorting algorithms with suitable worst-case performance, require
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6 Ternary and quintary partitioning

In this section we discuss ways of implementing SELECT when the input set is given as an
array z[1: n]. We need the following notation to describe its operations in more detail.

Each stage works with a segment z{l: r] of the input array z[1: n], where 1 <[ <r<n
are such that z; < z; for i = 1:1— 1, z, < z; for i = r + 1:n, and the kth smallest
element of z{l:n] is the (k — [ + 1)th smallest element of z[l: ). The task of SELECT is
extended: given z{l:7] and | < k < r, SELECT(2, !, 7, k, k_, k) permutes z[l: 7] and finds
<k <k<ki<rsuchthat z; <y foralll <i< k_, z; =z forall k_ <i <k,
x; > x for all k4 <4 < r. The initial call is SELECT(z, 1,n, k, k_, k).

A vector swap denoted by z(a: b] < z{b+1: ¢] means that the first d := min(b+1—a, c—b)
elements of array zfa: ] are exchanged with its last d elements in arbitrary order if d > 0;
e.g., we may exchange Zo; « Z.—; for 0 <1 < d, OF Topi & Te—ay14s for 0 <@ < d.

6.1 Ternary partitions

For a given pivot v := z; from the array z[l: 7], the following fernary scheme partitions
the array into three blocks, with z,, <wvforl <m <a, z,, =vfora <m < d, z, > v for
d < m < r. The basic idea is to work with the five inner parts of the array

]z<vlm=v]x<’uL?lz>v[£=vi:v>v] (6.1)
l { P i g q 7 r i
until the middle part is empty or just contains an element equal to the pivat
[z_:v]m<1{[z=v]%r>vjz=ﬂ (62)
L pJ i g T

(i.e,,  =1—1or j =i —2), then swap the ends into the middle for the final arrangement

A1l. [Initialize.] Set v := zx and exchange 1) — zy. Set i:=l:= p:=I{+1,g:=r—1

and j:=7:=7r. If v < z,, set ¥ :=q. If v > z,, exchange z; « z, and set [ := p.
A2. [Increase i until z; > ».] Increase i by 1; then if z; < v, repeat this step.
A3. [Decrease j until z; < v.] Decrease j by 1; then if z; > v, repeat this step.
A4. [Exchange.] (Here z; < v < z;.) If i < j, exchange z; < z;; then if z; = v, exchange
z; + z, and increase p by 1; if £; = v, exchange z; ++ x, and decrease ¢ by 1; return
to A2. If i = j (so that z; = x; = v}, increase ¢ by 1 and decrease j by 1.
A5. [Cleanup.] Set a:=I+j—p+1andd:=7—qg+i— 1. Exchange z[l: p — 1] & z[p: 5]
and z{i: ¢} « z{g+ 1:7].
Step A1 ensures that 7; < v < z,, 50 steps A2 and A3 don’t need to test whether i < 7;
thus their loops can run faster than those in the schemes of [BeM93, Prog. 6] and [Knu97,
Ex. 5.2.2-41] (which do need such tests, since, e.g., there may be no element z; > v).

'
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B1. [Initialize.] Set p:=k;,¢g:=§ éi:=p—1land j:=g+1.

B2. [Increase ¢ until z; > v.] Increase i by 1. If z; > v, go to B3. If z; < u, repeat this
step. (At this point, v < z; < v.) If ; > u, exchange z; < z,; otherwise exchange
T; + T, and T, < 75 and increase p by 1. Increase p by 1 and repeat this step.

B3. [Decrease j until z; < v.] Decrease j by 1. If z; > v, repeat this step. If z; = v,
exchange z; « z,, decrease ¢ by 1 and repeat this step.

B4. [Exchange.] If ¢ > j, go to B5. Exchange z; « z;. If 2; > u, exchange z; « z, and
increase p by 1; otherwise if z; = u, exchange z; « z, and z, « z; and increase p
and p by 1. If z; = v, exchange z; < z, and decrease ¢ by 1. Return to B2.

