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ON ALLOCATION PROBLEMS FOR A COMPLEX OF PARALLEL OPERA TIONS 

DESCRIBED BY UN CERT AIN V ARIABLES 

Zdzisław BUBNICKI* 

Abstract. The paper is concemed with allocation problems for a class of parallel 

operations described by a relational knowledge representation. Unknown parameters in the 

relations are assumed to be values of uncertain variables described by certainty distributions 

given by an expert. Theorems conceming properties of the optima! allocation are presented. 

The equivalence of the solutions obtained by a direct approach to the allocation problem and 

by a decomposition is discussed. An example illustrates the presented method. 

1. Introduction 

The idea of uncertain variables has been introduced and developed as a tool for analysis and 

decision making in a class of uncertain systems described by traditional mathematical models 

and relational knowledge representations [2]-[4], [8] The uncertain variable is described by so 

called certainty distribution giving by an expert and characterizing his/her knowledge of 

approximate values of the variable. In [7], [8] it has been shown how to use the unce11ain 
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variables in allocation problems for complex of parallel operations. The purpose of this paper 

is to present new results in this area: 

1. Theorems conceming properties of the optima! allocation (Sec. 2). 

2. A theorem about the equivalence of the solutions obtained by a direct approach to the 

allocation problem and by a decomposition (Sec. 3). 

We shall start with a short description of the uncertain variables and their applications for a 

decision problem. In the definition of the uncertain variable x we use a set of values X c Rk 

(real number vector space) and two soft properties: "x = x" which means that "x is 

approximately equal to x" or "x is the approximate value of x ", and "x E Dx" (where 

D, c X) which means that "the approximate value of x belongs to D," or ":i' 

approximately belongs to Dx ". The logic value of a soft property vE [0,1] is called a certainty 

index and a function h (x) = v (x = x) is called a certainty distribution ( max h (x) =I). The 

uncertain variable x is defined by the set of values X, the certainty distribution h (x) given by 

an expert, and the following definitions: 

for Dx =0 , 

v (x ii Dx) = 1- v (x E D") , 



for D1 n D2 "' 0 

for D1 n D2 = 0 . 

So called C-u11certai11 variable x is defined by the set of values X, the function 

h (x) = v (x = x) given by an ex pert and the following definitions: 

(I) 

In the case of C-uncertain variable the expert's knowledge is used in a better way but the 

calculations are more complicated. 

Con si der a static plant with the input vector u E U and the output vector y E Y, described 

by a relation R(u , y;x)cU x Y where xE X is an unknown vector parameter which is 

assumed to be a value of an uncertain variable x with h (x) given by an ex pert. If the relation 

R is not a function then the value u determines the set of possible outputs 

Dy(u,x)={yEY :(u,y)ER). For the property yEDycY required by a user, we can 

formulate the following decision problem: For the given R, h (x) and Dy one should find 

the decision u• maximizing the certainty index of the property: "the set of possible outputs 

approximately belongs to Dy". Then 
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u•= arg max v[Dy(u,x) ~Dyl= v[x E Dx(u)] = arg max max h(x) 
11EU 11EU .lEDx(II) 

If x is considered as C-uncertain variable then one should determine 
. 

uc maximizing 

vJxE Dx(u)]. 

2. Allocation problem 

Let us consider a complex of k parallel operations described by a set of inequalities 

T; 5 IJ);(Lt;,X;), i= I, 2, ... , k (2) 

where T; is the execution time of the i-th operation, u; is the size of a task in the problem of 

task allocation or the amount of a resource in the problem of resource allocation, an unknown 

parameter X; E R1 is a value of an uncertain variable X; described by a ce11ainty distribution 

h;(x;) given by an ex pert, x1, ••• , xk are independent variables, IP; (u;, x;) is a non-decreasing 

function of u; in the case of task allocation and a non-increasing function of u; in the case of 

resource allocation. The complex may be considered as a decision plant described in Sec. I 

where y is the execution time of the whole complex T=max{J;, ... ,Td, x=(x1, ... ,xk), 

u = (u1, ... , uk) E tJ. The set tJ c Rk is determined by the constraints: u; <'. O for each i and 

