





ON ALLOCATION PROBLEMS FOR A COMPLEX OF PARALLEL OPERATIONS

DESCRIBED BY UNCERTAIN VARIABLES

Zdzislaw BUBNICKI*

Abstract. The paper is concerned with allocation problems for a class of parallel
operations described by a relational knowledge representation. Unknown parameters in the
relations are assumed to be values of uncertain variables described by certainty distributions
given by an expert. Theorems concerning properties of the optimal allocation are presented.
The equivalence of the solutions obtained by a direct approach to the allocation problem and

by a decomposition is discussed. An example illustrates the presented method.

1. Introduction

The idea of uncertain variables has been introduced and developed as a tool for analysis and
decision making in a class of uncertain systems described by traditional mathematical models
and relational knowledge representations [2]-(4], [8] The uncertain variable is described by so
called certainty distribution giving by an expert and characterizing his/her knowledge of

approximate values of the variable. In {7], [8] it has been shown how to use the uncertain
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variables in allocation problems for complex of parallel operations. The purpose of this paper
is to present new results in this area:
1. Theorems concerning properties of the optimal allocation (Sec. 2).
2. A theorem about the equivalence of the solutions obtained by a direct approach to the
allocation problem and by a decomposition (Sec. 3).

We shall start with a short description of the uncertain variables and their applications for a
decision problem. In the definition of the uncertain variable X we use a set of values X C R¥
(real number vector space) and two soft properties: “X =x” which means that “X is

—

approximately equal to x” or “x is the approximate value of X", and “X& D " (where
D.c X) which means that “the approximate value of X belongs to D.” or “¥
approximately belongs to D, ”. The logic value of a soft property ve [0,1] is called a certainzy
index and a function h{x)=v(X¥ = x) is called a cerrainty distribution (max h{(x)=1). The

uncertain variable X is defined by the set of values X, the certainty distribution h(x) given by

an expert, and the following definitions:

max h(x) for D #d
VW(XED,) = *Dx
0 for D, =@ ,

v(X&D,) =1-v(x€ D),

V(XE D, v XE D,) =max {v(T& D;) v(TE D)},
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min {v(xé€ D,) ,v(x€é D for D,ND, #
V(XE D, AXEDy) :{ v 1) v ( 2} b -
0 for DNDy, =D .

So called C-uncertain variable X is defined by the set of values X, the function

h(xy=v(x = x) given by an expert and the following definitions:

v.(XED,) =%[v(fé D) +v(XE X -D,)l, )

v.(RED,) =1-v.(XED,),
v.(XE Dy v XE Dy)=v,(XEDUDy) ,

Vv.(XED A XE D;)=v.(XE DN D,) .

In the case of C-uncertain variable the expert’s knowledge is used in a better way but the

calculations are more complicated.

Consider a static plant with the input vector u€ U and the output vector ye Y, described
by a relation R(u,y;x)CUxY whete x€ X is an unknown vector parameter which is
assumed to be a value of an uncertain variable ¥ with h(x) given by an expert. If the relation
R is not a function then the value u determines the set of possible outputs
Dy(u,x)={y€eY:(u,y)€ R}. For the property ye D, CY required by a user, we can

formulate the following decision problem: For the given R, h(x) and D, one should find

the decision «  maximizing the certainty index of the property: “the set of possible outputs

approximately belongs to D, . Then




u' =argmaxv[Dy(u,f)QDy]=v[fé D, (u)]=argmax max h(x)

well well xe Dy (u)

where D (1)={xe X : Dy(u,x) c Dy}.
If ¥ is considered as C-uncertain variable then one should determine u: maximizing

v,[X€ D, ()].

2. Allocation problem

Let us consider a complex of k parallel operations described by a set of inequalities
<@ (u,x), i=1L2,..k 2)

where T; is the execution time of the i-th operation, u; is the size of a task in the problem of
task allocation or the amount of a resource in the problem of resource allocation, an unknown
parameter x; € R' is a value of an uncertain variable X; described by a certainty distribution
i(x;) given by an expert, X;,..., X, are independent variables, ¢;(u;,x;)is a non-decreasing
function of u; in the case of task allocation and a non-increasing function of u; in the case of
resource allocation. The complex may be considered as a decision plant described in Sec. 1
where y is the execution time of the whole complex T =max{T},..., 7}, x={x, ... ;).
=@y, .,u)el. Theset U R* is determined by the constraints: u; 20 for each i and

the equality u; + ...+ 1y, =U where U is the total size of the task or the total amount of the

resource to be distributed among the operations (Figure 1).
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Figure 1. Complex of parallel operations as a decision plant

According to the general formulation of the decision problem presented in Sec. I, the

allocation problem may be formulated as an optimization problem consisting in finding the

optimal allocation " that maximizes the certainty index of the soft property: “the set of

possible values T approximately belongs to [0, &]” (i.e. belongs to [0, ] for an approximate
value of X ).