B5. [Cleanup.] Seta:=l_+3'—p, b=a+p—1,d:=F—q+jand c:=d—7+q. Swap
2[p:p— 1] & zfp: 7], 2[l: p ~ 1] & z[p: b — 1], and finally z[i: ¢} « z[g+ 1: 7).

For the case of k > [(r+1)/2] and u < v, Step 4 may use the following quintary scheme,
which is a symmetric version of the preceding one obtained by replacing (6.6)-(6.8) with

lz=ulz<u] 7 [z>v][u<z<v]z=v] (6.10)
I P 17 q q P |
{x—=u]z<u.[a.r:>v]u<z<1iiz=lﬁd, (6.11)

I p Ji g q "
[z=ulz<u[u<z<v[z>v][z=v] (6.12)
i p b c q T

C1. [Initialize.] Set p =5, ¢ :=§—k; +k} +1,i:=p—1and j := ¢+ 1, and swap
zlp:k; — 1] + xfk;: q).

C2. [Increase ¢ until z; > w.] Increase i by 1. If z; < u, repeat this step. If z; = u,
exchange z; < z,, increase p by 1 and repeat this step.

C3. [Decrease j until z; < u.] Decrease j by 1. If z; < u, go to C4. If z; > v, repeat this
step. (At this point, u < z; < v.) If z; < v, exchange ©; « z,; otherwise exchange
z; & 4 and T, + 757 and decrease § by 1. Decrease ¢ by 1 and repeat this step.

C4. [Exchange.] If ¢ > j, go to C5. Exchange z; « z;. If z; = u, exchange ; « z,
and increase p by 1. If ; < v, exchange z; « z, and decrease q by 1; otherwise if
z; = v, exchange z; « z, and x4 + 27 and decrease g and ¢ by 1. Return to C2.

C5. [Cleanup.] Set a:=[+i—p, b:=a+p—1,d:=F—qg+jandc:=d~7+q. Swap
zll:p — 1] & =z[p: 5], zli: q] & z[g + 1:g] and finally z[c + 1:§] <« z[7 + 1:7).

To make (6.3) and (6.9) compatible, the ternary scheme may set b:=d+1,¢c:=a—1.
After partitioning [ and r are updated by setting [ :=bif a < k, then l:=d+ 1if c < k;
re=cifk <d thenr:=a—1ifk <b Ifl > r, SELECT may return k_ := k, =k
ifl=r k_:=r+1and ky :=1~1if I > r. Otherwise, instead of calling SELECT
recursively, Step 6 may jump back to Step 1, or Step 0 if sSelect is used (cf. §4.3).

A simple version of sSelect is obtained if Steps 2 and 3 choose u := v := x; when
r — 1+ 1 < ney (this choice of [FIR75a] works well in practice, but more sophisticated
pivots could be tried); then the ternary partitioning code can be used by sSelect as well.
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Table 7.1: Performance of SELECT on randomly generated inputs.

Sequence  Size Time {msec) Comparisons [n)  Yavg Lave Favg Navg DPave Save
n avg max min avg meX min [n] [lnn] [Inn] [%n]

random 50K 0 a 0 181 185 1.77 5.23 1.22 046 101 762 411
100K 0 0 0 172 176 1.65 450 1.15 045 0.99 8.05 3.20

500K 8 10 0 162 163 1.60 414 1.08 059 1.27 7.59 1.86

1M 18 20 10 159 1.60 1.57 393 106 0.64 1.35 818 147

2M 36 40 30 157 158 156 3.73 1.04 0.76 1.59 7.67 1.16

4M 70 81 60 1.56 156 1.55 3.61 1.03 094 194 7.21 091

8M 137 141 130 154 155 1.54 345 103 098 1.99 745 0.72

16M 247 251 240 1,53 1.54 1.53 3.44 1.02 099 202 755 057

onezero 50K 0 0 0 1.51 152 150 024 1.02 0.28 027 117 341
100K 2 10 0 151 151 150 0.23 101 0.26 025 114 272