the equality u1 + ... + uk = U where U is the total size of the task or the total amount of the 

resource to be distributed among the operations (Figure I). 
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Plant 

u 
Allocation 

~ y= T 

~~ 

Figure 1. Complex of parallel operations as a decision plant 

According to the generał formulation of the decision problem presented in Sec. I, the 

allocation problem may be formulated as an optimization problem consisting in finding the 

optima! allocation u• that maximizes the certainty index of the soft property: "the set of 

possible values T approximately belongs to [O, a] " (i.e. belongs to [O, a] for an approximate 

value of x). 

Optimalallocationproblem:Forthegiven fP;, h; (iEl,k), U and a find 

where 

u• =argm~v(u) 
11EU 

v(u) = v{Dr(u;x) c [O,a]} = v(T(u,x) S a). 

The soft property "Dr(u;x)c[O,a]" is denoted here by "T(u,x)Sa", and Dr(u;x) 

denotes the set of possible values T for the fixed u, determined by the inequality 

T $ max rp;(u;,x;) . The property "T(u,x) S a" means that the maximum possible value of the 
i 

executive time T is approximately ( i.e. for the approximate value of x) less or equal to a . 
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According to (2) 

Then 

u• = arg max min v;(u;) 
uED i 

where 

v;(u;) = v[T; (u;, x;) ~a)]= v[ą,; (u;, X;)~ a)]= v[xj E D; (u;)], 

Finally 

and 

v;(u;) = max h;(x;) 
x;ED;(11;) 

u*= arg max min max h;(x;). 
ueO i XjED;(u;) 

(3) 

(4) 

(5) 

In many cases an expert gives the value x; and the interval of the approximate values of X; : 

x; -d; ::; X; ::; x; + d; . Then we assume that h; (x;) has a trianguł ar form presented in Figure 2 

where d; ::; x;. Let us consider the relation (2) in the form T; ::; X;U; where X; > O and U; 

denotes the size of a task. In this case, using (5) it is easy to obtain the following formula for 

the function V; (u;): 



for 

1 a • 
v;(u;)= -(--x;)+l for 

d; U; 

o for 

7 

<a 
U;-* 

X; 

!:..<u- <--a-
* - I - * 

X; X; -d; 

a 
U;~-.--. 

X; -d; 

Figure 2. Example of the certainty distribution 

For the relations T; :5 X;U;-l where u; denotes the size of a resource, the function v;(u;) has 

an analogous form with u11 in place of u;: 

o for 

1 • 
v;(u;) = -(au- -x-) + 1 for 

d; I I 

for 

< x; -d; 
U;----

x: -d- x: 
- 1--1 $ U; 5 _f_ 

a a 

a 

(6) 

lf X is considered as C-uncertain variable then, according to (1), the optima) decision u; 

maximizing the certainty index vc[T(u,x):::; a] is as follows 
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u;= arg ma2( [min v;(u;) + I-max v;(u; )] = arg ma2( [min v;(u; )-max v;(tt;)](7) 

where 

ueU i i ueU i i 

v;(u;) = v[T;(u;,X;) ~a]= ll_!aX h;(X;) 
xED;(11;) 

- - I 
and D; is the complement of D;, i.e . D; = R - D; (see [7]). 

Let us denote by x; the value maximizing h;(X;) (i.e. h;(x;) = I), and by D11; the set of u; 

for which v; (u;)< I. Let us assume for further considerations that h;(x;) is a continuous 

function (i E I, k). 

Lemma 

If 

- fP;(u;,X;) is an increasing (decreasing) function of u; for every X;, 

- fP;(tt;, X;) is a monotonie function of X; for every u;, 

- h; (x;) is an increasing function of X; for X; :,;, x; and a decreasing function of X; for 

then v; (u;) is a decreasing (increasing) function of u; in D11;. 