Optimal allocation problem: For the given ¢, I; (i€ i,—k), U and « find

“
u =argmaxv(u)
uel

where

v)=v{Dp;X) E0,al}=vT w3 La).
The soft property *“Dp(u;X)E[0,a]” is denoted here by “T(u,X)<e@”, and Dy(u;x)
denotes the set of possible values 7 for the fixed w, determined by the inequality

i

" <max @, (u;, x;) . The property “T (u,x) < @” means that the maximum possible value of the
{

executive time T is approximately (i.e. for the approximate value of X ) less or equal to & .



According to (2)

v(1) = v (0. %) € ATy (g, %) LA AT (g, T ) Z )

Then

u =arg max min v, (i;) 3

wel i
where
v () = vI[T (@, %) £ )= v[@ (. %) 2 )] =v[X; € D)1,
D) ={x€ Rl:@(u,-,xi)Sa}. (€Y

Finally

v;(u;)= x[g;%ﬁ)hi (x;) 5)
and

* .
u =argmaxmin max f(x).
well b yeDi(u)

In many cases an expert gives the value x;‘ and the interval of the approximate values of X;:
x: —d;<x; < x: +d;. Then we assume that /;;(x;) has a triangular form presented in Figure 2

where d; Sx:. Let us consider the relation (2) in the form T; < xu; where x; >0 and y;
denotes the size of a task. In this case, using (5) it is easy to obtain the following formula for

the function v;(i;):




a
| for U < —
X
1l o a a
Vi) =9—(=—x)+1 for —<u <—
di u X x; —d;
a
0 for W 2 — .
x; —d;
I;
1

*
; —d; x x; +d; x

Figure 2. Example of the certainty distribution

For the relations T; £ )ciui_l where u; denotes the size of a resource, the function v;(x;) has

an analogous form with ui_l in place of u;:

0 for < 2 4
a
1 . *_d. !
) =1 — (e =x)+1for x'a ‘Suis% (6)
t
1 for u,-Zi’—
a

If X is considered as C-uncertain variable then, according to (1), the optimal decision u;

maximizing the certainty index v [T(u,X) < a] is as follows



* . ~ . ~
u, = arg max [min v; (i;) +1—max V;(x;)] = arg max [min v; (¥;) —max v; (i; )] (7)
uell i i uel i i

where

U(0) = V[T, %) 2 o] = max Iy(x,)
xeDj(uy)

and D, is the complement of D;,ie. D; = R —D; (see [7]).
Let us denote by x; the value maximizing ki (x;) (i.c. hi(x:) =1), and by D,; the set of ;

for which v;(i;) <1. Let us assume for further considerations that ;(x;) is a continuous

function (ie ﬁ) .

Lemma
If

- @;(u;, %) is an increasing (decreasing) function of u; for every x;,
-~ @;(u;, x;)is a monotonic function of x; for every u;,

. . . . * . .
~ h(x;) is an increasing function of x; for x; Sx; and a decreasing function of x; for

then v;(u;) is a decreasing (increasing) function of u; in D,,;.

Proof: Denote by %;(u;) the solution of the equation ¢;(1;,x;) =« and by #; the solution of

the equation i,-(u,»)=x;, i.e. the solution of the equation ¢7,-(u,-,x;)=a. Assume that
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@ (u;,x;) is an increasing function of x;. Then D;(y;) in (4) is determined by the inequality
X; < %;(z;) and

v;(u;)= max h(x;). (8)

X <Xk (u;)
If @;(;,x;) is an increasing function of u; then X;(u;) is a decreasing function of «; and

1 for ()= x;, ie. 0<w <i,
vi () = X ®
(%)) for X;(u)<x,ie w2i.