500K 9 11 0 1.51 151 1.51 026 1.01 023 023 117 1.61

1M 18 20 10 1.51 1.51 151 0.26 1,01 0.22 0.22 120 1.29

2M 35 41 30 1.51 151 1.50 0.26 1.01 0.28 0.27 1.14 1.03

M 72 80 70 150 150 1.50 0.26 1.00 0.33 0.26 1.16 0.83

8M 142 151 140 1.50 150 1.50 026 1.00 038 0.25 1.11 0.66

16M 270 281 260 1.50 150 150 026 1.00 036 024 111 053

twofaced 50K 1 10 0 180 1.8 174 499 121 046 101 7.53 411
100K 0 0 0 173 176 1.69 4.67 1.16 043 096 8.23 3.20

500K 9 10 0 162 163 1.61 4.07 1.08 0.61 1.30 7.85 1.87

M 18 20 10 1.59 1.60 1.58 3.82 1.06 0.67 1.40 7.86 147

2M 37 41 30 157 158 156 366 104 0.75 158 7.98 1.16

4M 71 80 70 156 156 1.55 3.60 1.03 095 196 7.36 0092

8M 136 141 130 154 155 1.54 3.48 1.03 096 198 748 0.72

16M 251 251 241 153 1.54 153 338 1.02 1.00 206 7.74 057

7.3 Computational results

We varied the input size n from 50,000 to 16,000,000. For the random, onezero and
twofaced sequences, for each input size, 20 instances were randomly generated; for the
deterministic sequences, 20 runs were made to measure the solution time.

The performance of SELECT on randomly generated inputs is summarized in Table 7.1,
where the average, maximum and minimum solution times are in milliseconds, and the
comparison counts are in multiples of n; e.g., column six gives Ca,,g/n, where Cayg is the
average number of comparisons made over all instances. Thus Yag = (Cavg — 1.5n)/ f(n)
estimates the constant -y in the bound (4.2); moreover, we have Cayy & 1.5 Lavg, Where Loy,
is the average sum of sizes of partitioned arrays. Further, P, is the average number of
SELECT partitions, whereas N,y is the average number of calls to sSelect and pay, is the
average number of sSelect partitions per call; both P, and Nuye grow slowly with Inn.
Finally, sav, is the average sum of sample sizes; savg/f(n) drops from 0.68 for n = 50K to
0.56 for n = 16M on the random and twofaced inputs, and from 0.57 to 0.52 on the onezero
inputs, whereas the initial s/f(n) & @ = 0.5. The average solution times grow linearly
with n (except for small inputs whose solution times couldn’t be measured accurately),
and the differences between maximum and minimum times are fairly small (and also partly
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Table 7.2: Performance of SELEGT on deterministic inputs.

Sequence  Size Time [msec] Comparisons [n]  Yayg Lave Pave Navg Pavg  Save
n  avg max min avg max min [n] (lnn] [lnn] [%on]
sorted 50K 1 20 0 180 188 1.71 492 121 044 098 7.80 4.08