Proof Denote by i;(u;) the solution of the equation fP;(u;, x;) = a and by ii; the sol uti on of 

the equation i;(tt;) = x;, i.e. the solution of the equation rp;(u;,x;) =a. Assume thai 
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(f);(u;,X;) is an increasing function of X; , Then D;(u;) in (4) is determined by the inequality 

X; $ X; (u;) and 

v; (u;) = max h; (x;). 
x;~i;(u;) 

(8) 

If (f); (u;, x;) is an increasing function of u; then i; (u;) is a decreasing function of u; and 

(9) 
for x;(u;)$x;, i.e. u; ?.ii;, 

From (9) and the assumption that h;(X;) is an increasing function for X;$ x;, it follows that 

for u; ?. ii; (i.e. for u; E D,,;) v; (u;) is a decreasing function of u; . If (f); (u;, X;) is a decreasing 

function of u; then x;(u;) is an increasing function of u; and 

!h;[x;(u;)] 
V;(U;) = 

1 for x;(u;)?.x; , i.e. u; ?.it;, 

(10) 

From (10) and the assumption thai h; (x;) is an increasing function for X; $ x;, it follows that 

for O:,:; u; :,; it; (i.e. for u; E D,,;) v;(u;) is an increasing function of u;. 

Assume now thai (f); (u;, X;) is a decreasing function of X;. Then D; (u;) in (4) is determined 

by the inequality X; ?. i; (u;) and 

v;(u;) = max h;(x;) . 
x(?.i;(u;) 

(11) 
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In a way analogous to that for the previo us case, it is easy to see thai if f/!; (u;, X;) is an 

increasing (decreasing) function of u; then i;(u;)is an increasing (decreasing) function of u; 

and for u; E D11; i.e. for u;~ ii; (for O::; U;::; ii;) v;(u;) is a decreasing (increasing) function of 

u,.. 

Theorem 1 

If the assumptions in Lemma are satisfied for each i and u;, u;, ... , u; is the optima! allocation 

then 

(12) 

Proof The theorem follows directly from Lemma and (3). For v(u *) = 1, (12) follows from 

the fact thai v; (u;) ::; 1 for each i. Assume that v (u*) < 1 and (12) is not satisfied. 

Let 

i.e. 

( . . . 
vp(s) up(s)) = mm v;(u; ), 

I 

SE 1, r, 

argminv;(u;)E {p(l), ... ,p(r)}, 
i 

(13) 

and vlu~) be the smallest value v;(u7) greater than vp(s)(u;(s))- For i= p(l), ... ,p(r),j 

consider a new allocation up(l)•"·•up(r).i'ij such thai 
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- - - • * * 
up(I) + ... + up(r) +u j = up(!) + ... +up(r) + u j, 

Note that v p(s) (u;(,))< 1, i.e. u;(,) E D11p(s). For the łask allocation ( IP; are increasing 

functions of u; for each i), it follows from Lemma thai up(s) <u;(,) for each s and uj >u:. 

For the decreasing functions IP; ( the resource allocation), it follows from Lemma thai 

the small est value v; (i E 1, k). Consequently, the new allocation gives the greater certainty 

index v(u) = min v;(u;) and if (12) is not satisfied then u~,u;, ... ,u; is not the optimal 

allocation. 

It is easy to note thai the equality (12) is also a sufficient condition of the optimal 

allocation. 

Theorem 2 

If the assumptions in Lemma are satisfied for each i and (12) is satisfied then u~,u;, ... ,u; is 

the optimal allocation. 

Proof Assume v1 (u~) = ... = vk (u;) = v (u•) < l and consider an allocation u ;ć u• . It follows 

from Lemma (from the statement thai V; is a monotonie function of u;) that there exists j such 
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that v j (uj) < v /u:). Then min v; (U;)< v(u •) which means that u• is the optima! allocation . 

Theorems l and 2 may be easily extended to the case of C-uncertain variables. 