From (9) and the assumption that /;(x;) is an increasing function for x; < x;, it follows that
for u; > 4; (i.e. for u;€ D,;) v;(;) is a decreasing function of u,;. If @;(w;,x;) is a decreasing

function of u; then X;(u;) is an increasing function of u; and

[ (w)]  for ii(u,-)Sx:, ie. 0<u; <,
v (y;) = . (10)
1 for X;(u;)2x;, ie. w; 2d;.

From (10) and the assumption that /;(x;) is an increasing function for x; < x:, it follows that
for 0<u; <g; (ie. for u; € D,;) v,(i;) is an increasing function of u;.

Assume now that @;(;,x;) is a decreasing function of x;. Then D;(x;)in (4) is determined
by the inequality x; 2 X;(x;) and

vi(u;) = max h(x;). €93

Xi2%; (1)
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In a way analogous to that for the previous case, it is easy to see that if ¢;(x;,x;) is an
increasing (decreasing) function of #; then X;(1;)is an increasing (decreasing) function of u;

and for u; € D,; i.e. for u; 2if; (for 0<u; <ii;) v;(w;) is a decreasing (increasing) function of

Theorem 1

If the assumptions in Lemma are satisfied for each i and ur,u;,...,u: is the optimal allocation
then

vl(u;;)=v2(u;)=...=vk (u;). (12)

Proof: The theorem follows directly from Lemma and (3). For v(u*) =1, (12) follows from
the fact that "i(":) <1 for each i. Assume that v(u‘) <1 and (12) is not satisfied.

Let

vp(s)(u;(:))=minvi(z¢:), S€E l_r (13)
i

arg minv, (1 )€ (p(D),..., p(r)},

and vj(u;) be the smallest value v,»(u:) greater than vp(s)(u;m). For i=p(l),...,p(r),j

consider a new allocation Hptyseonlp(ryo U such that
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b — —_ * * -
Upn) +...+up(,)+uj =Up) +..‘+up(r) +uy,

Yoty Bpty) == Vp(ry () = v ).
Note that v (u* <1, ie. u.oeD . For the task allocation (@; are increasing
p(s) ¥ pls) p(s) up(s) i

. N _ _ *
functions of u; for each ), it follows from Lemma that &, < u:,m for each s and u; >u;.
For the decreasing functions ¢; (the resource allocation), it follows from Lemma that
* >

Up(sy > Up(sy and i; <uj. Then in both cases v,y (#p(5)) > Vp(s) Up(s)) aNd v (@, 5) s

the smallest value v; (i€ Lk). Consequently, the new allocation gives the greater certainty
index v(u)=minv;(»;) and if (12) is not satisfied then u;,u;,...,u; is not the optimal

allocation.

It is easy to note that the equality (12) is also a sufficient condition of the optimal

allocation.

Theorem 2

If the assumptions in Lemma are satisfied for each i and (12) is satisfied then uf,u;,.,.,u,: is

the optimal allocation.

Proof: Assume v (u;) =.=V (u,:) = v(u*) <1 and consider an allocation T #u". It follows

from Lemma (from the statement that v; is a monotonic function of ;) that there exists j such
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that vj(;Tj) < vj(u;). Then min v; (&) <v(u*) which means that u" is the optimal allocation.

Theorems 1 and 2 may be easily extended to the case of C-uncertain variables.

Theorem 3

If the assumptions in Lemma are satisfied then ud,uzz,...,uzk is the optimal allocation if

* * *
Vo (o) =V (ttgg) = .= vy (g ) -

Proof: According to (7) v, (u;) =v;(;)+1-9;(;) . In the way analogous to that for v;(x;)in
Lemma, it may be proved that for the task allocation (¢; is an increasing function of u;)
V;(;) is an increasing function, and for the resource allocation (¢, is a decreasing function of
;) vi(u;)is a decreasing function. Then v;(x;) is a decreasing (increasing) function in the set
{u; 1v,;(y;) <1}. Consequently, the second part of the proof is the same as the proof of
Theorems 1 and 2, with v; in place of v;. o

The consideration should be completed with the case when there exist x; and X; such that
(x;)=0 for x; ¢ [x,%;}. Now the assumption concerning /;;(x;) is as follows: 7;(x;) is an
increasing function for xie[_,g,x:] and a decreasing function for x; € [x,.‘,fi]. In this case

v;(1;) is a monotonic function in the set D,; = {1; : 0 <v;(i;) <1}.














