100K 3 30 ¢ 173 176 1.71 476 1.16 044 097 783 3.21
500K 6 11 0 162 163 1.61 4.09 108 060 127 791 1.86
M 11 20 10 1.60 1.61 1.58 4.02 1.06 0.63 134 805 146
2M 20 20 10 157 158 1.57 375 104 057 160 746 1.16
M 35 40 30 1.56 1.56 1.55 359 1.03 095 195 745 0091
8M 58 61 50 1.54 1.55 153 350 1.03 099 203 7.55 0.72
16M 105 111 100 153 154 1.53 3.37 102 1.00 204 765 0.57
rotated 50K 4 30 0 180 191 171 499 1.21 044 098 7.90 4.08
100K 2 30 0 174 176 170 483 116 044 096 791 3.21
500K 6 10 0 162 163 161 4.09 1.08 060 128 801 186
M 11 20 10 1.60 160 1.59 4.03 1.06 064 135 814 147
2M 18 21 10 1.57 158 1.66 3.74 1.04 076 159 754 116
aM 30 31 30 156 1.56 155 359 103 094 193 726 091
8M 58 61 50 1.54 155 153 347 103 099 2.02 743 072
16M 104 111 100 153 154 1.53 3.35 1.02 1.00 204 7.61 057
organpipe 50K 1 10 0 180 184 170 5.04 121 046 101 759 4.11
100K 5 30 0 174 176 171 488 116 045 098 8.03 3.22
500K 5 10 0 162 163 1.60 4.04 108 062 132 7.75 1.87
M 14 20 10 1.59 1.60 1.57 387 1.06 066 139 7.72 147
2M 27 30 20 157 158 1.56 3.69 104 074 156 7.66 1.16
aM 50 51 50 156 1.56 1.55 3.57 1.03 097 199 722 0092
M 97 101 90 1.55 155 154 3.58 1.03 097 199 738 072
16M 169 171 160 153 1.54 1.53 339 1.02 099 2.02 7.68 0.57
m3killer 50K 3 30 0 1.84 227 176 561 1.23 047 1.04 7.69 4.21
100K 3 10 0 174 177 170 4.83 116 044 097 7.79 3.21
500K 8 20 0 1.63 164 1.61 424 108 058 123 779 186
M 15 20 10 1.59 1.60 1.58 3.92 1.06 0.67 140 7.87 147
2M 31 40 30 157 1.58 1.56 3.67 1.04 075 157 7.85 1.16
M 60 61 60 1.56 1.56 1.55 3.64 103 096 196 7.33 092
8M 117 120 110 1.5¢ 155 1.54 351 1.03 096 197 739 0.72
16M 219 221 210 1.53 1.54 1.53 3.37 1.02 097 198 7.64 0.57

due to the operating system). Except for the smallest inputs, the maximum and minimum
numbers of comparisons are quite close, and Cly, nicely approaches the theoretical lower
bound of 1.57; this is reflected in the values of yay,. Note that the results for the random
and twofaced sequences are almost identical, whereas the onezero inputs only highlight
the efficiency of our partitioning.

Table 7.2 exhibits similar features of SELECT on the deterministic inputs. The results
for the sorted and rotated sequences are almost the same, whereas the solution times on the
organpipe and m3killer sequences are between those for the sorted and random sequences.

The performance of QUICKSELECT on the same inputs is described in Tables 7.3 and
7.4. On the random sequences, the expected value of Cayg is 2.75n+0(n) [KMP97). Twenty
random instances of each size yield fairly accurate estimates, since the values of Cayg in
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Table 7.3: Performance of QUICKSELECT on randomly generated inputs.

Sequence  Size Time [msec] Comparisons [n]  Lavg  Pavg
n avg max min avg max min [n] [lnn]