Theorem 3 

If the assumptions in Lemma are satisfied then u;1, u;2 , •. . , u;k is the optima! allocation if 

Proof According to (7) vc;(u;) = v;(u;) + 1-i\ (u;). In the way analogous to that for v;(u;) in 

Lemma, it may be proved that for the task allocation ( fP; is an increasing function of u;) 

v; (u;) is an increasing function, and for the resource allocation ( fP; is a decreasing function of 

u;) v; (u;) is a decreasing function . Then vci (u;) is a decreasing (increasing) function in the set 

{u;: vci(u;) < l}. Consequently, the second part of the proof is the same as the proof of 

Theorems 1 and 2, with vci in place of V;. o 

The consideration should be completed with the case when there exist 6 and X; such that 

h;(x;) = O for X; e [&,X;] . No w the assumption conceming h;(x;) is as follows: h; (x;) is an 

increasing function for X; E [&,x;) and a decreasing function for x; E [x; ,X;]. In this case 

v;(u;) is a monotonie function in the set D11; = {u; : O< v;(u;) < l}. 



13 

Theorem 4 

Assume that for each i the properties conceming IP; in Lemma and the property conceming h; 

presented above are satisfied. Assume that there exist u~,ll; , ... ,ll; such that 

(14) 

Then v(ll)=O forevery llEU . 

Proof According to (8) and (11), in the case of task allocation there exists sucha value of li; 

that for li; greater than this value v;(u;) =O, and in the case of resource allocation there exists 

such a value of li; that for u; less than this value v; (u;)= O. Consider an allocation u ie 1/. 

Then there exists j such that uj > u j and r such that u,. < li j. Consequently, it folio ws from 

(14) that in the case of task allocation vj(uj) =0 and in the case of resource allocation 

vr(ur) =O. Then, in both cases v(u) = min v;(ll;) =O . 

According to Theorems 1,2 and 4, to determine the optima! allocation one should salve the 

set of equations 

Denote the set of the solutions by D c fJ. 

1. If D = {u•) then u• is a unique optima! allocation and O< v (i/) < 1. 
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2. If there exists u E D such that v1 (u1) = ... = vk (uk) = l then for every u E D11 v (u)= 1, i.e. 

Dis a set of the optima! allocations. This means that a is sufficiently large for the given U, or 

U is sufficiently small in the case of a task (sufficiently large in the case of a resource) for the 

given a. 

3. If there exists u E D such thai v1 (u1) = ... = vk (uk) = O then v (u)= O for any allocation 

u E (J . This means that a is too small or U is too large in the case of a task ( too small in the 

case of a resource). 

3. Decomposition and two-Ievel allocation 

The determination of the allocation u• may be difficult for k > 2 because of the great 

computational difficulties. To decrease these difficulties we can apply the decomposition of 

the complex into two subcomplexes and consequently to obtain a two-level allocation system 

(Figure 3). At the upper level the value U is divided into U1 and U2 assigned to the first and 

the second subcomplex, respectively, and at the !ower level the allocation i/1l, u< 2l for the 

subcomplexes is determined. Let us introduce the following notation: 

n, m - the number of operations in the first and the second complex, respectively, 11 + m = k, 

T(I), r<2l - the execution times in the subcomplexes, i.e. 

r<I) = max (7i , T2 , ... , T,,), r<2l = max (T,,+1, T,,+2 , ... , T,,+ 111 ), 

u<I), u<2l - the allocations in the subcomplexes, i.e. 
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u(I) = (111' .. . ,u")' !1(2) = (u11+l' ... , ll11+m). 

u 

,,(I) lt(2) 

Subcomplex I Subcomplex 2 

Figure 3. Two-level allocation system 

The procedure of the determination of u• is then the following: 

1. To determine the allocation u(I)* (U1), i/2l*(u2 ) and the certainty index es v(I)* (U1), 

v< 2l*(U2 ) in the same way as u•, v' in Sec. 2, with U1 and U2 in place of U. 

2. To determine u;, u; via the maximization of 

Then 

(U;,u;)=arg max min{v<l)*(U1),v<2l*(u2 )} 
U1,U2 

with the constraints: U1,2 :?: O, U1 + U2 =U. 
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3. To find the values of u<1J•, u<2J• and / putting u; and u; in to the results u<1J• (U1), 

u< 2l\U2 ) obtained in point land inio v(U1,U2 ) in point 2. 

It may be shown that the result obtained via the decomposition is the same as the result of 

the direct approach presented in Sec. 2. 

Theorem 5 

argmax mi_!!v;(u;)= max min{ max minv;(u;), max min v;(u;)) 
11efJ iel,k U1,U2 11(llefJ1 iei; ,PleiJ2 ie11+l,111 

where the sets U1, U2 are determined by the equalities u1+ ... +u11 =U1 , 

u11+1 + .. . +u11 +111 =U2 , respectively, i.e. the direct approach and the approach via the 

decomposition give the same results. 

Proof Denote by / (U) the value / (i.e. the result of the optima! allocation considered in 

Sec. 2) as a function of U, and assume O< v •(U)< 1, i.e. 

(15) 

It is easy to show thai / (U) is a monotonie function . Consider U> U and the respective 

optima! allocation ii , i.e. 

(16) 
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Prom (15), (16) and the equality ii1 + ... +tik= U, it is easy to see that v;(ii;) < v;(u;') for the 

increasing functions v; (u;) and v;(ii;) > v;(u;) for the decreasing functions v;(u;) (i E U). 

Then v •(U)< v • (U) in the case of a task and v •(U)> v • (U) in the case of a resource. 

The optima! allocation u• satisfies the equations 

V1 (tt1) = ... =VII (u/I)= V11+l (tt11+l) = ... =_v11+111 (tt11+111 )} (17) 

u1 + ... +u11 +u,,+1 + ... +u,,+111 -U. 

Denote by u= (iI(l),iI(2l) the result of the decomposition. Then iI(l), iI(Zl satisfy the 

equations 

respectively. Prom the monotonie properties of the functions v0\U1), / 2l(U2 ) (showed at 

the beginning of this proof, with U1 and U2 in place of U) and Theorems I, 2 (with k = 2 

and U1, U 2 in place of u1, 112 ), it follows thai for u =u, U1 and U 2 satisfy the equations 

Pinally, it follows from (18), (19) thai iI satisfies the equations (17). Consequently, the result 

of the decomposition is the same as the result of the direct approach. 
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4. Example 

Let us consider the resource allocation for T;::; x;u;-l, k = 4 and the certainty dist1ibutions 

presented in Figure 2, and introduce the decomposition inio two subcomplexes with 

n= 111 = 2. For the first subcomplex the decision u~ may be found by solving the equation 

v1 (u1) = v2 (U1 -u1), and u; = U1 -u~ . Using (6) we obtain the following result for the first 

subcomplex: 

1. For 

2. For 

we obtain 

where 

X~ - d, + x; -dz < u, ::; X~+ x; 
a a 
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3. For 

/ 1>* (U1) = 1. 

The relationship / 2>* (U 2 ) is the same with x3 , x4 , d3 , d4 , A2 , B2 in place of x1, x2 , d1, 

The value u; may be determined by solving the equation /ll*(U1)=vC2l*(U-U1), and 

u/= U -u/ . The result is as follows: 

I. For 

(20) 

2. For 

we obtain 
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3. For 

we obtain v(U; ,u;)= I for any U1 satisfying the condition 

x; + x; :, Ui :, U_ x; + x; . 
a a 

In the case (20) a is too small (the requirement is too strong) and it is not possible to find the 

allocation for which v(u) is greater than O. For the numerical data U= 20, a= 0.5, x; = 2, 

• I • I • 
u2 = 5- u3 = 4- u4 = 7 and 

3' 3' 
/ = 3., which means that the requirement T:, a will be 

3 

approximately satisfied with the certainty index 3. . 
3 

5. Conclusions 

According to Theorems 1-4, the difficult optimization problem (3) may be reduced to the 

solution of the set of equations presented at the end of Sec. 2. The decomposition described in 

Sec. 3 permits to decrease the computational difficulties and gives the exact result, the same 

as in the direct approach described in Sec. 2. It is worth nothing that at the upper Ievel we 

have the deterministic optimization problem without uncertain parameters. 
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The results presented in the paper may be applied to a load distribution in a computer 

system with parallel processors, and may be extended to other decision problems in operation 

systems, to learning systems with the knowledge updating and to systems with a distributed 

knowledge [l], [5], [6], [9]. 
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