random 50K 1 10 0 260 407 156 260 144
100K 2 10 0 269 398 1.63 269 1.51

500K 11 20 0 2.61 4.04 178 261 1.51

M 32 41 20 278 404 177 278 1.56

2M 67 100 50 2,70 3.92 191 270 1.51

4M 135 180 90 2.56 346 1.70 256 1.59

8M 283 411 200 259 396 178 259 1.64

16M 568 751 431 2,57 346 193 257 1.57

onezero 50K 1 10 0 272 285 267 272 L77
100K 1 10 0 274 288 268 274 179

500K 12 20 10 2.70 2.73 2.68 270 1.82

M 30 40 20 275 2.88 2.68 275 1.84

2M 69 80 60 271 285 268 271 184

4M 148 171 140 273 3.21 2.68 273 1.84

8M 307 330 300 273 292 2.68 273 1.86

16M 621 631 610 270 279 268 270 1.87

twofaced 50K 3 31 0 265 443 172 265 1.50
100K 0 0 0 262 371 175 262 1.53

500K 12 20 10 263 418 179 263 151

M 29 41 20 266 441 1.76 266 1.56

2M 67 90 40 267 371 173 267 157

4M 144 190 100 277 3.83 202 277 157

8M 300 481 190 2.86 4.83 1.68 286 1.56

16M 572 921 370 2.60 4.62 1.66 260 1.68

Table 7.3 are within 7% of 2.75n; Table 7.5 shows what happens when 1000 instances are
used for each size. The results for the onezero sequences confirm that binary partitioning
may handle equal keys quite efficiently [Sed77]. The results for the remaining inputs are
quite good, since some versions of quickselect may behave poorly on these inputs [Val00].

As always, limited testing doesn’t warrant firm conclusions, but a comparison of SE-
LECT and QUICKSELECT is in order, especially for the random sequences, which are most
frequently used in theory and practice for evaluating sorting and selection algorithms. On
the random inputs, the ratio of the expected numbers of comparisons for QUICKSELECT
and SELECT is asymptotically 2.75/1.5 ~ 1.83, whereas the ratio of their computing times
approaches 2.3 in Figure 7.1. Note that SELECT isn’t just asymptotically faster; in fact
QUICKSELECT is about 80% slower even on middle-sized inputs. Similar slow-downs oc-
cur on the onezero and twofaced sequences. The slow-downs are less pronounced on the
organpipe and m3killer inputs, but they are still significant even for the “easiest” sorted
and rotated inputs. Note that, relative to QUICKSELECT, the solution times and compar-
ison counts of SELECT are much more stable across all the inputs. This feature may be
important in applications.

Acknowledgment. I would like to thank Olgierd Hryniewicz, Roger Koenker, Ronald
L. Rivest and John D. Valois for useful discussions. T'wo anonymous referees helped a lot
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Table 7.4: Performance of QUICKSELECT on deterministic inputs.

Sequence  Size Time [msec] Comparisons [n]  Lavg  Pavg
n avg max min avg max min [n] [Inn]
sorted 50K 0 0 0 294 368 227 294 155

10K 0 0 0 289 463 223 289 162
500K 8 10 0 288 456 1.96 2.88 1.63
IM 13 20 0 296 444 182 296 159
2M 29 41 20 3.02 444 206 302 154
AM 44 70 30 276 410 199 276 1.56
8M 88 120 60 280 362 1.89 280 1.5
16M 175 241 120 275 3.74 1.87 275 163
rotated 50K 0 0 0 2.82 395 187 282 157
100K 9 30 0 277 379 184 277 155
500K 8 20 0 280 439 174 280 168
IM 13 20 10 287 468 192 287 162
2M 23 31 20 255 344 175 255 156
aM 45 70 20 272 4.22 161 272 157
8M 92 161 60 2.85 516 189 285 1.59
16M 177 251 110 278 3.97 165 278 157
organpipe 50K 8 30 0 260 371 173 260 1.52
100K 2 10 0 271 362 203 271 1.60
500K 9 10 0 276 477 172 276 153
IM 21 30 10 274 477 200 274 149
2M 46 60 30 2.83 418 1.85 2.83 1.62
aM 92 110 70 2.74 373 217 274 154
8M 181 250 120 2.64 410 1.77 2.64 153
16M 372 470 270 2.61 349 194 261 162
m3killer 50K 1 10 0 2.60 347 1.88 260 1.60
100K 2 10 0 2589 396 1.85 289 150
500K 10 20 0 283 490 1.83 2383 159
IM 24 31 10 279 385 190 2.79 155
2M 54 70 40 306 447 193 3.06 1.65
AM 102 130 60 2.81 406 163 281 1.60
8M 193 261 150 2.75 4.43 187 275 1.63
16M 409 480 320 2.87 394 1.87 287 158

in improving our presentation.
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